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Abstract
The new challenge in image processing is in processing submarine coral reef images. The
coral reef disease classification from such submarine coral reef images has become an
important research activity that helps marine biologist. An automated system is required
to extract texture features so as to classify coral reef diseases from captured images. The
proposed framework encompasses an efficient feature descriptor that classifies different
submarine images of coral reef with diseases. The proposed framework employs most
excellent image processing and machine learning techniques for classification. At first,
the diseased coral reef images are segmented using Gradient-based sobel operator. Then,
texture features are extracted from HSV color space using the proposed Mean Direct
Code Pattern (MDCP) and from RGB space using proposed Diagonal Direction Value
Pattern (DDVP). The proposed feature descriptors provide codes considering elements in
diagonal directions. The resultant feature vector is then given as input to various
classifiers to classify the diseased images. The efficiency of the proposed framework is
demonstrated using real-time coral reef diseased images. The performance of various
classifiers such as Decision Tree (DT), Classification And Regression Tree (CART),
C4.5, Adaboost, Rotation Forest (RoF), Random Forest (RF), SVM, KNN, CNN,
PCCNN and Naive Bayes is analysed. Performance results of the proposed framework
for diseased coral reef image classification show that the framework outperforms recent
works where feature descriptors such as LBP, LDP, CLBP, ILDP, DLBP, LTxXORP, CS-
LBP, RLTP, Z⊕ TZLBP, OC-LBP, LTrP and PRI-CoLBP are used. Classification results
are validated by marine biologists.
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1 Introduction

Coral reefs are one of the wealthy and assorted ecosystems on earth [24, 34]. They occupy
a smaller area of just 0.1% of the ocean surface although they are the territory for at least
25% of the entire marine species. Healthy coral reefs are one of the most important and the
most precious ecosystems on planet Earth. In recent days, coral diseases are a major threat
to the coral ecosystem worldwide [6]. Coral diseases generally occur due to increased sea
surface temperatures, ultraviolet radiation and pollutants which can increase the suscep-
tibility of corals to disease, leading to outbreaks where corals are abundant in diversity.
Coral diseases can cause significant changes in coral reproduction rates, growth rates,
community structure, species diversity, and abundance of reef-associated organisms.
Besides these, corals span a wide area, and their abundance supports biodiversity since
it is a natural barrier to deadly tsunami and is also a habitat to many creatures. Coral
diseases present in a particular area at a given period (month) if reported early will enable
government to take countermeasures so as to save the precious ecosystem. Marine
biologists are still looking for an automated system to provide earlier reporting of
solutions to protect marine ecosystem.

Corals are generally classified as healthy, unhealthy and dead as shown in Fig. 1. Healthy
coral appears in colors of olive green, brown, tan and pale yellow. Healthy coral colony is not
affected by disease or bleaching. Healthy coral provides shelter for many species that rely on
the composition provided by corals for their homes. Corals are affected by a form of narrow
band intruding on living tissues of a healthy coral, with the dead white coral skeletons above.
The narrow band’s color comes from deliberations of bacteria that produce sulphur compounds
and low-oxygen conditions, which infect the coral [34]. For example, black band disease is
caused by a bacterium called phormidium corallyticum. Healthy and diseased coral images
have to be classified as any onset of disease can be curbed in the bud to protect coral for the
future. An automated system reports coral diseases earlier so that the government can take
countermeasures so as to prevent further damage to coral reef. There are a lot of existing works
on classification that are applicable to texture data sets and some works for coral reef image
classification, but only a few works are reported on coral reef disease classification. An
automated system is the need of the hour for coral reef disease classification. An efficient
feature vector must be devised to reduce the computational and time complexities and to
improve accuracy of the classification process.

(a) (b) (c)

Fig. 1 a Healthy coral. b Diseased coral. c Dead coral
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This paper is divided into five sections and starts with introduction. Section two presents
research works that have been carried out on coral reef classification. Section three describes
the overall framework of the proposed system. Section four describes the proposed novel
feature descriptors. Experimental results are presented in section five, and the last section
presents the conclusion and future work.

1.1 The contributions in this work are summarized as follows

1. Both HSVand RGB color spaces are considered with feature extraction for diseased coral
reef image classification.

2. A novel feature descriptor MDCP is proposed which considers every element for mean
estimation and only the diagonal elements for assigning direct code during feature
extraction.

3. A novel feature descriptor DDVP is proposed which considers diagonal directional
elements for feature extraction.

4. Feature vector is constructed, by concatenating both HSV-MDCP and RGB-DDVP.
5. The proposed framework reduces the computational and time complexities effectively by

considering the diagonal elements only.
6. Since diagonal elements are considered, classification results are improved which is

proven with various classifiers like Decision Tree (DT), Classification And Regression
Tree (CART), C4.5, Adaboost, Rotation Forest (RoF), Random Forest (RF), SVM, CNN,
PCCNN, KNN and Naive Bayes.

7. Performance comparison of the proposed feature descriptors with other feature descriptors
such as LBP [23], LDP [38], CLBP [33], ILDP [2], DLBP [16], LTxXORP [4], CS-LBP
[11], RLTP [31], Z⊕ TZLBP [1], OC-LBP [39], LTrP [25], PRI-CoLBP [30], OPT [3], is
made to highlight the superiority of the proposed framework in terms of classification
accuracy.

2 Related works

Coral disease is a major threat to coral reef ecosystems [14]. With the available literature it is
observed that there are some works that have reported coral reef image classification, but no
work has reported on coral reef disease classification. Pérez et al. [28] have enhanced coral reef
images using Contrast Limited Adaptive Histogram Equalization (CLAHE), segmented coral
reef images using Gaussian mixture models [7] and extracted texture features using Gabor.
Shiela et al. [23] have classified corals in videos as living and nonliving by extracting texture
features using Local Binary Pattern (LBP) descriptor and classified them using Linear
Discriminant Analysis (LDA). According to Shiela et al. [23] living coral is considered as
smooth textures, and non living coral is considered as irregular textures. For enhancing coral
reef images, Shihavuddin et al. [33] have utilised Normalization, color correction, color
stretching and Contrast Limited Adaptive Histogram Specification (CLAHS) whereas Ani
et al. [2] have utilised CLAHE and Contrast Stretching (CS). Multi-task learning and temporal
pattern mining [19] are mostly applied for feature representation for activities and selecting
discriminant features [21]. Generic human motions [18] are tracked using fusion of low and
high dimensional Approaches [37]. Ye Liu et al. [20] have used multi-task multi-view learning
for urban water quality prediction.
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For extracting features of coral reef images, Shihavuddin et al. [33] have utilised Gabor,
GLCM, CLBP, opponent angle and hue histogram whereas Ani et al. [2, 3] have utilised
Improved Local Derivative Pattern (ILDP) and Octa-angled Pattern for triangular sub region
(OPT). For coral reef classification, Shihavuddin et al. [33] have utilised KNN, SVM, and NN
classifiers whereas Ani et al. [2, 3] have utilised Support Vector Machine (SVM), K-Nearest
Neighbor (KNN), Pulse Coupled Convolutional Neural Network (PCCNN) and Convolutional
Neural Network (CNN) classifiers. Ani et al. [1] have segmented coral reef images using zctive
contour and classified coral videos using KNN classifier with various distance metrices
whereas Mohammad et al. [32] have utilised KNN with euclidean distance for classification.
For extracting features, Ani et al. [1] have utilised Z with Tilted Z Local Binary Pattern (Z⊕
TZLBP) feature descriptor whereas Mohammad et al. [32] have utilised Completed Local
Binary Pattern (CLBP). To enhance coral reef images, Ani et al. [1] have utilised CLAHE and
contrast stretching whereas Mohammad et al. [32] have utilised contrast normalization.
Beijbom et al. [5] have provided Moorea Labeled Corals (MLC) data set, which is a
benchmark data set for coral reef image classification. Maximum Response (MR) filter bank
is used for extracting features, and Library SVM is applied for classification. Not only is coral
reef, fish that lives in coral reef also classified using SVM and CNN classifiers by extracting
HOG features [35].

2.1 Observation

Just as coral reef image is classified into any one of the classes, Coral reef diseased images
have to be classified into any one of the nine classes with class types being Aspergillosis
(Asper), Bacterial Bleaching (BaB), Black Band (BB), Black Spot Dark Spot (BSDS), White
Plague (WPl), White Band (WB), Yellow Band (YB), White Pox (WPo), and Pink Spot (PS).
An automated system is expected to classify the diseased coral reef images into any one of the
classes. For texture, a lot of standard data sets are available. But there are not many data sets
available for coral reef diseases. Coral reef and texture data sets are classified with their
textural features, but texture combined with colour spaces is important for diseased coral reef
image classification.

3 System architecture

The proposed framework consists of the following steps for diseased coral reef image
classification, and it is shown in Fig. 2. The steps in the proposed framework are segmentation,
feature extraction and classification.

3.1 Segmentation using gradient-based sobel operator

In a submarine environment, the edges of the coral reef must be correctly estimated. To
detect the coral edges perfectly, coral reef has to be correctly separated from its back-
ground. K-Means is the mostly used clustering technique for image segmentation [36].
The difficulty with K-Means is that it considers global cluster where results are not
accepted. For various initial divisions, K-Means results in different final clusters. It is
also not simple to calculate K-Value. On the other hand, Fuzzy C-Means method poses
difficulty in managing outlier points [9]. It allocates high membership values for the
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outlier points so that the membership of data points depends directly on the membership
values of other cluster centres. This directs to unwanted results.

Gradient-based approach is applied on the diseased coral reef images for efficient segmen-
tation. Accurate edges of the coral image are identified using Sobel operator. The number of
white points are estimated from the edge extracted coral image. Gradient-based image
segmentation technique is used to separate the coral reef image from its background efficiently
as shown in Fig. 3. b. The Gradient-based image segmentation identifies significant local
changes in the intensity level of a coral image. Consider a coral image f(x, y), where magnitude
and the direction of the gradient are computed as shown in Eqs. (1) and (2) respectively.

Gj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q
ð1Þ

α x; yð Þ ¼ tan−1
Gy

Gx

� �
ð2Þ

Accurate edges of the coral reef image are identified using Sobel operator as shown in Fig. 3.
c. Sobel operator is based on convolving the coral reef image with a small, separable, and
integer-valued filter in the horizontal and the vertical directions. It is inexpensive in terms of
computations. The kernels of sobel operator are shown in Eq. (3):

Gx ¼
−1 0 1
−2 0 2
−1 0 1

Gy ¼
1 2 1
0 0 0
−1 −2 −1

ð3Þ

Where Gx and Gy are the horizontal and the vertical derivative approximations respectively.

Fig. 2 System Architecture of the proposed framework

Multimedia Tools and Applications (2019) 78:11387–11425 11391



3.2 Feature extraction

DDVP extracts features by finding the local difference between the elements among the three
planes in four diagonal directions in RGB format. Then, the original image is transformed to
HSV color space because it is more perceptually uniform than other color spaces. MDCP so as
to extract features considers all elements for mean estimation and diagonal elements for
applying direct codes.

A feature descriptor can be efficient only when it improves accuracy besides reducing
computational complexity. For feature extraction, it is not important to use all pixels in an
image as it becomes a time consuming process if all the pixels are considered. It is a fact that
diagonal elements contribute more than other elements for extracting features [2, 3]. Novel
DDVP from RGB plane and MDCP from HSV plane is concatenated to generate feature
vector which is explained in detail in Section 4.

However deep learning might together deal with the feature extraction and classifica-
tion step, the purpose of this work is to develop a feature descriptor that might pair with

(a)             (b)                                         (c)              

(a)                                           (b)                                           (c)

(a)                                        (b)                                        (c)

Fig. 3 a Input coral reef b Background removed coral reef c Edges detected coral reef
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existing classifiers for the classification of coral reef or its diseases with greater accuracy.
However one more objective of this work is to create it appropriate for real time
implementations where computational resources and time are constraints. The drawback
of deep learning is its computational and time complexity, which makes it incompatible for
real time implementation where there is time constraint [3].

3.3 Classification

For diseased coral reef image classification, texture feature vector is provided as input for
various classifiers. A Decision Tree (DT) classifier is a non-parametric supervised learning
technique applied for classification and regression. Still now, DT classifiers have provided
good results for large data sets and imbalanced data sets. So, in this work the performances of
different DT classifiers are evaluated and assessed. The classifiers used for classification are
Decision Trees (DT), Classification And Regression Trees (CART), Random Forest (RF),
C4.5, AdaBoost, Rotation Forest (RoF), SVM, KNN, CNN, PCCNN [3] and Naive Bayes.

Classification using DT classifier is very easy. A DT is a non-parametric supervised
learning technique used for classification. The DT [22] constructs a model that classifies
an image by learning simple decision rules inferred from the features trained. Random
forest [15] is an ensemble method which considers a subset of annotations and a subset of
variables to build a decision tree. It builds several such decision trees and combines them
collectively to result in accurate classification. Adaboost improves the classification
results by combining weak predictors collectively. CART considers every possible subset
of features for classification.

CART is divided into Regression Trees and Classification Trees. Both the trees divide the
feature space into distinct and non-overlapping regions. Both the trees apply recursive binary
splitting technique that uses a top-down greedy approach. CART makes the tree grow for the
entire data and then prunes back. C4.5 [17] is a statistical classifier which is an extension of
ID3 algorithm. It uses an information entropy evaluation function for feature selection. In
Rotation Forest (RoF), every decision tree is trained by first applying Principal Component
Analysis (PCA) on a random subset of the input features. This uses a number of decision trees
in order to improve the classification accuracy. Each tree depends on the values of a random
vector sampled independently in the forest.

Experiment is started by classifying using DT with default parameters to get a
baseline. By default, the Minimum sample per leaf node is set to 1, that logically makes
the tree over-fit and contains all the data points, including outliers. By default, Greedy
approach is used to reduce similar trees. The features that are considered for decision
making is common for all classifiers such as bin which contains the maximum pixel
value, bin which contains the minimum pixel value and bin which contains the median
pixel value. Features considered for diseased coral reef image data sets with nine classes
are shown in Fig. 4, where FV represents Feature Vector of the proposed framework. The
bin with maximum, minimum and median pixel values are set to 24 because the bin size
of histogram is 24. This is similar for all classifiers. Here maximum tree depth is set to
12, Hence every features considered will get a chance to participate in becoming a
decision node.

In Random forest, the bin with maximum, minimum and median pixel values are set
to 24. The node estimators is set to 9, to find the optimum classification. In Adaboost,
number of weak learners and the maximum depth of tree are the same as other classifiers.
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Here learning rate is an important parameter that is set to fit the weak learners perfectly.
By default, learning rate is set to 0.01, that fits more weak learners. The two important
parameters in C4.5 are Minimum cases (M) and Confidence Level (CL). M is preferred
to be a high value and is set as 9 and the CL should be a lower value and is set as 1 for
classification. The number of iterations and the number of splits are the two main default
parameters in RoF which are set to 9 and 2.

FV(max(bin(pixel value)) = 4 or 8)&

FV(min(bin(pixel value)) = 9 or 21)&

FV(median(bin(pixel value))= 11 or 19)

FV(max(bin(pixel value)) = 6 or 20)&

FV(min(bin(pixel value)) = 2 or 19)
Class = ' White Plague'

yes
No

FV(max(bin(pixel value)) = 11 or 13)

FV(median(bin(pixel value))= 15 or 22)

yes
No

Class = ' Bacterial  

Bleaching '

yes

FV(median(bin(pixel value))= 8 or 14)

No

Class = ' Yellow Band '

yes
FV(min(bin(pixel value))= 8 or 16)

yes

FV(median(bin(pixel value))= 2 or 6)

yes

Class = ' Aspergillosis '

yes

FV(max(bin(pixel value))= 5 or 9)

No

FV(min(bin
(pixel value))
= 5 or 13)

FV(max(bin
(pixel value))
= 14 or 24)

Class = ' Black Band '

yes

yes No

FV(median(bin(pixel value))= 10 or 17)

yes

Class = ' White Pox '

yes

FV(min(bin
(pixel value))
= 3 or 7)

No

FV(min(bin
(pixel value))
= 8 or 24)

Class = ' Pink Spot '

yes

Class = ' Black Spot Dark Spot'

No

yes

Class = ' white plague '

No

No

Fig. 4 Decision Tree Classifier for coral reef diseased image
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4 The proposed framework

4.1 Background

There are a lot of differences between normal coral reef images and diseased coral reef images.
For coral reef classification, texture features alone are considered. Each species of coral reef
has its unique texture features. In the existing literature for feature extraction, texture features
alone are considered. In order to improve the accuracy of classification of diseased coral reef
images, features extracted from RGB and HSV color spaces are combined with textural
feature. Usually for texture feature extraction, Ojala et al. [26, 27] and Heikkila et al. [12,
13] have used Local Binary Pattern (LBP), which is called as ‘Curse of dimensionality’, due to
the size of feature vector.

4.2 Diagonal direction value pattern (DDVP)

Several feature descriptors are available in the literature for texture classification. Most of the
feature descriptors make use of only the gray scale values of the pixel in an image. But the
relationship between the diagonal directional elements in three planes of an image is not
considered.

DDVP extracts features diagonally along four (450 , 1350, 2250 and 3150) directions from
three planes efficiently. The speciality of DDVP is that diagonal direction difference among
pixel values in the three planes of the image are considered while reducing the bin size of
histogram used in the classification stage. The steps in the proposed feature descriptor are
summarized as follows:

In an image I, let Ri, j, Gi, jand Bi, j be the centre pixels of a 3 ×3 local region termed as Block
Bk, in each of the three planes as shown in Fig. 5, where 1 ≥k ≤N,N is the total number of 3 ×3
blocks in the image I. Ri − 1, j + 1, Ri, j + 1, Ri + 1, j + 1, Ri + 1, j, Ri + 1, j − 1, Ri, j − 1, Ri − 1, j − 1 and Ri − 1, j
are the eight neighbors of the centre pixel Ri, j in the Red plane. Gi − 1, j + 1, Gi, j + 1, Gi + 1, j + 1, Gi +

1, j, Gi + 1, j − 1, Gi, j − 1, Gi − 1, j − 1 and Gi − 1, j are the eight neighbors of the centre pixel Gi, j in the
Green Plane. Bi − 1, j + 1, Bi, j + 1, Bi + 1, j + 1, Bi + 1, j, Bi + 1, j − 1, Bi, j − 1, Bi − 1, j − 1 and Bi − 1, j are the
eight neighbors of the centre pixel Bi, j in the Blue plane.

4.2.1 Direction difference estimation

For a Block BK, Rθ, Bθ, Gθ, RGθ, RBθ, GRθ, GBθ, BRθ and BGθ are constructed as shown in
Eq.(4) to Eq. (12) from the neighbors of the centre pixel in three planes along the directions
θ = < 45°, 135°, 225°and 315°> as shown in Fig. 6

Fig. 5 RGB plane images
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RBk ;θ m½ � ¼ Ri; j−Riþu; jþv ð4Þ

GBk ;θ m½ � ¼ Gi; j−Giþu; jþv ð5Þ

BBk ;θ m½ � ¼ Bi; j−Biþu; jþv ð6Þ

RGBk ;θ m½ � ¼ Ri; j−Giþu; jþv ð7Þ

RBBk ;θ m½ � ¼ Ri; j−Biþu; jþv ð8Þ

BRBk ;θ m½ � ¼ Bi; j−Riþu; jþv ð9Þ

BGBk ;θ m½ � ¼ Bi; j−Giþu; jþv ð10Þ

GRBk ;θ m½ � ¼ Gi; j−Riþu; jþv ð11Þ

Fig. 6 Illustration of direction difference estimation
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GBBk ;θ m½ � ¼ Gi; j−Biþu; jþv ð12Þ

where ′Bk
′ is of size 3 × 3,

1≥m≤4;

1≥k≤N

and

u; vð Þ ¼
u ¼ 1; v ¼ 1; if θ ¼ 45°

u ¼ −1; v ¼ 1; if θ ¼ 135°

u ¼ −1; v ¼ −1; if θ ¼ 225°

u ¼ 1; v ¼ −1; if θ ¼ 315°

8>><
>>:

4.2.2 Vector generation using four diagonal directions in three planes

For each R, G and B plane, the vectors are generated along diagonal directions. Vector RBk ;θ is
constructed using R, RB and RG values, whereas vector GBk ;θ is constructed using G, GR and
GB values and vector BBk ;θ is constructed using B, BR and BG values. The vectors generated
for three planes are shown in Eqs. (13) to (15).

RBk ;θ i½ � ¼ Rθ;RBθ;RGθh iBk
ð13Þ

GBk ;θ i½ � ¼ Gθ;GBθ;GRθh iBk
ð14Þ

BBk ;θ i½ � ¼ Bθ;BRθ;BGθh iBk
ð15Þ

where θ = < 45°, 135°, 225° and 315° > ,
1 ≥ i ≤ 4 and
Now, RBk ;θ;GBk ;θ, and BBk ;θ vectors may contain negative and non-negative values. Binary

codes (0 and 1) are assigned depending on negative and non-negative values.

4.2.3 Binary codes assignment

The binary codes are assigned for three planes as given by Eqs. (16) to (18). Negative and non-
negative values are converted into binary codes either 0 or 1.

BCRBk ;θ a½ � ¼ 1;RBk ;θ i½ � > 0
0;Otherwise

�
ð16Þ

BCGBk ;θ a½ � ¼ 1;GBk ;θ i½ � > 0
0;Otherwise

�
ð17Þ
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BCBBk ;θ a½ � ¼ 1;BBk ;θ i½ � > 0
0;Otherwise

�
ð18Þ

where θ = < 45°, 135°, 225° and 315° > ,

1≥ i≤3;

1≥k≤N and

1≥a≤3:

4.2.4 Diagonal direction value assignment

DDV is assigned for three plane vectors estimated. Depending on the position of the binary
codes of three planes, the diagonal directional value is assigned for diagonal directions as
shown in Eq. (19) to Eq. (21).

DDV BCR Bk ;θ

� � ¼

1; if BCRBk ;θ 1½ � ¼ 0 and BCRBk ;θ 2½ � ¼ 0 and BCRBk ;θ 3½ � ¼ 0
2; if BCRBk ;θ 1½ � ¼ 0 and BCRBk ;θ 2½ � ¼ 0 and BCRBk ;θ 3½ � ¼ 1
3; if BCRBk ;θ 1½ � ¼ 0 and BCRBk ;θ 2½ � ¼ 1 and BCRBk ;θ 3½ � ¼ 0
4; if BCRBk ;θ 1½ � ¼ 0 and BCRBk ;θ 2½ � ¼ 1 and BCRBk ;θ 3½ � ¼ 1
5; if BCRBk ;θ 1½ � ¼ 1 and BCRBk ;θ 2½ � ¼ 0 and BCRBk ;θ 3½ � ¼ 0
6; if BCRBk ;θ 1½ � ¼ 1 and BCRBk ;θ 2½ � ¼ 0 and BCRBk ;θ 3½ � ¼ 1
7; if BCRBk ;θ 1½ � ¼ 1 and BCRBk ;θ 2½ � ¼ 1 and BCRBk ;θ 3½ � ¼ 0
8; if BCRBk ;θ 1½ � ¼ 1 and BCRBk ;θ 2½ � ¼ 1 and BCRBk ;θ 3½ � ¼ 1

8>>>>>>>>>><
>>>>>>>>>>:

ð19Þ

DDV BCG Bk ;θ

� � ¼

1; if BCGBk ;θ 1½ � ¼ 0 and BCGBk ;θ 2½ � ¼ 0 and BCGBk ;θ 3½ � ¼ 0
2; if BCGBk ;θ 1½ � ¼ 0 and BCGBk ;θ 2½ � ¼ 0 and BCGBk ;θ 3½ � ¼ 1
3; if BCGBk ;θ 1½ � ¼ 0 and BCGBk ;θ 2½ � ¼ 1 and BCGBk ;θ 3½ � ¼ 0
4; if BCGBk ;θ 1½ � ¼ 0 and BCGBk ;θ 2½ � ¼ 1 and BCGBk ;θ 3½ � ¼ 1
5; if BCGBk ;θ 1½ � ¼ 1 and BCGBk ;θ 2½ � ¼ 0 and BCGBk ;θ 3½ � ¼ 0
6; if BCGBk ;θ 1½ � ¼ 1 and BCGBk ;θ 2½ � ¼ 0 and BCGBk ;θ 3½ � ¼ 1
7; if BCGBk ;θ 1½ � ¼ 1 and BCGBk ;θ 2½ � ¼ 1 and BCGBk ;θ 3½ � ¼ 0
8; if BCGBk ;θ 1½ � ¼ 1 and BCGBk ;θ 2½ � ¼ 1 and BCGBk ;θ 3½ � ¼ 1

8>>>>>>>>>><
>>>>>>>>>>:

ð20Þ

DDV BCB Bk ;θ

� � ¼

1; if BCBBk ;θ 1½ � ¼ 0 and BCBBk ;θ 2½ � ¼ 0 and BCBBk ;θ 3½ � ¼ 0
2; if BCBBk ;θ 1½ � ¼ 0 and BCBBk ;θ 2½ � ¼ 0 and BCBBk ;θ 3½ � ¼ 1
3; if BCBBk ;θ 1½ � ¼ 0 and BCBBk ;θ 2½ � ¼ 1 and BCBBk ;θ 3½ � ¼ 0
4; if BCBBk ;θ 1½ � ¼ 0 and BCBBk ;θ 2½ � ¼ 1 and BCBBk ;θ 3½ � ¼ 1
5; if BCBBk ;θ 1½ � ¼ 1 and BCBBk ;θ 2½ � ¼ 0 and BCBBk ;θ 3½ � ¼ 0
6; if BCBBk ;θ 1½ � ¼ 1 and BCBBk ;θ 2½ � ¼ 0 and BCBBk ;θ 3½ � ¼ 1
7; if BCBBk ;θ 1½ � ¼ 1 and BCBBk ;θ 2½ � ¼ 1 and BCBBk ;θ 3½ � ¼ 0
8; if BCBBk ;θ 1½ � ¼ 1 and BCBBk ;θ 2½ � ¼ 1 and BCBBk ;θ 3½ � ¼ 1

8>>>>>>>>>><
>>>>>>>>>>:

ð21Þ

where θ = 45°, 135°, 225° and 315°.

11398 Multimedia Tools and Applications (2019) 78:11387–11425



4.2.5 Summed diagonal direction value

The obtained DDV values are summed together along the four diagonal directions. Summed
Diagonal Direction Value (SDDV) is estimated using Eq. (22).

SDDV Bk ; θð Þ ¼ ∑N
k¼1 DDV BCR Bk ;θ

� �þ DDV BCG Bk ;θ

� �þ DDV BCB Bk ;θ

� ��� �� ð22Þ

where θ = < 45°, 135°, 225° and 315° > .
Summed Diagonal Direction Value Vector (SDDVV) is estimated using Eq. (23)

SDDVV ¼< SDDV B1k ; θð Þ; SDDV B2kþ1 ; θ
	 


;…; SDDV BN−1; θð Þ; SDDV BN ; θð Þ > ð23Þ

where θi = < 45°, 135°, 225° and 315°> and

1≥k≤N :

For an entire image, SDDVV is considered as the feature vector. This is shown in Eq. (24).

i:e:Feature vector Ið Þ ¼ SDDVV ð24Þ

Figure 7 explains the algorithm for feature extraction using DDVP.

Algorithm 1: Feature Vector generated using DDVP

Input: Segmented coral reef diseased image

Output: Feature Vector (I)

Do For every Block of size ( 3 × 3) in R,G and B Planes

(i) Direction Difference is estimated where = 45°, 135°, 225° 315° using Eq. (4) – Eq. (12).

(ii) Direction Difference Vectors are generated for each of the directions considered where =

45°, 135°, 225° 315° using Eq. (13) - Eq. (15).

(iii) Binary Codes are assigned for the direction difference vectors obtained in Step (ii) where

= 45°, 135°, 225° 315° using Eq. (16) - Eq.(18). 

(iv) Diagonal Direction Values are assigned for the binary codes in Step (iii) where 

= 45°, 135°, 225° 315° using Eq. (19) - Eq. (21).          

(v) Summed Diagonal Direction Value Vector (SDDVV) is estimated using Eq. (22) for each value of .

(vi) SDDDV is estimated by placing the resultant of Step (v) in a vector as shown in Eq. (23).

End

Fig. 7 DDVPAlgorithm
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4.3 Mean direct code pattern (MDCP)

Many feature descriptors utilize the relationship between the neighbor pixels in the gray scale
image based on co-occurrence matrix, but the relationship between the diagonal neighbors in
an image is not considered. In the proposed feature descriptor, the relationship between the
diagonal neighbors is considered by providing a direct code pattern. The new feature descrip-
tor, named MDCP with HSVextracts texture features of diseased coral reef images. RGB color
space cannot represent color in terms of human interception, pixel variations due to illumina-
tion problem and intensity variations are overcome by HSV. Hence HSV is considered in this
work. First the color image is converted into HSV color space. The steps in the proposed
feature descriptor are summarized in the following sub sections:

4.3.1 Mean estimation for HSV images

The image is transformed to HSV color space as shown in Fig. 9. In a diseased coral reef
image, consider a Block Bk of size 3 ×3 where 1 ≤k ≤N and N is the total number of blocks in a
frame. Let Ei, j be the centre pixel of a 3 ×3 Block Bk, as shown in Fig. 8. Ei − 1, j + 1, Ei, j + 1, Ei + 1,

j + 1, Ei + 1, j, Ei + 1, j − 1, Ei, j − 1, Ei − 1, j − 1, and Ei − 1, j are the eight neighbors of the centre pixel. Ei,

j. Ei − 1, j + 1, Ei + 1, j + 1, Ei − 1, j − 1 and Ei + 1, j − 1 are the four diagonal elements. Here, the input
corresponds to three channels, i.e. H-plane, S-plane and V-plane as shown in Fig. 9.

The mean value of Block Bk is computed as in Eq. (25) separately for each plane as in Eq.
(26), Eq. (27) and Eq. (28).

Mean ¼ average of nine elements in a block ð25Þ

HMean k½ � ¼ 1

n
∑
n

i¼1
H i½ � Bkð Þ ð26Þ

SMean k½ � ¼ 1

n
∑
n

i¼1
S i½ � Bkð Þ ð27Þ

VMean k½ � ¼ 1

n
∑
n

i¼1
V i½ � Bkð Þ ð28Þ

where 1 ≥ k ≤N, N represents the elements in a Block Bk.
As shown in Fig. 10, more importance is provided to diagonal elements, where the diagonal

directions are covered very efficiently along 45°, 135°, 225°and 315° as shown in Fig. 10a. To
improve accuracy, diagonal elements are given more importance compared to the other vertical
and horizontal neighbors. Depending on the mean value, diagonal elements are alone

Fig. 8 Diagonal elements in a
block are highlighted
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considered for assigning the direct code. Diagonal elements are compared with the mean value
obtained. Then, a direct code is assigned as feature vector for that block. This pattern is
efficient because it depends on the diagonal elements much.

4.3.2 Diagonal neighbors estimation for HSV images

In a Block Bk, for H-plane, S-plane and V-plane the mean value is compared with four diagonal
elements. Let the four diagonal elements be Ni,, where i = 1 to 4 as shown in Eq. (29) to Eq.
(31), mean value is compared with the four diagonal elements. If the value of the diagonal
element is equal to or greater than mean value of the block, it is assigned a directional code as 1
or 0, otherwise as shown in Eq. (29) to Eq. (31).

BCHBK j½ � ¼ 1; Ni½ �BK
≥HMean k½ �

0; Ni½ �BK
< HMean k½ �

�
ð29Þ

Fig. 10 (a) Diagonal elements are covered

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

(a) H-plane (b) S-plane   (c) V-plane

Fig. 9 HSV plane images
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BCSBK j½ � ¼ 1; Ni½ �BK
≥SMean k½ �

0; Ni½ �BK
< SMean k½ �

�
ð30Þ

BCVBK j½ � ¼ 1; Ni½ �BK
≥VMean k½ �

0; Ni½ �BK
< VMean k½ �

�
ð31Þ

where j = 1- N, 1≥j ≤ 4

where i ¼
i−m; jþ n
i−m; j−n

iþ m; jþ n
iþ m; j−n

8>><
>>:

; m; nð Þ ¼ 1; 1ð Þ

4.3.3 Assigning direct code for HSV images

Direct codes are assigned for a block Bkdepending on the values of the diagonal neighbors.
Now, the four neighbors value will be either 0 or 1. Depending on these values, a particular
direct code is assigned for H color space as shown in Eq. (32), for S color space as shown in
Eq. (33), for V color space as shown in Eq. (34) and in Fig. 11.

Fig. 11 Direct code pattern
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DC H BK½ � ¼

1; if BCHBk ¼ 0000
2; if BCHBk ¼ 0001
3; if BCHBk ¼ 0010
4; if BCHBk ¼ 0100
5; if BCHBk ¼ 1000
6; if BCHBk ¼ 1100
7; if BCHBk ¼ 1010
8; if BCHBk ¼ 1001
9; if BCHBk ¼ 0110
10; if BCHBk ¼ 0101
11; if BCHBk ¼ 0011
12; if BCHBk ¼ 1110
13; if BCHBk ¼ 1011
14; if BCHBk ¼ 1101
15; if BCHBk ¼ 0111
16; if BCHBk ¼ 1111

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð32Þ

DC S BK½ � ¼

1; if BCSBk ¼ 0000
2; if BCSBk ¼ 0001
3; if BCSBk ¼ 0010
4; if BCSBk ¼ 0100
5; if BCSBk ¼ 1000
6; if BCSBk ¼ 1100
7; if BCSBk ¼ 1010
8; if BCSBk ¼ 1001
9; if BCSBk ¼ 0110
10; if BCSBk ¼ 0101
11; if BCSBk ¼ 0011
12; if BCSBk ¼ 1110
13; if BCSBk ¼ 1011
14; if BCSBk ¼ 1101
15; if BCSBk ¼ 0111
16; if BCSBk ¼ 1111

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð33Þ

DC V BK½ � ¼

1; if BCVBk ¼ 0000
2; if BCVBk ¼ 0001
3; if BCVBk ¼ 0010
4; if BCVBk ¼ 0100
5; if BCVBk ¼ 1000
6; if BCVBk ¼ 1100
7; if BCVBk ¼ 1010
8; if BCVBk ¼ 1001
9; if BCVBk ¼ 0110
10; if BCVBk ¼ 0101
11; if BCVBk ¼ 0011
12; if BCVBk ¼ 1110
13; if BCVBk ¼ 1011
14; if BCVBk ¼ 1101
15; if BCVBk ¼ 0111
16; if BCVBk ¼ 1111

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð34Þ

where 1 ≥k ≤N.
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4.3.4 Summed direct code pattern

The texture feature vector size obtained will be of 16 bins for each H-plane, S-plane and V-
plane. The three planes feature vectors are summed as shown in Eq. (35).

SDC Bk½ � ¼ ∑
N

k¼1
DC H BK½ � þ DC S BK½ � þ DC V BK½ �j j ð35Þ

The resultant feature vector size for a particular Block Bk, after combining the three planes will
be of 48 bins. These 48 bins of histogram is then normalised to half of its bin size as 24 bin
histogram, which provides efficient feature extraction.

For an entire image, SDC is considered as the feature vector. This is shown in Eq. (36).

SDDC ¼ 1

2
SDC Bk½ � ð36Þ

Feature vector (I) = SDDC

4.4 Feature vector concatenation

The obtained feature vectors for DDVP and MDCP are concatenated to provide an efficient
feature descriptor as shown in Eq. (37)

Feature vector Ið Þ ¼< SDDVV SDDC > ð37Þ

Figure 12 explains the algorithm of MDCP method. Appendix 1 explains the proposed
method.

5 Experimental evaluation

5.1 Data sets description

The real-time diseased coral reef database was obtained from Suganthi Devadasan Marine
Research Institute (SDMRI) (http://www.sdmri.in), Beach Road in Tuticorin coast. Diseased
coral reef images are taken in a shallow water reef area of two metres depth in Shingle Island.
The images are taken during themonths between September 2017 and February 2018. Diseased
coral reef images are classified into nine classes as shown in Fig. 13. The data set consists of 878
images at a resolution of 640 × 480. The images in data set are all diseased images.

5.2 Quantitative comparison

Implementation is executed using MATLAB 2016a with Intel® Pentium® Processor (Dual
Core), 4GB Memory and 2 TB Hard drive. The performance of various classifiers is compared
using different metrics such as specificity, sensitivity, accuracy, F-measure, time and Mathews’
Correlation Coefficient. To estimate the effectiveness of the proposed technique, the samples
in the data set are separated in the following ratio: 90% for training and 10% for testing, 75%
for training and 25% for testing, and 50% for training and 50% for testing.

11404 Multimedia Tools and Applications (2019) 78:11387–11425
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5.2.1 F-measure

F-measure is a computation method used to test accuracy. It considers both precision and recall
values. In Table 1, the variables are represented as TE to denote Testing, TR to denote
Training, Prec to denote Precision, Recal to denote Recall and Fm to denote F-measure.

F−measure ¼ 2*Prec*Recal
Precþ Recal

ð38Þ

Prec ¼ Number of images classified accurately
Total number of images classified

ð39Þ

Recal ¼ Number of images classified accurately
Total number of images in the database

ð40Þ

Table 1 presents the results of classification accuracy for diseased coral reef data sets in comparison
with existing feature descriptors. The proposed feature descriptor provides better classification

Algorithm 2: Feature Vector Generation using HSV with MDCP

Input: Segmented coral reef diseased image

Output: Feature vector (I)

Do for all pixels in an image

Block is separated into H, S and V Planes

For every block of size 3 × 3 in the H-Plane

Calculate Mean of pixels of .

Difference is estimated between Mean values and diagonal neighbors.

Direct codes are assigned depending on difference values.

End

For every block of size 3 × 3 in the S-Plane

Calculate Mean of pixels of .

Difference is estimated between Mean values and diagonal neighbors.

Direct codes are assigned depending on difference values.

End

For every block of size 3 × 3 in the V-Plane

Calculate Mean of pixels of .

Difference is estimated between Mean values and diagonal neighbors.

Direct codes are assigned depending on difference values.

End

Summed Direct Code is estimated using Eq.(35).

After Normalization, feature descriptor for a particular Block is estimated using Eq.(36).

End

Fig. 12 MDCPAlgorithm
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accuracy compared to existing feature descriptors. Since the data sets depend on both color and
texture features, so the proposed feature descriptor has resulted in an improvement in accuracy by 9
and 10% respectively over existing feature descriptors. In SDMRI, real-time diseased coral reef
data set, following the proposed, OPT, Z⊕TZLBP and ILDP feature descriptors provide improved
results compared to CS-LBP, LBP, DLBP, PRI-CoLBP, LTxXORP, CLBP and OC-LBP. In OPT,
pixels are covered in eight diagonal directions so as to improve accuracy. In ILDP, diagonal
directions and diagonal neighbors are utilised for estimation which covers all pixels in an image
efficiently to improve accuracy. In Z⊕TZLBP, all the pixels are covered using Z and TZ (Tilted Z)
pattern, where the centre pixel is also considered as one of the neighbors. In ILDP, OPT and Z⊕
TZLBP only texture features are considered, but in the proposed feature descriptor textural features
from RGB and HSV color planes are considered which provides efficient results.

5.2.2 Accuracy

Accuracy ¼ Images classified correctly
All images classified

ð41Þ

Fig. 13 SDMRI coral diseases

11406 Multimedia Tools and Applications (2019) 78:11387–11425



In Table 2, the accuracy results of the proposed framework is compared with previous
submarine image classification approaches. The proposed framework is not directly comparable
with the results obtained by other previous approaches in literature as the experimental setups
differ. Even though no pre-processing techniques are used, the proposed framework achieves
good results for various data sets. The recent techniques of Shihavuddin et al. [33], Ani et al. [2],
Ani et al. [1], Ani et al. [3], Mohammad et al. [32] and the proposed method are shown in
Table 2. This table indicates that the proposed framework and OPT uses a quicker and simpler
classification framework. This simpler classification framework provides outstanding results in
coral reef image classification compared to existing coral reef classification frameworks.

For EILAT coral data set, DT classifier provides the highest classification accuracy as
shown in Table 3. DT is the well-known classifier for performing the multi-class classification
on a data set. For EILAT2 coral data set, PCCNN classifier provides the highest classification
accuracy. For MLC 2012 coral data set and SDMRI coral diseased data set, Random Forest
provides the highest classification accuracy. For RSMAS coral data set and SDMRI real time
data set, SVM, PCCNN and KNN provide highest classification accuracy compared to other
classifiers. The dimensionality of the proposed feature vector is very low to reduce the
complexity during classification Table 4.

Table 1 Comparison of feature descriptors with F-measure (Fm) on various coral Diseases data sets. The highest
OA (%) obtained for each data set is shown in bold

Data set
Feature
Descriptor

Division of Samples

TE-10%, TR-90% TE-25%, TR-75% TE-50%, TR-50%

SDMRI CORAL
DISEASES

EILAT

Metrices Pr Re Fm Pr Re Fm Pr Re Fm
LBP 84.9 81.61 83.22 78.27 77.11 77.68 67.2 65.33 66.25
CLBP 85.21 83.9 84.54 76.1 74.95 75.52 68.32 66.4 68.34
DLBP 83.9 84.99 84.44 78.54 79.43 78.98 71.16 69.99 70.57
LTxXORP 85.6 86.91 86.25 79.67 78.4 79.02 71.9 69.03 70.43
CS-LBP 86 85.3 85.64 79.2 78.81 79 68.23 67.8 68.01
OC-LBP 85.91 86 85.95 78.31 79.68 78.98 68.5 67.5 67.99
PRI-CoLBP 89.45 86.9 88.15 83.5 82.78 83.13 72.86 74.12 73.48
RLTP 86.7 85.78 86.23 83.09 78.86 80.19 72.99 69.64 71.27
LTrP 86.85 85.9 86.37 83.54 79.36 81.39 72.6 70.39 71.47
LDP 87.9 88.19 88 83.67 82.93 83.29 72.9 74.73 73.80
ILDP 90.08 88.93 89.5 83.8 82.98 83.38 72.93 73.71 73.31
Z⊕ TZLBP 89.76 88.91 89.33 84.92 82.84 83.86 72.86 74.12 73.48
OPT 90.4 91.47 90.93 84.23 83.8 84.01 74.56 73.97 74.26
PROPOSED 96.19 94.6 95.38 89.54 87.41 88.46 78.25 80.17 79.19

CORAL DISEASES
RSMAS

LBP 94.01 92.71 93.35 83.63 81.9 82.75 76.39 73.12 74.71
CLBP 95.99 94.7 95.34 84.8 82.07 83.41 77 74.27 75.61
DLBP 94.62 92.98 93.79 83.39 82.7 83.04 77.45 73.88 75.62
LTxXORP 96.6 95.19 95.88 85.91 84.8 85.35 79.43 76.91 78.14
CS-LBP 94.68 92.85 93.75 84.71 83.9 84.3 75.49 75.21 75.34
OC-LBP 95.2 94.09 94.64 84.7 85.94 85.31 77.33 78.12 77.80
PRI-CoLBP 96.53 94.79 95.65 85.78 84.1 84.93 78.93 76.12 77.49
RLTP 95.90 92.69 94.26 85.1 83.95 84.52 78.32 76.4 77.34
LTrP 96.53 95.23 95.87 85.45 84.24 84.84 79.4 77.91 78.64
LDP 96.98 94.17 95.55 85.04 86.19 85.61 79.90 77.2 78.52
ILDP 96.96 95.45 96.19 84.7 85.94 85.31 79.07 78.69 78.87
Z⊕ TZLBP 97.78 96.36 97.06 86.47 85.27 85.86 80.24 78.51 79.36
OPT 97.98 98.32 98.14 87.61 86.85 87.22 79.69 80.13 79.90
PROPOSED 99.31 97.36 98.32 87.58 86.91 87.24 81.52 80.43 80.97
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5.2.3 Specificity

Specificity is defined as the true negative rate that estimates the percentage of correct rejection
with diseased coral reef images.

Specificity ¼ TN
TN þ FP

ð42Þ

where TN represents True Negative rate and FP represents False Positive rate.
Specificity of classifiers is excellent since the true negatives are mostly identified as shown

in Table 5. The specificity for the tree classifiers ranges from 94 to 100% because the true
negative rate is good, i.e. misclassification of diseased images is less. PCCNN, SVM and KNN
have shown excellent results due to majority voting and support vectors. It also indicates that
tree classifiers are selective. DT classifier has better overall specificity compared to other
classifiers since it tries to maintain some prediction strength. RF also has good specificity value
closer to DT classifier because there is limited generalization error in the classification. The
other tree classifiers such as Adaboost, RoF, CART and C4.5 have obtained values that range
from 20 to 70% due to fewer trees grown. For Naive Bayes, the specificity values range from

Table 3 Testing of the classification algorithms for coral data sets. The highest accuracy (%) acquired for every
data set is highlighted in bold

Data set
Approach

EILAT2 EILAT MLC 2012 RSMAS SDMRI SDMRI
diseased

MDCP + DDVP + SVM 98.67 97.23 93.83 97.66 88.45 90.21
MDCP + DDVP + CNN 97.53 96.92 96.21 96.18 91.35 93.88
MDCP + DDVP + PCCNN 99.83 98.85 98.47 97.66 92.80 95.29
MDCP + DDVP +KNN 98.05 97.88 93.09 94.9 92.80 90.18
MDCP + DDVP +CART 97.74 96.83 94.11 94.77 87.91 89.31
MDCP + DDVP +RF 96.25 97 98.54 93.81 88 95.38
MDCP + DDVP +C4.5 96.95 96.91 93 94.73 86.39 88
MDCP + DDVP +AdaBoost 97.53 96 94.02 93 87.03 88.93
MDCP +DDVP +RoF 98.6 97.1 93.64 94.19 88.54 89.47
MDCP +DDVP +DT 98.7 98.92 93.84 95 88.69 89.1
MDCP + DDVP +NB 99.7 98 93.2 94.04 88.99 89.95

Table 4 Accuracy calculation for SDMRI coral diseased images with DT Classifiers. The highest accuracy (%)
acquired for every data set is highlighted in bold

Classifiers Average Accuracy percentage for various coral disease classes

Asper BaB BB BSDS WB WPL WPO YB PS

MDCP + DDVP + SVM 86.25 86.7 87.9 86.22 88.92 85.12 86.11 84.38 85.12 85.81
MDCP + DDVP +KNN 88.58 91.23 86.08 92.36 86.98 85.18 88.58 91.56 84.79 90.49
MDCP + DDVP + CNN 86.72 85.96 86.48 87.21 87.40 85.99 87.20 88.43 83.77 88.06
MDCP + DDVP + PCCNN 90.91 93.21 87.2 91.9 90.86 91.3 87.25 90.99 93.62 91.93
MDCP + DDVP +CART 84.66 84.85 86.73 83.93 88.39 82.38 84.97 83.53 83.97 83.21
MDCP + DDVP +RF 89.55 92.91 86.86 85.82 90.1 87.83 86.83 90.75 93.22 91.64
MDCP + DDVP +C4.5 86.90 80.98 86.97 88.4 89.74 90.51 83.02 85.84 86.04 90.61
MDCP + DDVP +AdaBoost 85.16 85.9 87 82.87 89.32 84.71 84.59 80.98 82.73 88.39
MDCP +DDVP +RoF 85.94 84.96 85.99 85.36 88 83.93 82.63 88.61 86.18 87.88
MDCP +DDVP +DT 89.85 93.21 87.31 85.92 90.86 87.9 87 90.95 93.62 91.93
MDCP + DDVP +NB 85.92 84.79 86.11 88.38 85.27 87.76 85.60 82.59 86.93 85.93
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16 to 49% only which is less due to misclassification rate. For the class Black band, SVM,
PCCNN, KNN and Random Forest have yielded full results. Also PCCNN and SVM have
obtained the highest results for white Plague, white band and yellow band.

5.2.4 Sensitivity

Sensitivity is a metric that reveals how correctly a classifier classifies the true positives. It
estimates the percentage of correctly classified diseased coral reef images.

Sensitivity ¼ TP
TP þ FN

ð43Þ

where TP represents the True Positive rate and FN represents the False Negative rate.
Sensitivity is good for classes with large sample images, and it is fair for classes with fewer

sample images. Table 6 shows that diseased image classes with large number of samples like black
spot dark spot, white band and pink spot, KNN gives highest sensitivity value, but for the least
sample class such as Aspergillosis and Black Band, they are not sensitive. DT has the highest
overall sensitivity compared to other decision tree classifiers because of the procedure of creating
many trees. It is able to classify a few sample images from the classes having fewer samples, i.e.
White Pox whereas other classifiers are not able to classify as observed in column 9 of Table 6.
Also, SVM and PCCNN have the highest sensitivity for the classes with fewer samples such as
White Plague and Yellow band. Naive Bayes, AdaBoost, CART, C4.5 and Random Forest
classifiers are also sensitive to classes with fewer sample especially for Aspergillosis. But Random
Forest classifier and PCCNN have the highest sensitivity for Black band class among all the
classifiers implemented because they does not need a lot of features to perform well.

5.2.5 Mathew’s correlation coefficient (MCC)

It is considered as one of the most effective and accurate performance parameters for any
purpose of classification. MCC takes values in the interval (−1and 1), whereby 1 indicates that
the classifier classifies the diseased images correctly and − 1 indicates that the classifier
classifies the diseased images incorrect by MCC is estimated as shown in Eq. (13), for real
time diseased data set (http://www.sdmri.in),

Table 5 Specificity calculation for various coral diseases with DT Classifiers. The highest Specificity (%)
acquired for every data set is highlighted in bold

Classifiers Average Specificity percentage for various coral disease classes

Asper BaB BB BSDS WB WPL WPO YB PS

MDCP + DDVP + SVM 95.05 90.32 88.19 100 94.14 99.74 98.5 92.8 99.79 91.98
MDCP + DDVP + CNN 92.16 88.95 87.61 100 96.32 91.83 87.62 90.44 97.47 89.23
MDCP + DDVP + PCCNN 96 90.61 88.95 100 100 99.27 99.16 93.21 99.18 93.67
MDCP + DDVP +KNN 95.55 90.62 88.5 100 100 97.41 97.97 93 98.99 93.51
MDCP + DDVP +CART 55.29 48.65 16.67 65.7 55.13 16.67 86.96 26.32 92.34 89.2
MDCP + DDVP +RF 92.03 88.56 77.48 100 97.4 90.42 96.59 86.32 97.9 93.67
MDCP + DDVP +C4.5 68.58 60.90 21.83 98.6 80.1 71.53 70.75 73.27 71.6 68.67
MDCP + DDVP +AdaBoost 66.59 58.61 23.64 97.5 77.82 72.66 70.48 71.26 76.54 50.81
MDCP +DDVP +RoF 65.51 77.49 19.23 77.48 86.96 70.53 69.52 73.26 66.67 48.51
MDCP +DDVP +DT 95.33 89.79 88.57 99.76 98.56 97.64 97.8 93.84 98.63 93.45
MDCP + DDVP +NB 41.47 56.74 19.23 66.67 48.51 48.65 48.51 41.67 23.91 19.37
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MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FP

��
TP þ FN

� �
TN þ FPð Þ TN þ FNð Þ

r ð13Þ

where FN represents False Negative, TP represents True Positive, TN represents True
Negative and FP represents False Positive.

The overall highest Mathew’s Correlation Coefficient (MCC) value is obtained for SVM,
CNN, PCCNN and KNN because they are accurate and powerful classifiers as shown in
Table 7. C4.5 and Naive Bayes classifiers have the lowest MCC values due to the problem of
over fitting in C4.5 and strong assumption on the shape of the feature distribution in Naive
Bayes. From the study, it is found that RF classifier, PCCNN and DT classifier perform better
compared to other classifiers based on the performance measures accuracy, specificity, F-
measure, time and Mathew’s Correlation Coefficient for coral disease classification.

5.2.6 Time

It is essential to analyze the time taken by various feature descriptors, classifiers and existing
techniques to classify the diseased coral reef images. So as to make it usable for real time

Table 6 Sensitivity calculation for various coral classes with DT classifiers. The highest Sensitivity (%) acquired
for every data set is highlighted in bold

Classifiers Average Sensitivity percentage for various coral disease classes

Asper BaB BB BSDS WB WPL WPO YB PS

MDCP + DDVP + SVM 83.64 77.34 78.44 90.68 85 74.71 89.22 78.4 89.46 89.58
MDCP + DDVP +KNN 84.11 76.9 79.61 91.28 85.33 76.13 88.9 79 89.25 90.51
MDCP + DDVP + CNN 80.59 75.94 77.96 88.73 80.47 73.86 86.55 77.42 82.34 82.06
MDCP + DDVP + PCCNN 84.58 80.19 81.72 91.66 84.81 75.42 89.19 79.39 89.5 89.37
MDCP + DDVP +CART 39.66 40.82 33.33 36.48 43.47 16.67 62.61 30.43 44.64 48.51
MDCP + DDVP +RF 81.32 75.12 80.21 91.67 81.39 72.09 85.91 74.38 85.05 86.12
MDCP + DDVP +C4.5 38.72 41.42 41.03 39.74 25 65.7 26.32 23.91 76.13 9.23
MDCP + DDVP +AdaBoost 46.58 56.28 52.15 34.43 38.61 54.91 61.47 43.47 49.55 28.38
MDCP +DDVP +RoF 49.50 52.1 63.81 42.10 39.65 53.88 59.05 48.36 53.76 32.84
MDCP +DDVP +DT 84.18 80.18 81.76 90.65 84.71 75.99 88 79.38 88.5 88.51
MDCP + DDVP +NB 49.96 64.9 59.23 45.66 37.91 51.04 58.91 47.22 54.81 30

Table 7 MCC Estimation
Classifiers MCC

SVM 0.62
CNN 0.60
KNN 0.62
PCCNN 0.63
CART 0.22
RF 0.61
C4.5 0.35
AdaBoost 0.44
RoF 0.42
DT 0.59
NB 0.12
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implementations. Tables 8, 9, and 10 show the time estimated for feature descriptors, classi-
fiers and comparison with existing techniques. When the feature descriptor’s feature size is less
it helps in fast and efficient classification. In Table 8, the proposed feature descriptor is about
two times faster to compute than LBP, CLBP RLTP and LTrP. Even though LDP, ILDP, OPT
and Z⊕ TZLBP take less time, the proposed has improved accuracy by 2% than them.

5.2.7 Computational complexity

LBP, LDP, CLBP, DLBP, LTxXORP, CS-LBP, OC-LBP, PRI-CoLBP, ILDP, Z⊕ TZLBP and
the proposed feature descriptors have a linear Complexity. If there is an iteration, and the
iterative variables are incrementing linearly, then time complexity is determined as O(n). RLTP
and LTrP techniques have a Quadratic Complexity. This is shown in Table 11.

5.2.8 Space complexity

The space complexity of an algorithm is the amount of storage it uses. The feature vector that is
obtained has the histogram bin size in the range 0 to 256 for LBP, LDP, CLBP, DLBP, LTxXORP
and LTrP feature descriptor whereas for RLTP it is between 0 to 512 which is devastating. Hence
the size of feature vector and its bin size has an impact on storage requirement. In ILDP and OC-
LBP, the bin size is between 0 to 32. For Z⊕TZLBP and CS-LBP, the bin size is between 0 to 16.
For OPTand the proposed technique, the bin size is between 0 to 24. This is presented in Table 11.

6 Results and discussions

6.1 Accuracy

The accuracy of various classifiers implemented using the same SDMRI diseased coral data set
with different feature classes is compared in Fig. 14. It is observed from Table 4 that the DTand
PCCNN produce higher classification rate, i.e. approximately 89–92% which is greater when
compared to other classifiers. RF performs well because it can produce accurate predictions that

Table 8 Average time reported for the different feature descriptors using SDMRI Diseased data set

Feature Descriptors Average Time Taken (in secs)

LBP 1.912
CLBP 1.988
DLBP 1.123
LTxXORP 1.008
CS-LBP 0.9865
OC-LBP 0.9736
PRI-CoLBP 1.113
RLTP 1.486
LTrP 1.389
LDP 0.9923
ILDP 0.7581
Z⊕ TZLBP 0.6229
OPT 0.6224
Proposed 0.6119
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do not overfit the data. SVM (RBF kernel), CNN andKNN also provide better results compared
to other classifiers. It is also noticed that DTand PCCNN classifiers provide the highest overall
percentage of accuracy of 90.91 and 89.85%. Also, it provides highest accuracy for the
classification of diseased samples of Pink spot, Aspergillosis, Black spot dark band and Yellow
band classes. It is also found that KNN classifier performs well, i.e. it provides the highest
accuracy for White plague, Black band and White pox disease classes. This is because White
plague, Black band and White pox disease have larger samples compared to other classes and
KNN classifier is having the capability to classify problems using majority voting.

The accuracy of various classifiers implemented using SDMRI real-time diseased coral data
set with different feature classes are compared in Fig. 14. Among various classifiers, DT,
PCCNN and RF provide good classification accuracy. KNN also provides better classification
results compared to other classifiers. The other classifiers such as Adaboost and CART provide
very less classification results because AdaBoost is sensitive to noisy data and outliers.
Compared to other classifiers, AdaBoost has overfitting problem.

6.2 Specificity

As shown in Fig. 15, SVM, PCCNN, KNN, DT and RF show the highest results of 90 - 96%.
Naive Bayes shows the very least results in specificity due to strong feature independence

Table 9 Time taken by various classifiers for SDMRI diseased data set

Classifiers Time taken for training and testing (in secs)

SVM 28.65
CNN 95.81
KNN 21.64
PCCNN 37.11
CART 2.82
RF 15.73
C4.5 1.52
AdaBoost 73.81
RoF 64.6
DT 2.03
NB 0.29

Table 10 Comparison of the total execution time (in sec.) of SDMRI diseased data set with the existing and the
proposed approaches

SDMRI diseased DATA SET Average Time Taken (in secs)

SHIELA [23] et al. (2008) 0.8747
STOKES [8] et al. (2009) 0.8845
OSCAR [29] et al. (2008) 0.9861
BEIJBOM [5] et al. (2012) 1.199
GUO [10] et al.(2010) 1.988
Mohammad [32] et al.(2017) 1.929
SHIVAHUDIN [33] et al.(2013) 2.776
ANI [2] et al. (2017) 0.7581
ANI [1] et al. (2017) 0.6229
ANI [3] et al. (2018) 0.6224
PROPOSED 0.6119
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assumptions. The other classifiers such as AdaBoost, C4.5, CART and Rotation Forest
produce average results of 60-70% results.

6.3 Sensitivity

As shown in Fig. 16, PCCNN, CNN, SVM, KNN, DTand Random Forest report sensitivity of
80 - 88%. CART and C4.5 show the very least results in sensitivity due to the unstable DT
formation and empty branches. The other classifiers such as AdaBoost, Naive Bayes and
Rotation Forest produce average results of 45-52%.

Table 11 Computational Complexity and Bin Size for various feature descriptors

Feature Descriptors Bin Sizes used Computational Complexity

LBP 256 O(n)
CLBP 256 O(n)
DLBP 256 O(n)
LTxXORP 256 O(n)
CS-LBP 16 O(n)
OC-LBP 32 O(n)
PRI-CoLBP 256 O(n)
RLTP 512 O(n2)
LTrP 256 O(n2)
LDP 256 O(n)
ILDP 32 O(n)
Z⊕ TZLBP 16 O(n)
OPT 24 O(n)
Proposed 24 O(n)
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Fig. 14 Overall Accuracy of classifiers
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6.4 Time

The time taken by various classifiers is shown in Table 9. Naive Bayes classifier takes less time
compared to all the other classifiers studied, but it is not so good in other measures. The other
three classifiers such as Adaboost, CNN, Rotation forest except Random forest take more time
compared to these classifiers, since it takes more time to build the tree. CART takes less time

  SVM  KNN CART  RF  C4.5 AdaBoost RoF DT  NB CNN PCCNN
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but other measures are not good. Random forest and PCCNN have a good performance in all
aspects because boot strapping reduces bias and variance both which make RF more accurate
and robust. Similarly, Adaboost has an average performance in all aspects but in case of time
taken it takes more time compared to Random Forest.

The time taken by existing approaches are shown in Table 10. Even though Shivahudin [33]
have proved good contribution in accuracy for various coral data sets, their time complexity is
more due to utilization of various feature descriptors such as GLCM, Gabor and CLBP. Shiela
[23], Stokes [8], Oscar [29], Beijbom [5], Guo [10] and Mohammad [32] have provided good
classification accuracy with reasonable time complexity. But they did not take any steps to
reduce time complexity. Ani [1–3] have concentrated on both improving accuracy and
reducing time complexity by reducing the feature vector size of the proposed method.

6.5 Conclusion and future work

The proposed feature descriptors are competent for submarine diseased coral reef images.
This paper presents the test results with real-time diseased coral reef data sets, i.e. SDMRI
real-time diseased coral image data sets have been used. The proposed feature descriptor
extracts the important diagonal information by reducing the size of the feature vector. The
combination of the proposed feature descriptor, segmentation and various classifiers
attains the best results. MDCP assists in achieving the highest overall classification
accuracy and the smallest execution time. Moreover, the proposed feature descriptor is
about two times faster to compute than LBP. Therefore, it can produce promising results
for a large class of problems.

Even though many feature descriptors are available to improve the classification
accuracy, very few works have been reported to reduce the size of feature vectors. CS-
LBP, ILDP, Z⊕ TZLBP and OC-LBP operators reduce the size of original LBP histogram
with improvement in accuracy. But these feature vectors cover every pixel in an image
which is a time-consuming process. Compared to these techniques, the proposed feature
descriptor shows its efficiency in classification, feature vector size and time complexity. It
outperforms OPT, CS-LBP, OC-LBP, ILDP and Z⊕ TZLBP patterns with the smallest
histogram size and maximum accuracy for coral reef image classification.

In this work, various classifiers are studied, and their performances are analysed with
various performance measures. Also, the performances of various classifiers are compared. It
is concluded that Random Forest and Decision Tree have a good performance to handle the
classes with fewer sample images and larger sample images. Naive Bayes classifier is having
the least performance compared with the other classifiers.

Experimental results indicate that the proposed feature extraction method achieves the
highest overall classification accuracy with minimum execution time when compared to
other state-of-the-art methods. From the computational complexity point of view, the
proposed feature descriptor provides min size when compared to the other previous feature
descriptors, which makes it a faster classifiers. In addition, the speed of the proposed
framework is considerably higher than some advanced approaches of coral reef classifi-
cation. The classification of diseased coral images would enhance the study of coral reef
ecosystem, dynamics and processes by reducing the runtime.

Acknowledgements The authors would like to thank J.K.Patterson Edward for providing Suganthi Devadason
Marine Research Institute (SDMRI) data set.
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Appendix 1: To calculate the feature extraction using the proposed
method do the following: Consider a 3 × 3 Block Bk in image I as shown
below

Step 1: Calculate the diagonal directional difference between four directions, namely 45°,
135°, 225° and 315°on three channels, namely red, green and blue as shown in Eqs. (4)–(12).

R45 = 15 -7 = 8

R135 = 15 - 5 = 10

R225 = 15 - 10 = 5

R315 = 15 - 9 =6      

G45 = 11 -22 = -11

G135 = 11 - 8 = 3

G225 = 11 - 12 = -1

G315 = 11 - 5 =6  

B45 = 12 -8 = 4

B135 = 12 - 9 = 3

B225 = 12 - 11 = 1

B315 = 12 - 4 =8

5 12 7

8 15 6

10 11 9

8 19 22

15 11 9

12 3 5

9 2 8

16 12 7

11 14 4
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Step 2: Calculate the diagonal direction difference between three channels along 45°, in the
following combinations, namely RG, RB, GR, GB, BG, BR as shown in Eqs. (4)–(12).

Step 3: Calculate the diagonal direction difference between three channels along 135°, in
the following combinations, namely RG, RB, GR, GB, BG, BR as shown in Eqs. (4)–(12).
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Step 4: Calculate the diagonal direction difference between three channels along 225°, in
the following combinations, namely RG, RB, GR, GB, BG, BR as shown in Eqs. (4)–(12).

Step 5: Calculate the diagonal direction difference between three channels along 315°, in
the following combinations, namely RG, RB, GR, GB, BG, BR as shown in Eqs. (4)–(12).

Step 6: Vector Generation using four diagonal directions in the three planes is as shown in
Eqs. (13)–(15).

For 45°

R45° ¼ 8; 7;−7h i

G45° ¼ −11; 3; 4h i

B45° ¼ 4; 5;−10h i
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For 135°

R135° ¼ 10; 7; 6h i

G135° ¼ 3; 3; 6h i

B135° ¼ 3; 7; 4h i
For 225°

R225° ¼ 5; 3; 4h i

G225° ¼ −1; 0; 1h i

B225° ¼ 1; 2; 0h i
For 315°

R315° ¼ 6; 10; 11h i

G315° ¼ 6; 7; 2h i

B315° ¼ 8; 3; 7h i
Step 7: Binary Codes Assignment is as shown in Eqs. (16)–(18)

For 45°

BCR45° ¼ 1; 1; 0h i

BCG45° ¼ 0; 1; 1h i

BCB45° ¼ 1; 1; 0h i
For 135°

BCR135° ¼ 1; 1; 1h i

BCG135° ¼ 1; 1; 1h i

BCB135° ¼ 1; 1; 1h i
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For 225°

BCR225° ¼ 1; 1; 1h i

BCG225° ¼ 0; 1; 1h i

BCB225° ¼ 1; 1; 0h i
For 315°

BCR315° ¼ 1; 1; 1h i

BCG315° ¼ 1; 1; 1h i

BCB315° ¼ 1; 1; 1h i
Step 8: Diagonal Direction Value Assignment is as shown in Eqs. (19)–(21).

For 45°

DDV BCR45° ¼ 7h i

DDV BCG45° ¼ 4h i

DDV BCB45° ¼ 7h i
For 135°

DDV BCR135° ¼ 8h i

DDV BCG135° ¼ 8h i

DDV BCB135° ¼ 8h i
For 225°

DDV BCR225° ¼ 8h i

DDV BCG225° ¼ 4h i

DDV BCB225° ¼ 7h i
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For 315°

DDV BCR315° ¼ 8h i

DDV BCG315° ¼ 8h i

DDV BCB315° ¼ 8h i
Step 9: Summed Diagonal Direction Value is as shown in Eq. (22).

SDDV45° ¼ 18

SDDV135° ¼ 24

SDDV225° ¼ 19

SDDV315° ¼ 24

Finally feature vector for DDVP is estimated as follows SDDV= < 18, 24, 19, 24>
Step 10: Given image I is converted from RGB to HSV color space

H-Plane                                                             S-Plane                                               V-Plane

8 7 1 2 5 11 7 20 7

4 2 5 4 10 14 3 2 5

3 4 6 12 16 18 17 11 9

Step 11: Mean Estimation for three planes
As shown in Eq. (26) HMean is estimated for H-Plane, HMean = 5
As shown in Eq. (27) SMean is estimated for S-Plane, SMean = 10
As shown in Eq. (28) VMean is estimated for V-Plane, VMean = 9
Step 12: Diagonal Neighbors Estimation, As shown in Fig. 11, Diagonal neighbors are

chosen for comparing with the Mean Value in three planes.

8
7 1

2
5 11

7
20 7

4 2 5 4 10 14 3 2 5

3 4 6 12 16 18 17 11 9

11422 Multimedia Tools and Applications (2019) 78:11387–11425



Step 13: Assigning Direct Code, As shown in Eqs. (29) to (31), Direct codes are assigned
for three planes.

1 0 0 1 0 0

HMean=5 SMean=10 VMean=9

0 1 1 1 1 1

Step 14: Summed Direct Code, After comparison of diagonal elements with neighbors.
Depending on the binary values 0, 1 the codes are assigned. For this 3 × 3 Block Bk, the feature
vector is estimated in three planes and summed together as shown in Eq. (35).

H - Plane                          S - Plane                             V- Plane

1 0 0 1 0 0

0 1 1 1 1 1

SDC = 7 +14 +11 = 32

Step 15: After Normalization as shown in Eq. (36), SDDC = 16
Step 16: Feature Vector Concatenation as shown in Eq. (37)
Feature Vector (I) = <18, 24, 19, 24, 16>
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