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Abstract
In order to reduce the Gaussian noise introduced during image generation, this paper presents
an image denoising algorithm based on variational Bayes (V-Bayes) estimation and
nonsubsampled contourlet transform (NSCT) bivariate model. First, the proposed algorithm
uses the NSCT’s advantages of translation-invariant and multidirection-selectivity, exploits the
intra-scale and inter-scale correlations of NSCT coefficients. Then, the corresponding nonlin-
ear bivariate threshold function of the model is deduced by using V-Bayes estimation theory.
Finally, the noise-reduced coefficients are inverse-transformed by NSCT to obtain denoised
image. The simulation results show that the denoised image has obvious improvement in
subjective visual effects and performance indicators, and effectively preserves the details and
texture information in the original image.

Keywords Image denoising .NonsubsampledContourlet transform .Bivariatemodel . Variation
Bayes . Threshold estimation

1 Introduction

During the acquisition and transmission process, images are often contaminated by various
noises, such as Gaussian white noise in optical images [1, 6, 12]. The presence of noise
reduces the resolution of the original image and seriously affects the subsequent classification
and recognition of the target. Therefore, image denoising has become an important method for
image preprocessing. Image denoising is to improve image quality and highlight the features
of the image itself [17]. As Donoho et al. proposed the concept of nonlinear wavelet threshold
denoising [21], the denoising method based on wavelet transform has been widely used. In
recent years, the research focus for wavelet denoising is the study of statistical model of image
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wavelet coefficients, which is to accurately model the non-Gaussian image wavelet coeffi-
cients with certain correlations [15]. The basic idea of this type of algorithm is to use the
statistical model as a priori probability model of the wavelet coefficients, and then use this
prior information to estimate the wavelet coefficients of the original image in the Bayes
framework. For example, an image denoising method combined with wavelet domain and
SUREShrink threshold estimation (WT + SUREShrink) was proposed in [14]. This method is
based on SURE (Stein’s Unbiased Risk Estimation) criterion, which is an unbiased estimate of
the mean square error criterion, and the SURE threshold approaches the ideal threshold. an
image denoising method combined with the wavelet domain and BayesShrink threshold
estimation (WT +BayesShrink) was proposed in [7], which is based on the assumption that
no-noise image wavelet coefficients obey the generalized Gaussian distribution.

However, with the increasing manifestation of the limitations of wavelet transforms, such as
the non-sparseness of high-dimensional time coefficients, lack of multi-directional selectivity,
multi-scale geometric analysis methods have emerged. Contoulet transform [4] is a powerful
and versatile two-dimensional signal transformation tool. Compared with wavelet transform, it
has better multi-resolution, multi-directional performance, and can accurately capture the
intrinsic geometry of the image. For example, an image denoising method combined with
Contourlet domain and BayesShrink threshold estimation (CT + BayesShrink) was proposed
in [10]. However, because Contourlet lacks translation invariance, on this basis, Cunha et al.
proposed the nonsubsampled contourlet transform (NSCT) [2], which uses non-subsampled
laplacian pyramid (LP) and directional filter bank (DFB) to construct the decomposition
structure. This process can avoid the downsampling process, so as to make the transformation
has translation invariance, and further improve the performance of the Contourlet transform in
the field of image denoising [3, 22].

In addition, there is a problem in the NSCT coefficient variance estimation algorithm based
on the traditional Bayes principle, that is, how to select an appropriate prior probability
coefficient model of the original image and the noise coefficient. To solve this problem, the
Variational Bayes (V-Bayes) method can be used. The basic idea of V-Bayes is to approximate
the true posterior probability distribution with a more easily approximated distribution. It
realizes the estimation by minimizing the Kullback-Leibler (KL) divergence between the
approximate distribution and the real posterior probability distribution [5, 9].

For this reason, this paper combines NSCT bivariate model and V-Bayes estimation, and
proposes an image denoising algorithm. The simulation analysis was performed on the
standard test images Lena, Barbara, and Peppers and compared with the existing classical
methods. The results show that the proposed algorithm can effectively remove the noise in the
image and obtain the highest PSNR value and noise suppression capability.

2 Nonsubsampled Contourlet transforms and bivariate model

2.1 Contourlet transform

Contourlet transform is implemented by Laplacian Pyramid (LP) decomposition and Direc-
tional Filter Bank (DFB). The LP decomposition decomposes the original image into low-
frequency sub-band and high-frequency sub-band, where the low-frequency sub-band is
generated from the original image by two-dimensional low-pass analysis filtering and down-
sampling. The low-frequency sub-band is subjected to up-sampling and two-dimensional low-
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pass synthesis filtering to form the same low-frequency components as the original image size.
The original image is subtracted from the low-frequency components to form another high-

frequency sub-band. The high-frequency sub-band is further decomposed into 2l j sub-bands
by a directional filter bank (for different scales j and lj can take different values). Repeating the
above process for low-frequency sub-band can achieve multi-scale multi-direction decompo-
sition [13, 18]. Figure 1 is a schematic diagram of the decomposition of the high-frequency
sub-band by DFB, and Fig.2 shows the sub-band of the Lena image after 2-layer Contourlet
transform.

The Contourlet transform process is expressed as [20]: (1) Using LP to perform the first-
order multiscale decomposition of the original image to obtain the first-order low-pass sub-
band and the first-order band-pass sub-band; (2) Using DFB to combine singular points that
have the same direction and are not continuous into a new coefficient, and the first-order band-
pass sub-band is decomposed in multiple directions to obtain a directional sub-band; (3)
Repeat steps 1 and 2 for the directional sub-bands to obtain the low-pass sub-bands at different
scales; (4) Contourlet reconstruction transformation is performed on LP and DFB to obtain a
transformed image matrix.

2.2 Nonsubsampled Contourlet transform (NSCT)

The contourlet transform can sparsely represent the image in an optimal way, and can
efficiently capture curved and oriented geometrical structures in images. Because down-
sampling is performed in both LP and DFB, the redundancy of the Contourlet coefficients
of the image is greatly reduced (redundancy is only 4/3) [23]. As a result, this transformation
lacks translation invariance. Therefore, if the Contourlet transform is used directly for image
denoising, there will be a noticeable ringing effect.

In order to solve the above problems, this paper uses the NSCT. The NSCT is a non-
orthogonal transform that discards the down-sampling operations in the Contourlet transform,
but combines the nonsubsampled pyramid (NSP) and nonsubsampled directional filterbanks
filter banks (NSDFB).After the transformation, the size of the sub-bands in each direction on

each scale is the same as that of the original image, and its redundancy reaches 1þ ∑ J
j¼12

l j (J

Fig. 1 Decomposition of high-
frequency sub-band by DFB
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denotes the decomposition layer number of NSP). Therefore, the improvement of the redun-
dancy of the coefficients makes the transform have a translation invariance, which is beneficial
to the effect of image denoising [16]. Fig.3 is a schematic diagram of a 2-layer nonsubsampled
Contourlet transform.

2.3 Bivariate model

A large number of studies have shown that the image wavelet transform coefficients are not
independent, but there is a certain degree of correlation, including intra-scale correlation and
inter-scale correlation. In addition, the distribution of the wavelet coefficients of each sub-band

Lena image

low-passsub-band directional sub-band

Contourlet sub-band

a

b

Fig. 2 The sub-band of the Lena
image after 2-layer Contourlet
transform

original

image

Low frequency

subband

High frequency

subband

High frequency

subband

Low-pass

filtering

Band-pass

filtering

Band-pass

filtering

Band-pass

filtering

Fig. 3 NSCT decomposition schematic
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is not Gaussian, but forms a curve with high peaks and long tails. Based on the above two
properties of image wavelet coefficients, various statistical models have been proposed.
Among them, the bivariate model fully exploited the inter-scale correlation of image wavelet
coefficients [11], used the non-Gaussian density function to model the distribution of Bparent^
and Bchild^ coefficients, and used Bayes statistical theory to obtain the analytical expression of
the maximum posterior estimate. Therefore, it has achieved good results in the application of
image denoising.

Because the coefficients in the NSCT transform domain have similar distribution
characteristics with the wavelet coefficients, that is, the decomposition coefficients
between the adjacent scales have strong correlation. For this reason, the processing idea
of the bivariate model in the wavelet domain can be used to extend it into the NSCT
transform domain [8].

Considering the relationship between the current coefficient and its parent coefficient, the
image observation signal can be expressed as

y ¼ ωþ n ð1Þ
where ω = [ω1, ω2], ω1 is the NSCT coefficient of the original image scale, and ω2 is the NSCT
coefficient with the same spatial position in the previous scale as the parent coefficient of ω1.
y = [y1, y2] and n = [n1, n2] represent the vectors composed of the NSCT decomposition
coefficient of observation image and the noise, respectively.

In the NSCT domain, the objective of image denoising is to obtain ω‘s estimate ⌢ω from y.
The maximum posterior probability (MAP) can be used to estimate ⌢ω yð Þ ¼ argmax

ω
pωjy ωjyð Þ,

and then use Bayes’ rule to obtain

⌢ω yð Þ ¼ argmax
ω

log pn y−ωð Þð Þ þ log pn ωð Þð Þ½ � ð2Þ

From the above equation, we must first know the probability distribution of the NSCT
decomposition coefficient of noise. Here assume that the noise density function pn obeys a
Gaussian distribution with a mean of 0 and a variance of σ2

n:

pn nð Þ ¼ 1

2πσ2
n
exp −

n21 þ n22
2σ2n

� �
ð3Þ

According to the distribution of NSCT decomposition coefficients, the model proposed in [19]
was modified to fit the distribution of ω by the probability distribution represented by the
following formula:

pω ωð Þ ¼ 3

2πσ2
exp −

ffiffiffi
3

p

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
1 þ ω2

2

q� �
ð4Þ

where σ represents the model edge variance of each NSCT coefficient. Since pω(ω) follows the
properties of the convex function and can be derived, so that f(ω) = lg(pω(ω)), then (2) is
equivalent to solving the system of equations:

y1−⌢ω1

σ2
n

þ f 1 ⌢ωð Þ ¼ 0

y2−⌢ω2

σ2
n

þ f 2 ⌢ωð Þ ¼ 0

8>>><
>>>:

ð5Þ
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where fi is the partial derivative of f(ω) to ωi. Then, the applicable bivariate threshold function
in the NSCT transform domain can be solved:

⌢ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y22

p
−

ffiffi
3

p
σ2n
σ

� �
þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y21 þ y22
p y1 ð6Þ

where the symbol ( f )+ represents ( f )+ = 0 when f < 0, otherwise ( f )+ = f. Equation (6) is the
MAP estimate of the current coefficient ω1 in the bivariate model and is called the bivariate
atrophy function. It can be seen that if we want to obtain ⌢ω1, we must estimate the NSCT
coefficient variance σ2n of the noise first. In this paper, the variation Bayes estimation method is
used to estimate the variance.

3 Variational Bayes threshold estimation

3.1 Bayes estimation

For the estimation of the variance σ2
n of the NSCT coefficients, a Bayes estimation method can

be used. Also consider the relationship between the original image and noise NSCT decom-
position coefficients

y ¼ ωþ n ð7Þ

In the process of image blurring, the edge area is affected more than flat areas and often
contains more information. Therefore, we will perform denoising in the image gradient
domain. Let ∇ω and ∇y denote the gradient of the NSCT coefficients of the original image
and the noisy image, respectively, so the eq. (7) can be converted as

∇ y ¼ ∇ωþ n ð8Þ
Given the gradient ∇y of the noisy image, according to the Bayes principle, the posterior
probability of ∇ω can be expressed as

p ∇ωj∇ yð Þ ¼ p ∇ yj∇ωð Þp ∇ωð Þ
p ∇ yð Þ ð9Þ

According to the (9), one of the key problems of the NSCT coefficient variance
estimation algorithm based on the Bayes principle lies in how to select an appropriate
noise function and prior probability coefficient model of the original image coefficient
and noise coefficient.

3.2 Variational Bayes estimation (V-Bayes)

In order to solve the above problem of traditional Bayes estimation, the variational
Bayes method provides an effective solution to the problem. The basic idea is to
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approximate the true posterior probability distribution p(∇ω| ∇y) with an easy-to-
handle approximation distribution q(∇ω). The KL divergence can measure the distance
between two distributions, so estimation can be achieved by minimizing the KL
divergence between the approximate distribution and the real posterior probability
distribution.

KL q ∇ω;σ2
� �

‖p ∇ωj∇ yð Þ
n o

¼ ∫q ∇ω;σ2
� �

ln
q ∇ω;σ2ð Þ
p ∇ωj∇ yð Þ d∇ωþ lnp ∇ yð Þ≥0

ð10Þ

The above equation holds if and only if q(∇ω, σ2) = p(∇ω| ∇y).
Note that p(∇y) is always a constant throughout the estimation process, so a cost function

CKL can be defined to get the optimal value of the approximate distribution:

CKL ¼ KL q ∇ω;σ2
� �

‖p ∇ωj∇ yð Þ
n o

−lnp ∇ yð Þ

¼ ∫q ∇ωð Þln q ∇ωð Þ
p ∇ωð Þ d∇ω

þ ∫q −σ2
� �

ln
q −σ2ð Þ
p −σ2ð Þ d −σ2

� �
ð11Þ

The variational Bayes estimation minimizes the cost function through an iterative approach
(that is, variation Bayes expectation maximization theorem), thereby estimating the noise
function.

4 Image denoising steps

From the previous discussion, it can be seen that the NSCT has the advantages of anisotropy,
multi-directional selectivity and translation invariance, while the bivariate model can fully
exploit the inter-scale correlation of image wavelet coefficients. At the same time, we have
reason to believe that the transform coefficients and the wavelet coefficients of the image
Contourlet and the NSCT have very similar properties in terms of correlation and distribution
characteristics. Therefore, this paper combines the two and proposes an image denoising
algorithm based on NSCT and bivariate model. The detailed steps of the algorithm are as
follows:

Step 1: NSCT is performed on the noisy image, in which the NSP decomposition layer
number and the number of NSDFB decomposed direction sub-bands on each scale
can be set.

Step 2: Estimate the NSCT coefficient variance σ2n kð Þ of the noise.
(2.1) Perform NSCT on noisy images and estimate noise standard deviation σn

using V-Bayes estimation method.
(2.2) Generate a Gaussian white noise image with the same size as the original

image with an average value of 0 and a variance of σ2
n.

(2.3) Perform NSCTon this noise image, and square the transformed coefficients
to obtain the NSCT coefficient variance σ2

n kð Þ of noise.
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(2.4) Go to step (2.2), repeat the above method several times (the number of
repetitions in this experiment is 10), take the average, and get the finalσ2

n kð Þ.
Step 3: For each high frequency direction sub-band, use local adaptive method to estimate the

model edge variance σ2(k) for each coefficient, ie, σ2 kð Þ ¼ max σ2
v1 kð Þ−σ2

n kð Þ; 0� �
,

where σ2
v1 kð Þ ¼ 1

M ⋅ ∑
v1 kð Þ∈N kð Þ

y21 kð Þ. Here, N(k) represents a square window centered

on the current NSCT coefficient y1(k), and M is the number of coefficients in the
window.

Step 4: Substitute σ2
n kð Þ and σ2(k) into (6) to obtain the bivariate threshold ω1.

Step 5: Reconstruct the denoised Contourlet coefficient matrix and perform an inverse
NSCT to obtain a denoised image.

5 Simulation and analysis

5.1 Simulation settings

On the PC with Intel i5–7500 CPU and 8G memory, various denoising algorithms are
executed through Matlab R2014 software. Three 512 × 512 standard test images Lena,
Barbara, and Peppers were selected for the simulation experiment. Gaussian white noise with
zero mean and different levels of standard deviation was added. The noise standard deviations
σn were 10, 20, 30, 40, 50. For system parameters, appropriate parameters were set according
to the analysis of the result of previous experiments. In this experiment, we set the number of
NSCT layers to 5, and the number of directional sub-bands was 4, 8, 8, 16, and 16 in order
from coarse to fine scale. The window coefficient M is 13 × 13.

In order to evaluate the effectiveness of the NSCT domain+V-BayesShrink threshold
estimation denoising algorithm (NSCT+V-BayesShrink) proposed in this paper, we compared
three typical algorithms in the current denoising field, these are wavelet domain +
SUREShrink threshold estimation method (WT + SUREShrink) [14], the wavelet domain +
BayesShrink threshold estimation method (WT +BayesShrink) [7], the Contourlet domain +
BayesShrink threshold estimation method (CT + BayesShrink) [10].

5.2 Performance parameters

For the real images I, a denoised image S is obtained after denoising. In this paper, we select
the following indicators for judging the denoising effect of an image:

1) Peak signal-to-noise ratio (PSNR), which represents the difference between a denoised
image and a real image.

PSNR ¼ 20log
255ffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

ð12Þ

where, MSE is the mean square error value of the real image I and the denoised image S,
expressed as

MSE ¼ 1

M � N
∑
M

i¼1
∑
N

j¼1
I i; jð Þ−S i; jð Þð Þ ð13Þ
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2) The noise suppression parameter (ρ), the greater the value, the stronger the suppression of
noise.

ρ ¼
Γ I−I ; S−S
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ I−I ; I−I
� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ S−S; S−S
� �r ð14Þ

where, the symbol B一^ means taking an average of the image. The definition of operator Γ
isΓ(A, B) = ∑ A(i, j)B(i, j).

In addition, visually judging the degree of noise pollution of the image, the important edge
and detail information retention in the image is also an important criterion for the performance
of denoising algorithm.

5.3 Performance comparison

Figure 4 shows the standard Lena image and Gaussian noise image with standard
deviation of σn = 30. Figure 5 shows the denoised Lena image processed by various
denoising methods. Figure 6 shows the standard Barbara image and Gaussian noise
image with standard deviation of σn = 40. Figure 7 shows the denoised Barbara image
processed by various denoising methods. From a visual point of view, the NSCT+V-
BayesShrink algorithm well preserved the edge details of the image, effectively removed
the noise, and the denoised image content became clearer. The parts such as brims, hair,
eyes, and eyebrows that are rich in edge details are clearer than the corresponding parts
in other denoised images.

Table 1 shows the PSNR of the noise images obtained by adding the noise with the standard
deviations σn of 10, 20, 30, 40, and 50 to the Lena, Barbara, and Peppers images, respectively.
It can be seen that after adding noise, the PSNR of the image is significantly reduced, and the
larger the noise standard deviation, the lower the PSNR.

For each image, 10 tests were repeated at each noise level, and calculate the average PSNR.
The experimental results are shown in Figs. 8, 9 and 10. Table 2 shows the average PSNR of
the various algorithms over the three images. In addition, the average ρ values of various
algorithms on three images under different noise levels are also calculated, as shown in
Table 3.

From Fig. 8 to Fig. 10, it can be seen that as the noise level increases, the PSNR of the
denoised image of various methods will also decrease. In addition, for the three images, the
denoising performance on the Barbara image is slightly worse than that of the Lena and
Peppers images. This is because the Barbara image has more directional texture information,
which makes it more difficult to denoise.

a bFig. 4 Lena image, (a) original
image, (b) noise image (σn = 30)
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The above experimental results show that the NSCT+V-BayesShrink algorithm has good
performance both in terms of objective indicators and subjective effects. From Tables 2 and 3,
it can be seen that in all simulation experiments, the PSNR and the value of NSCT+V-
BayesShrink algorithm are the highest. With different noise levels, the PSNR is about

a b

dc

Fig. 5 Denoised Lena image, (a)
WT+ SUREShrink, (b) WT +
BayesShrink, (c)CT +
BayesShrink, (d)NSCT+V-
BayesShrink

a bFig. 6 Barbara image, (a) original
image, (b) noise image (σn = 40)

a b

dc

Fig. 7 Denoised Barbara image,
(a) WT + SUREShrink, (b) WT +
BayesShrink, (c)CT +
BayesShrink, (d)NSCT+V-
BayesShrink
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0.7 dB higher than CT + BayesShrink algorithm, and the average value is about 0.01 higher
than CT + BayesShrink algorithm. The reasons for this are as follows:

Table 1 PSNR (dB) of the noise-added image on three images

Test image

Noise standard deviation

10 20 30 40 50

Lena 26.17 23.43 18.75 16.17 13.75
Barbara 26.20 23.46 18.71 16.10 13.80
Peppers 26.18 23.42 18.79 16.14 13.74

10 20 30 40 50
26

28

30

32

34

36

Noise standard deviation 

P
S

N
R

(d
B

)

WT+SUREShrink

WT+BayesShrink

CT+BayesShrink

NSCT+V-BayesShrink

Fig. 8 Comparison of denoising performance on Lena images

P
S

N
R

(d
B

)

10 20 30 40 50
26

28

30

32

34

36

Noise standard deviation 

WT+SUREShrink

WT+BayesShrink

CT+BayesShrink

NSCT+V-BayesShrink

Fig. 9 Comparison of denoising performance on Barbara images
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1) Use of NSCT. NSCT has many advantages such as anisotropy, translation invariance,
multi-direction selectivity and so on, which make the image denoising very advantageous.
As a result, the NSCT+V-BayesShrink algorithm achieves better results than the WT-
based algorithm, effectively maintains the directional information in the original image,
and largely avoids the appearance of the ringing effect. Although the WT-BayesShrink
algorithm is also based on the bivariate model, the WT transform only has approximate
translation invariance and directional selectivity of 6 directions on each scale, so this
algorithm is not as good as NSCT-based algorithm.

2) Selection of bivariate models. Bivariate model fully exploits the inter-scale correlation of
image coefficients, and has the atrophic function expression associated with the Bfather^
coefficient. In addition, NSCT+V-BayesShrink algorithm uses a local adaptive method
when estimating the model edge variance of the current coefficient, that is, taking into
account the influence of the surrounding coefficients on the current coefficient, which is
equivalent to the use of intra-scale correlation of the coefficients. In other words, the
algorithm considers both the intra-scale and inter-scale correlations of the coefficients.
Compared with the CT-BayesShrink based on the generalized Gaussian model which only
considers intra-scale correlations, the results of NSCT+V-BayesShrink are more reason-
able than CT-BayesShrink.

3) Use of V-Bayes. V-Bayes estimation is used to estimate the variance of the noise
coefficient in NSCT+V-BayesShrink. Compared with the median estimation method
proposed by Donoho in the wavelet domain, V-Bayes estimation method is more suitable

10 20 30 40 50
26

28

30

32

34

36

Noise standard deviation 

P
S

N
R

(d
B

)

WT+SUREShrink

WT+BayesShrink

CT+BayesShrink

NSCT+V-BayesShrink

Fig. 10 Comparison of denoising performance on Peppers images

Table 2 Average PSNR (dB) of denoised images obtained by various algorithms

Denoising method

Noise standard deviation

Average10 20 30 40 50

WT+ SUREShrink 32.42 31.72 30.84 29.06 27.03 30.21
WT+BayesShrink 33.41 32.76 31.62 29.55 27.41 30.95
CT+BayesShrink 34.05 33.44 32.24 30.02 27.72 31.49
NSCT+V-BayesShrink 34.73 34.31 33.05 30.87 28.16 32.22
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for the Contourlet domain, and the estimated noise coefficient variance is also more
accurate.

6 Conclusion

This paper combines NSCT bivariate model with V-Bayes estimation and proposes an image
denoising algorithm. Using the advantages of translation invariance and multi-direction
selectivity of the NSCT bivariate model, the V-Bayes valuation theory is used to derive the
threshold function. Finally, the denoised coefficients are inverse-transformed by NSCT to
obtain denoised images. The simulation analysis on the standard test image shows that the
denoised image obtained by the algorithm has a significant improvement in the subjective
visual effects, PSNR and noise suppression performance ρ.
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NSCT+V-BayesShrink 0.9764 0.9773 0.9765 0.9767 0.9774 0.9769

Multimedia Tools and Applications (2019) 78:8927–8941 8939



10. Li DM, Zhang LJ, Yang JH et al (2016) Research on wavelet-based contourlet transform algorithm for
adaptive optics image denoising[J]. Optik - Int J Light Electron Optics 127(12):5029–5034

11. Lin XH, Cheng JL, University X et al (2008) Image segmentation based on bivariate models in NSCT
domain[J]. J Image Graph 13(10):1841–1844

12. Luisier F, Blu T, Unser M (2011) Image Denoising in mixed Poisson–Gaussian noise[J]. IEEE Tran Image
Process Publ IEEE Signal Process Soc 20(3):696–708

13. Min D, Zhang J, Ma Y (2015) Image denoising via bivariate shrinkage function based on a new structure of
dual contourlet transform[J]. Signal Process 109:25–37

14. Mohideen SK, Perumal SA, Krishnan N et al (2010) A novel approach to image Denoising by combining
Neighshrink and Sureshrink in wavelet domain[J]. Digit Image Process 21(3):121–126

15. Naimi H, Adamou-Mitiche ABH, Mitiche L (2015) Medical image denoising using dual tree complex
thresholding wavelet transform and wiener filter[J]. J King Saud Univ Comput Inform Sci 27(1):40–45

16. Ou Y, Hong B (2013) Image De-noising algorithm using adaptive Bayes threshold by subband based on
nonsubsampled Contourlet transform[J]. Third Int Conf Intell Syst Design Eng Appl IEEE 2013:832–835

17. Rasti B, Sveinsson JR, Ulfarsson MO et al (2014) Hyperspectral image Denoising using first order spectral
roughness penalty in wavelet domain[J]. IEEE J Select Top Appl Earth Observ Remote Sens 7(6):2458–
2467

18. Sadreazami H, Ahmad MO, SwamyMNS (2014) Contourlet domain image denoising using normal inverse
gaussian distribution[C]//. Elect Comput Eng IEEE : 1–4

19. Sendur L, Selesnick IW (2002) Bivariate shrinkage functions forwavelet-based denoising exploiting
interscale dependency[J]. IEEE Trans Signal Process 50(11):2744–2756

20. Shahdoosti HR, Hazavei SM (2017) Image denoising in dual contourlet domain using hidden Markov tree
models[J]. Digit Sign Process 67(1):17–29

21. Starck JL, Candes EJ, Donoho DL (2002) The curvelet transform for image denoising[J]. IEEE Trans Image
Process Publ IEEE Sign Process Soc 11(6):670–684

22. Wang XY, Yang HY, Zhang Y et al (2013) Image denoising using SVM classification in nonsubsampled
contourlet transform domain[J]. Inform Sci Int J 246(14):155–176

23. Zhang S, Moloney C (2008) The nonredundant contourlet transform (NRCT): a multiresolution and
multidirection image representation[C]//. Elect Comput Eng IEEE : 1323–1326

Wang Deyan (1977), female, Lanzhou, Gansu, Master, associate professor, the main research direction is particle
swarm algorithm, machine learning algorithm, etc.

8940 Multimedia Tools and Applications (2019) 78:8927–8941



Xiao Ying (1979), male, Wuxi, Jiangsu, Master, associate professor, the main research direction for the network
technology, cloud computing, etc.

Gao Ya (1987), female, Yancheng, Jiangsu, Ph.D., major research direction for high-performance networks and
exchanges, etc.

Multimedia Tools and Applications (2019) 78:8927–8941 8941


	Image Denoising method based on NSCT bivariate model and Variational Bayes threshold estimation
	Abstract
	Introduction
	Nonsubsampled Contourlet transforms and bivariate model
	Contourlet transform
	Nonsubsampled Contourlet transform (NSCT)
	Bivariate model

	Variational Bayes threshold estimation
	Bayes estimation
	Variational Bayes estimation (V-Bayes)

	Image denoising steps
	Simulation and analysis
	Simulation settings
	Performance parameters
	Performance comparison

	Conclusion
	References


