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Abstract
In recent years, Internet of Things (IoT) has attracted significant attention because of its wide range
of applications in various domains. However, security is a growing concern as users of small devices
in an IoT network are unable to defend themselves against reactive jamming attacks. These attacks
negatively affect the performance of devices and hinder IoT operations. To address such an issue,
this paper presents a novel countermeasure detection and consistency algorithm (CDCA), which
aims to fight reactive jamming attacks on IoT networks. The proposed CDCA uses a change in
threshold value to detect and treat an attack. The algorithm employs channel signal strength to check
packet consistency by determining if the data transmission value contradicts the threshold value. The
node that sends the threshold value is periodically checked and the threshold value is comparedwith
the current value after data transmission to find out if an attack has occurred in the network. Based on
realistic simulation scenarios (e.g., with varying traffic interval, number of malicious nodes, and
random mobility patterns), the performance of the proposed CDCA is evaluated using a Cooja
simulator. Simulation results demonstrate the superiority of the proposed technique compared with
contemporary schemes in terms of performance metrics such as energy consumption, traffic delay,
and network throughput.

Keywords Internet of things . Network security . Jamming attack . Countermeasures

1 Introduction

Internet of Things (IoT) is used in various application domains, such as smart cities, intelligent
transportation systems, and healthcare [32]. Protecting the users of these applications is a
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demanding task because each application has different security requirements [19, 29, 35, 37]
and harmful attacks may affect network performance. The vulnerability of IoT networks to
various types of jamming attacks draws attention to the importance of security [3, 22]. Securing
these networks is crucial because of the characteristics and features of IoT devices [20, 21].
Conventional cryptographic security mechanisms have been introduced into the wireless sensor
domain to protect IoTapplications from jamming attacks such as denial of service (DoS), network
spoofing, and packet injection [27]. However, these mechanisms may be impractical for IoT,
mainly because they are unsuitable for resource-constrained devices. Thus, IoT remains suscep-
tible to jamming attacks that target various communication media [9, 38].

Jamming is an important class of DoS attack [14], that may employ malicious nodes to
disrupt legitimate communication between IoT devices through intentional interference. These
attacks negatively affect the performance of the resource-constrained small devices, thereby
harming the network [22]. In these attacks, the objective of an adversary is usually to drain the
limited energy resources of small devices by halting communication [10]. Jamming is one of
the most harmful attacks that can obstruct wireless communication channels by presenting
counterfeit packets and disrupting the radio communication frequencies in networks. There-
fore, such an attack is a major threat to IoT networks that consist of nodes with limited energy
and resources [32]. Jamming is performed either consistently or intermittently [2]. Reactive
jamming is an important type of attack on a physical and medium access control (MAC) layer;
such an attack causes the energy of the small devices to be consumed unnecessarily during
communication. The performance of resource-constrained networks depends mainly on how
efficiently their resources are used in [8, 20].

The modeling of the security attacks helps to understand an actual view of jamming
attack in IoT networks and enable us to decide the mitigation plans [13, 37]. The reactive
jamming attacks security modeling is illustrated in Fig. 1, which shows the reactive
jamming attack security modeling and the network vulnerability to attacks. All devices in
IoT have low memory and limited computation resources, making them vulnerable to
resource enervation attack. Attackers can send messages or requests to a specific device
to consume their resources. DoS (Jamming) attack is also possible due to man-in-the-
middle attack [5, 25].

Reactive jamming is the most difficult and challenging type of attack to detect in an IoT
network. It is more dangerous than constant, deceptive, and random jamming attacks in terms
of performance [9]. In reactive jamming, an attacker turns a legitimate node into a jammer by
transmitting signals only when it detects that a normal node is sending packets to other
devices; otherwise, the node remains idle [23]. Therefore, introducing a robust and compatible
approach to tackle reactive jamming in IoT networks is imperative.

The contributions of this study are as follows: We investigate various countermeasures for
reactive jamming attacks and propose an efficient defense mechanism called countermeasure
detection and consistency algorithm (CDCA). The proposed algorithm detects an attack based
on channel signal strength, packet inconsistency, and node location. A reactive jamming model
is formulated and simulation results demonstrate the superior performance of CDCA compared
with contemporary schemes in terms of metrics such as energy consumption, traffic delay, and
network throughput.

This paper is organized as follows. Section 2 reviews related studies. Section 3 discusses
the system model. The proposed CDCA mechanism is described in Section 4. Section 5
presents the implementation details. The simulation results and analysis of CDCA are
discussed in Section 6. We provide the conclusion in Section 7.
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2 Related works

Many security countermeasures employing a variety of defense techniques have been devel-
oped to address jamming attacks, including reactive jamming, in the IoT domain. Securing IoT
networks from jamming attacks is not a new problem and has been extensively studied. As
mentioned, jamming is a DoS attack [11, 14] that employs malicious nodes to disrupt
legitimate communication between IoT devices through intentional interference. Jamming
attacks have been investigated in various domains. For example, the study [11] proposed a
mechanism to counter such an attack in cluster-based wireless sensor networks (WSNs); the
researchers investigated the behavior of a jamming attack and analyzed its effect on the
performance of WSN using cyclic redundancy check (CRC). The analysis shows that the
performance increases by approximately 30% more than that of normal traditional reactive
jamming attack approaches such as packet delivery ratio (PDR) developed in [28] and retreat
from interference in [34]. The traditional approaches depend on CRC of packets to determine
if correct packets are received. However, these approaches cannot differentiate between packet
failures due to weak radio links and interference. Furthermore, when reactive jamming occurs,
evaluating an accurate/exact PDR is infeasible through the traditional approach because
packets are sent only when the jammer detects activities in the channel.

A novel anti-jamming strategy for IoT systems was proposed in [26] using an IoT controller
to protect devices against a malicious radio jammer. The Colonel Blotto game (Nash equilib-
rium) with continuous and asymmetric resources was also employed to model the jamming

Man in the middle

Replay A�acks

Traffic Analysis A�acks

Reac�ve Jamming 
A�ack

Jamming A�ack

Fig. 1 Reactive jamming attack security modeling in IoT
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attack. The drawback of this approach is the high energy consumption and traffic delay caused
by the malicious nodes in the network.

Energy-efficient routing for the jamming attack presented in [33] adopted frequency hop-
ping and frame masking. To improve energy conservation at the nodes, the proposed mecha-
nism divides packets into fragments. The proposed mechanism requires dedicated hardware,
which increases its implementation cost besides energy consumption and delay issues.

A solution for jamming suppression in IEEE 802.11b networks was provided in [30] using
an electronically steerable parasitic antenna radiator. The results show that connectivity during
a jamming attack can be improved by using switched-beam antenna enhancing system
bandwidth. The major challenge is network degradation as the number of malicious nodes
increases, leading to an increase in energy consumption and delay.

A jamming attack detection and countermeasure based on the ant system was proposed in
[12]. This approach used the ant algorithm based on mobility to prevent and detect jamming
attacks on IoT. However, this approach tends to increase delays because it requires multiple
access points, which in turn increase the network complexity and implementation cost.

To detect jamming attacks, a threshold-based jamming countermeasure (TJC) scheme was
proposed in [20]. The proposed technique primarily relies on a packet count threshold value,
which is determined and sent by the base station (BS) to all nodes in advance. An attack is
detected by the BS if a node sends more data than the threshold value. Unlike WSN where
nodes are often homogeneous and where consistent data are sent, IoT involves heterogeneous
Internet-connected devices with variable data transmissions in [7]. Therefore, TJC may be
unsuitable for IoT. Although IoT devices are assigned with IP addresses and their location can
easily be tracked. Unlike TJC, our proposed CDCA algorithm exploits IP in [27] and location-
based authentication besides data consistency to counter a jamming attack, which is not the
case with WSN.

Based on the drawbacks observed from the existing techniques, CDCA is proposed as a
countermeasure for reactive jamming attacks. This technique checks packet detection strength
and node location consistency when reactive jamming occurs in an IoT network. The packet
detection strength is monitored to find out if any change has occurred between the packet
signal strength and the threshold value. The node location consistency keeps the location
information of legitimate neighboring nodes with their fixed threshold value, which is
constantly checked at time intervals. Unlike contemporary schemes that are centralized,
CDCA is a distributed approach that can operate on all nodes.

Reactive jamming is a type of jamming that turns a normal node into a jammer by
transmitting signals only when an attacker detects that the normal node is sending packets to
other nodes, else it keeps quiet [5, 12]. This makes reactive jamming difficult to detect unlike
the other types of jamming attack such as constant, deceptive, and random jamming attacks. A
constant jammer emits radio signals continuously in the communication channel. The goal of a
constant jammer is to continuously emit signals to keep the communication medium busy,
thereby preventing legitimate nodes from accessing the communication channel. A deceptive
jammer continuously sends and inserts random data into the communication channel rather
than sending random bits without gaps between the packet broadcasts. In deceptive jamming,
no effective communication occurs between nodes as a result of constant data streaming
performed by a deceptive jammer in the channel. A random jammer behaves in a manner
similar to constant and deceptive jammers. The unpredictable behavior of a random jammer
causes difficulty in detecting its attack compared with constant or deceptive jammers [24].
Random jamming is more intelligent than constant and deceptive jamming because it
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conserves energy given unlimited power supply. The jammer node alternates between sleeping
and jamming after a regular interval.

Recently, IoT has gained popularity because of the increase in applications that are
connected to the Internet. Researchers [18, 24, 30] have predicted that the number of
connected devices by 2020 will be four times more than the human population; for users to
develop trust in IoT networks, jamming attacks, especially reactive jamming, have to be
addressed. As discussed in Section 1, reactive jamming remains the most difficult attack to
detect in IoT networks. Moreover, in the innovation of WSNs, jamming attacks are the main
security issues that have to be addressed before users can gain trust in these networks [15].
Therefore, a novel approach to counteract reactive jamming is needed. Once reactive jamming
attacks are addressed in IoT networks, other types of jamming attacks, such as constant,
deceptive, and random jamming, can also be handled because reactive jamming consists of
proactive jamming characteristics such as those of the other types of attacks [9].

3 System model

This section provides a reactive jamming attack model in IoT network. It shows the level of
data flows, objects involved and how messages are exchanged among various objects in the
network during the interaction [4, 17]. In addition, the system modeling provides a high-level
of understanding of the device functionalities and describes how data flow among users and
devices [5, 23]. The system model of a sender node, receiver node, and reactive jammer is
illustrated in Fig. 2.

Reactive jamming is only feasible when the geometry of the system is such that the
jammer’s transmitted signal reaches the target receiver before it hops to a new channel or
stops transmitting. As such, reactive jamming is only possible when the jammer is physically
located near or between the target transmitter and receiver. If represents the fraction of each
node duration that must remain not jammed for communications to succeed, then from Eq. (1),
we have following inequality limiting the distances S2 and S3;

S2 þ S3≤ λRs−Rj
� �

qþ S1 ð1Þ

S3

S2

S1

Sending Node Jammer

Receiving Node

Fig. 2 System model for sender node, receiver node and reactive jammer
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where Rs is the node duration, Rj is the jammer’s processing time, q is the speed of light, and
S1, S2, and S3 are the distances indicated in Fig. 2.

The reactive jammer continuously monitors the communication medium and upon sensing
a packet transmission immediately transmits a radio signal in order to cause a collision at the
receiver [1, 6]. The jammer can send just enough power to corrupt a single bit to cause a
received packet to fail the Cyclic Redundancy Codes (CRC) check. Normally, reactive
jamming attack have the following criteria; high energy efficiency (i.e., consume low power),
low probability of detection (preferably close to 0), achieve high levels of DoS (i.e., disrupt
communications to the desired (or maximum possible) extent) and be resistant to PHY layer
antijamming techniques (i.e., do not allow signal processing techniques to overcome the
attack). Often, the criteria of interest are jamming scenario dependent [16, 31]. In other words,
the jamming scenario dictates the most suitable criteria for use [35]. For instance, when
malicious nodes have limited energy resources, energy efficiency will be their prime goal.
Based on these criteria, different jammers tend to be effective in all cases, as long as the
aforementioned criteria are possible. For example, in order to maintain a low probability of
detection, the jammer can adopt techniques that are consistent with MAC layer behaviors.

4 Proposed CDCA for IoT

As mentioned, the goal of a reactive jammer is to prevent a legitimate node from sending
packets by making the channel appear always busy. In this situation, a method is needed to
monitor the amount of time spent waiting for the channel to be idle, as well as to check packet
signal strength and node location consistency, and compare these metrics to normal traffic time
to determine if jamming occurs in the channel. To perform these tasks, we introduce CDCA.

The proposed CDCA is a technique that uses a change in threshold value, as illustrated in
Eq. (2), to detect and cure a network attack. The proposed technique also boosts IoT network
performance (packet signal strength) and improves the location consistency checks of con-
nected devices, thereby protecting the network against reactive jamming. The threshold value
is calculated on the basis of Eq. (2).

∑n
i¼1Dxi ¼ N ð2Þ

whereD is MaxPacket of neighboring nodes, xi is the distance between each node, n is the total
number of nodes, and N is the threshold value.

The algorithm uses channel signal strength to determine packet consistency by checking if the
data transmission value contradicts the threshold value. The node that sends the threshold value is
periodically checked and its value is compared with the current value after data transmission to
determine if an attack has occurred on the network. If the threshold value is greater than the
MaxPacket of any particular node, then that node is considered as a jammer. However, if the
threshold value is less than the MaxPacket of any particular node, then that node may or may not
be considered as a jammer because it may be a result of weak signals during transmission.
Nevertheless, in this case, the current value received after transmission has to be checked and
compared with the sending threshold value on the communicating nodes.

When the jammer node is detected by CDCA, it notifies all other connected nodes about the
jammer node to change all paths coming from itself. As a result, the defense mechanism
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indirectly removes the jammer node from the network. The CDCA network, attacker assump-
tions, and algorithm are described in the following subsections.

4.1 Network assumptions of CDCA

The following is a list of CDCA assumptions:

1. The network consists of n number of IoT devices that are randomly distributed.
2. All devices (nodes) have the same capability in terms of functionality. Each node serves as

a gateway because every node has an IP address, and the nodes can send messages to one
another.

3. All nodes can communicate with one another via single-hop or multiple-hop mode.
4. The jamming attack can be initiated by any node. A reactive jammer begins to interfere

with the channel as soon as it senses an activity there.
5. Both the jamming and normal nodes are equipped with the same capability, but the

jammer node is able to generate random messages (i.e., random jamming signal).

4.2 Features of CDCA

The main idea behind CDCA is to boost the IoT network performance and protect the network
against reactive jamming by assigning a sending threshold value to each node in the network.
The sending threshold value helps to determine a node’s ability to send maximum data, which
enables the proposed algorithm to detect if an attack has occurred in the network. The flow of
the proposed algorithm is presented as follows:

Algorithm 1: CDCA Consistency Check

Required

n, MaxPacket(D): D Neighbor nodes

Input: Threshold value, a0, b0, an, bn;

Output: Dist, ∆Threshold value

1: If (MaxPacket(D) < ThresholdPacket) Then

2: Signal Strength (SS) is checked for consistency

3: Check the sending threshold value

4: Check channel = SS consistency (SS, MaxPacket(D))

5: Elseif Check channel = false Then 

6: Jamming occurred

7: Endif 

8: If (MaxPacket(D) > ThresholdPacket) Then

9:                   X0 = (a0, b0) = node_location

10: Xn = (an, bn) = find_location (n)

11: Path Analysis = dist (X0, Xn)

12:         Check channel = Sent packet

13: Elseif Check channel = false Then 

14: Jamming occurred

15: Endif

16: End. 

Where X0 signifies the initial position of node from point a0 to b0, Xn signifies the actual
position of node located from point an to bn, n is the total number of nodes in the network and
D signifies neighbor nodes.
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The algorithm involves two phases. The first phase involves choosing the data that send the
threshold value from each node and checking for the signal strength consistency of every node.
As every node is able to send data after a certain interval, the algorithm can keep track of the
amount of data sent by each node.

The next phase is checking (location consistency), which is based on the sending
threshold value. Every node in the network is assumed to be in one of three states:
normal (i.e., non-attacker node), suspicious (i.e., suspected attacker node), and the
attacker (i.e., jammer node). Initially, all nodes are in the normal state and send data
to one another through single-hop or multi-hop communication mode.

Path analysis of the suspicious state node is conducted in two phases depending on the type of
communication (i.e., single-hop or multi-hop) used by the nodes for exchanging data. If the
suspicious source node uses the single-hop communication mode, then the algorithm can
easily detect the attacker by performing single-hop path analysis. If the suspicious node uses
multiple hops, the path analysis algorithm checks each hop and the packets transmitted by all
nodes. If the number of packets produced by a node is more than the normal sent data, then
that node is considered to be a jammer and is converted to jamming state by the algorithm. The
algorithm decides that a node is in a normal state when the sending threshold packet value is
the same as the MaxPacket. To determine the normal state/data, the following rules are
followed:

1. If the MaxPacket is less than the ThresholdPacket, then the malicious node level is high.
2. If the MaxPacket is equal to the ThresholdPacket, then the malicious node level is normal.

At this level, normal data are received.
3. If the MaxPacket is greater than the ThresholdPacket, then the malicious node level is low.

The MaxPacket denotes the maximum value of the packet from the corresponding entries of
each node in the network every 1 s. Finally, the algorithm removes the jamming node by
informing other nodes about it and changing the communication path in the network. The
jamming node is eliminated from the network by making its path redundant and thus, the
jammer node continuously emits its limited energy. Figure 3 illustrates how the algorithm
functions.

4.3 Reactive jamming and detection model formulation

The reactive jamming attack and detection model are formulated as either one of two types of
games: “non-cooperative” or “zero sum”. The first type aims to mitigate security issues in the
IoT network. The second type is a kind of non-cooperative game between two players, one of
whom is a “maximizer” and the other a “minimizer”. The maximizer strives to reach the
highest level of gains, whereas the minimizer aims to keep its losses at the lowest level [1].
This approach is selected because, in the IoT network, every node (player) tends to maximize
its resources (gains) to be fully active during packet transmission. These players are monitoring
nodes that are responsible for detecting the reactive jamming attack. The players are set as

S ¼ S1; S2f g ð3Þ

where S1 is the monitoring node and S2 is the jammer.
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The tradeoffs in the model formulation are constant monitoring (Mc) and periodic moni-
toring (Mp), which provide the nodes with an option to monitor the communication channel
either continuously or at a predefined time interval. The reactive jamming attack strategy is
adopted in this model and denoted as “ReJ”. The monitoring node uses two strategies (Mc,
Mp) in monitoring the channel.

The strategy is denoted as

S ¼ S1*S2 ð4Þ

S1 ¼ Mc;Mpf g ð4aÞ

S2 ¼ ReJf g ð5bÞ
where S1 and S2 represent players 1 and 2, respectively.

Player utility functions are also considered. The utility function indicates the effective-
ness of the monitoring node related to attacks that are effectively detected and those

Start

Set ThresholdPacket (THP) value

MaxPacket

<THP

Calculate Node Location Value
Calculate Signal Strength (SS) at

Normal State

Check SS Consistency

Check Sending THP

Value

Check Channel = SS, MaxPcket

Jamming Occurred

MaxPacket

>THP

X0 = (a0, b0) = node_location

Xn = (a0, b0) = find_location (n)

Dist. = dist (X0, Xn)

Check channel = Sent Packet

Jamming Occurred

YesNo No Yes

Stop

No Jamming Occured No Jamming Occured

Fig. 3 Flowchart of CDCA
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classified as false. For the monitoring nodes, detection rate and false positive rate are the
two utility functions considered. The jammer utility aims to prevent successful packet
transmission and reduces network throughput by introducing a DoS attack into the
network.

The utility function (U) is given as

Uf g ¼ U1;U2f g ð6Þ
where U1 and U2 are the detection rate and attack gain, respectively.

Based on Eqs. (2), (3), and (4), a reactive jamming strategy model for an IoT network is
formulated for both the Mc and Mp strategies as follows:

Mc ¼ Ad Ga−Prej
� �

; Gd−Pcð Þ ð7Þ

Mp ¼ Ad tGa−Prej
� �

; t AdGd−Pp
� � ð8Þ

where Ad denotes the attack duration, t represents Mp time, Gd denotes attack detection gain,
Ga represents the gain for an attack that is launched successfully, Prej is the payoff for reactive
jamming, and Pc and Pp are both payoffs when Mc andMp are used to detect the attack. Gain
is when an attack is successfully detected or launched. Payoff is the cost of detecting or
launching an attack.

Equations 4 and 5b express the reactive attack strategy for both Mc and Mp. The reactive
jammer launches an attack only when it detects an activity in the communication channel.
Attack duration Ad is defined as the period when a reactive jammer launches an attack on the
channel. In the case of Mc, paying cost Prej in period Ad enables the reactive jammer to
accomplish its gain Ga. Otherwise, the jammer gains Gd by paying the cost of constant
monitoring Pc. In Mp, the reactive jammer can achieve gain Ga at time t by paying Prej in
each attack duration Ad. Otherwise, the jammer gain Gd at each Ad is achieved by paying Pp

after t. Table 2 (Appendix) provides definitions of all the mathematical symbols used in
sections 3 and 4.

5 Implementation details

This section describes the implementation of CDCA using Cooja simulator [31] under varying
traffic intervals, number of malicious nodes, a realistic condition, and random mobility.

5.1 Simulation parameter

We used the Cooja simulator to create the attacks. The simulation parameters are based on
IEEE 802.15.4 radio standard. The details of the parameters are provided in Table 1.

These values provide the basis for proper evaluation of jamming attacks [30].
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6 Results and discussions

In this section, the performance of the proposed algorithm is compared with that of the existing
TJC countermeasure in [4] and traditional approach in [34] to detect reactive jamming.

The MAC protocol is Contiki and the routing protocol [16] is ad-hoc routing. The
simulation is run 50 times and the results are compared with those of the state-of-the-art
countermeasures.

The attacks are simulated under the following conditions:

1. Simulation performed under varying traffic intervals: This condition is important to
measure and ascertain the performance of jamming attacks on the network and determine
the countermeasure in different traffic situations. The traffic interval ranges from 1 s to
10 s, where 1 s is considered as fast and 10s is slow.

2. Under a varying number of malicious nodes: This set of simulations is used to analyze the
effect of network attacks and determine the appropriate countermeasures by accumulating
all malicious objects. Nodes 1, 3, 5, 7, and 15 are considered as malicious nodes. The
traffic interval is set to 1 s, which is the fastest network traffic.

3. Under a realistic condition: A realistic condition is one where the nodes in the network do
not transmit information at the same time, i.e., they transmit information at different
intervals. The traffic interval varies randomly between 1 and 10 s.

4. Under random mobility: The set of simulations provides a realistic behavior of CDCA. In
this scenario, random mobility is added to each node and the traffic interval varies
between 1 and 10 s. Furthermore, mobility speed varies from 1 km/h to 25 km/h.

The performance metrics are energy consumption, traffic delay, and network throughput.

6.1 Energy consumption performance

Figure 4 demonstrates the average energy consumption and number of malicious nodes as the
time interval varies. Fig. 4a indicates the superiority of the proposed CDCA approach to
contemporary schemes in terms of reducing energy consumption.

The main reason is that the proposed algorithm detects reactive jammers and isolates them
from the network, thereby reducing the energy consumption level that occurs as a result of
reactive jamming. For example, with the traditional approach, the average energy consumption
during reactive jamming from interval 1 s to 5 s is approximately 15%, and the percentage
continues to increase as the interval increases. However, when the proposed algorithm is
introduced into the network at the same interval, the energy consumption is reduced to

Table 1 Simulation Parameters
Parameters Value

Initial Energy 100 J
Idle Power 31 mW
Receiving Power 35 mW
Sleep Power 15 μW
Transmission Power 31 mW
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approximately 3% compared with 11% for the existing TJC approach. As expected, the energy
consumption increases with the increased time interval for all the approaches. Reactive
jamming has the highest energy consumption because it transmits signals only when it detects
that the normal node is sending packets to other nodes. Figure 4b elucidates the average energy
consumption with a varying number of malicious nodes, which are set to 1, 3, 5, 7, and 15. The
point of identifying malicious nodes is to conduct a realistic and accurate analysis of CDCA
when the amount of jamming increases in the network. The result shows an increase in the
energy consumption level when malicious nodes are present. The energy consumption levels
in a normal reactive jamming situation based on the traditional approach at malicious nodes 1
and 5 are approximately 10 and 20%, respectively, which increase to approximately 47% at
malicious node 15. Although the energy consumption level drops to approximately 2 and 8%
at malicious nodes 1 and 5, respectively, it is approximately 22% at malicious node 15 when
the proposed algorithm is applied. This result is better than that of the existing TJC, which
consumes approximately 4 and 14% at malicious nodes 1 and 3, respectively, and then up to
around 33% at malicious node 15. The proposed algorithm saves energy because its detection
mechanism reduces the energy consumption of the jamming node by not sending data to an
active state when an attack is detected and by detecting multiple jamming attacks on a single

Fig. 4 Average energy consumption as a function of varying traffic interval in (a), malicious nodes in (b),
malicious nodes with realistic conditions in (c), and malicious nodes with mobility in (d)
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path, thereby proving that CDCA is efficient and can effectively treat the attacks. Figure 4c
shows the average energy consumption in a realistic condition with malicious nodes. The
realistic condition simply means that packets are transmitted randomly in the network among
nodes between intervals, i.e., each node sends packets at a different time. Simulating the
realistic condition is important to understand the performance of CDCA during a reactive
attack. The result indicates that, with the traditional technique, the energy consumption during
normal reactive jamming at node 1 is approximately 13%, which increases to approximately
55% at node 15 in a realistic condition. However, the energy consumption level decreases to
approximately 4 and 29% at nodes 1 and 15, respectively, and the network performance
improves when the proposed algorithm is applied to the network in a realistic condition.
Moreover, it is 4% less than that of the existing TJC at node 1 and 11% at node 15 in the same
condition. Figure 4d explains the average energy consumption under mobility with malicious
nodes. The simulation aims to test the flexibility of the proposed countermeasure in the IoT
network. The results show that under mobility and when the traditional technique is applied,
the average energy consumption of normal reactive jamming at node 1 is approximately 15%,
which increases to approximately 78% at node 15 as the number of malicious nodes increase
their mobility. The proposed algorithm reduces the energy consumption to approximately 3
and 23% at nodes 1 and 15, respectively, thereby improving the network performance as the
number of malicious nodes increases. The energy consumption is 6 and 20% less than that of
the existing TJC under mobility.

6.2 Traffic delay

Figure 5 demonstrates the traffic delay and the number of malicious nodes as the time interval
varies. Figure 5a indicates the superior performance of the CDCA approach compared with its
contemporaries in terms of traffic delay.

The reason is that the proposed algorithm can detect, stop, and separate/remove the
jamming node from the network. In addition, isolating the jamming node indirectly eliminates
traffic jams in the channel, thereby reducing the delay. The result indicates that in a normal
reactive jamming condition, the traffic delay using the traditional approach at interval 1 s is
approximately 25%, but when the proposed algorithm is applied to the network at the same
interval, the traffic delay decreases by almost 9%, which is 3% less than that of the existing
algorithm. However, the percentage continues to increase in proportion to an increase in the
interval. Figure 5b illustrates the performance of CDCA with traffic delay under a varying
number of malicious nodes. The results show that the traffic delay in a normal reactive
jamming condition using the traditional technique is approximately 24% at malicious node
1, and the percentage of delay increases with an increase in the number of malicious nodes; for
example, the delay increases to approximately 70% at malicious node 15. However, the
proposed algorithm reduces the traffic delay to approximately 8 and 38% at malicious nodes
1 and 15, respectively, compared with the existing approach with approximately 12 and 50%
traffic delay at the same number of malicious nodes. The proposed detection algorithm can
reduce traffic delay by decreasing the channel waiting time. Figure 5c elucidates the traffic
delay under a realistic condition with varying number of malicious nodes. The delay of the
normal reactive jamming is approximately 35% at node 1, and this rate increases to approx-
imately 80% at node 15 in a realistic condition when the traditional technique is used.
However, when the proposed CDCA is applied, the delay is reduced to approximately 10%
at node 1 and approximately 44% at node 15 in a realistic condition, which is around 5% better
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than the result of the existing TJC at node 1 and 11% better at node 15. Figure 5d shows the
results of CDCA for traffic delay under mobility with malicious nodes. The result indicates
that during normal reactive jamming with the traditional approach under mobility, the traffic
delay is approximately 30% at node 1, which increases to around 80% at node 15, thereby
degrading the network performance. When CDCA is applied, the network performance
improves by approximately 10% in terms of delay compared with that of TJC at node 1 and
almost 11% at node 15 under mobility. The introduction of mobility causes an increase in
energy consumption and delay because additional time is needed to determine and calculate
the threshold value of each node and a larger amount of energy is needed to scan the pathway
to detect malicious nodes in the network.

6.3 Network throughput

Figure 6 demonstrates the network throughput and the number of malicious nodes as the time
interval varies. Figure 6a shows that the network throughput degrades to approximately 42% at
an interval of 1 s in a normal reactive jamming condition using the traditional technique.

Fig. 5 Effect of varying traffic interval (a), malicious nodes (b), malicious nodes with realistic conditions (c), and
mobility with malicious nodes in (d) on delay
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However, the proposed algorithm improves the network throughput to approximately 86%,
which is 10% higher than that of the existing algorithm at the same interval of 1 s.

The result shows that the network throughput performance decreases as the interval
increases. The normal reactive jamming condition keeps the communication channel
busy, thereby affecting the network throughput as a result of heavy pending traffic
incurred on each node. Figure 6b demonstrates the result of the network throughput as
the number of malicious nodes increases. The figure shows that when the traditional
technique is used, the network throughput is approximately 43% at malicious node 1 and
decreases to around 31% at malicious node 15 in a normal reactive jamming condition.
The network throughput improves to approximately 85% at malicious node 1 and
decreases to around 54% at malicious node 15 when the proposed algorithm is applied.
These rates are 10 and 5% better than those of the existing TJC at malicious nodes 1 and
15, respectively, because the proposed algorithm provides rapid channel accessibility to
nodes during reactive jamming. Figure 6c displays the network throughput under a
realistic condition with malicious nodes. The result indicates that when the traditional
technique is used, the throughput is approximately 41% at node 1 and decreases to
around 26% at node 15 during normal reactive jamming under a realistic condition. The
proposed algorithm improves the network throughput to approximately 72% at node 1

Fig. 6 (a) Throughput as a function of varying traffic interval (a), malicious nodes (b), malicious nodes with
realistic conditions (c), and mobility with malicious nodes (d)
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and to around 41% at node 15 in a realistic condition. This result is 12% better than that
of the existing TJC at node 1 and 3% better than that of TJC at node 15 in a realistic
condition. Figure 6d illustrates the network throughput comparison of CDCA with the
contemporary scheme under mobility with malicious nodes. The result shows that with
the traditional approach, the throughput during the normal reactive jamming condition
under mobility is approximately 38% at node 1 and decreases gradually to 25% at node
15, thereby affecting the network performance. However, the network throughput with
CDCA is approximately 80% under mobility at node 1 and decreases to 49% at node 15
as the number of malicious nodes increases. This result is better than the throughput of
the existing method at approximately 70% at node 1 and around 43% at node 15 under
mobility. The reason for the network throughput reduction is an increase in the time
needed to detect the jamming node.

7 Conclusion

This paper discussed the various countermeasures against reactive jamming at-
tacks on IoT networks. The simulation results showed that during a reactive
jamming attack, the proposed CDCA performed better than the existing counter-
measure under three simulated conditions in terms of energy consumption, traffic
delay, and network throughput. Furthermore, compared with the state-of-the-art
countermeasures, the proposed CDCA exhibited high performance under varying
traffic intervals and under a number of malicious nodes. For instance, CDCA
reduces the network energy consumption to approximately 3% under varying
traffic intervals compared to the existing schemes that consume almost 11% under
the same condition. CDCA also demonstrates a good performance in terms of
energy consumption in the presence of malicious nodes compared to the contem-
porary schemes by reducing the amount of energy consumed at malicious node 1
and 3 to around 2% and 8%, respectively. In addition, CDCA shows a superior
performance in terms of delay under varying traffic interval by reducing the
traffic delay to around 9%, which is 3% less than the existing schemes. In the
presence of malicious nodes, it also reduces the delay at malicious node 1 and 15
to approximately 8% and 38%, respectively, which is better the existing schemes
that have a delay of around 12% and 50%, respectively. Finally, CDCA improves
the network throughput up to 86%, which is 10% better than that of the existing
scheme. The main benefit of the novel CDCA is that its defense mechanism
supports an increase in the number of jamming nodes in the network. Moreover,
it uses the change in threshold value, signal strength and checks packet consis-
tency to easily detect and treat an attack within the network. In the future, we are
planning to extend this study by including other types of jamming attacks on IoT
networks.
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