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Abstract
We present a sparse spectral correspondence method for deformable shape analysis. Our method
exploits randomized sampling for sparse shape representation. By choosing a random subset of
points that preserve key properties of the entire data set, it allows one to run algorithms efficiently
on a small sample. First we implement random row sampling of an undirected weighted graph
matrix by BLewis weights^, which can be viewed as statistical leverage scores of a reweighted
matrix and used directly as sampling probabilities. Second, a sparse graph is constructed on
selected sample points by using minimum spanning tree (MST).We then discover the meaningful
structural correspondence based on TPS (thin-plate spline) approach in the spectral embedded
space. Finally we show how we use the sparse spectral correspondence to implement similarity
estimation for shape matching and classification for different topological shapes. A series of
experimental results demonstrate that our method is accurate and robust for shape analysis.

Keywords Shape analysis . Shape correspondence . Spectral eigenmap .Non-rigid shape . Sparse
representation

1 Introduction

Shape analysis has been an extensively studied research topic in Computer Graphics and
Computer Vision. One particular task is to provide similarity measurement among shapes, that
can be effectively used for shape understanding, shape matching, shape retrieval, shape editing
and reconstruction, etc.

Most methods have focused on how to find geometric criteria for extracting shape
descriptors. Such approaches are limited to a single generic rule (e.g., concavity, skeleton
topology, approximate shape primitives) or a single feature (area, angular distance, shape
diameter, curvature tensor, and geodesic distance) to partition the input mesh. However, they
usually lack efficiency and consistency for complex deformable shape matching.
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Our method combines sparse sampling method with spectral correspondence for efficient
and intrinsic shape analysis. For a set of 3D shapes from different categories as input, we first
extract a set of sample points to build a sparse representation for each shape by using an
efficient row sampling method, and then the affinity matrix is created based on minimum
spanning tree. We embed the set of weighted matrices into spectral domain to find the intrinsic
structural correspondence and build the pairwise matching matrix between each two meshes.
After that, we combine all single weighted matrices and pair-wise matching matrices to reveal
the structural consistency for the input set.

We have tested the proposed approach on various categories of shapes. The final results
demonstrate that our approach is efficient for shape classification despite the considerable
changes of their topology, stretching and pose-variances and incompleteness.

The paper is structured as follows: the related works are presented in Section 2. Section 3
details the extraction of sampling points, the construction of sparse graph and the transforma-
tion from spatial domain into spectral domain. The non-rigid shape matching based on sparse
spectral correspondence is presented in section 4. Experimental results are analyzed and
discussed in Section 5. We conclude our work in Section 6.

2 Related work

2.1 Shape matching

An important work about shape matching is multidimensional scaling (MDS) proposed by
Zigelman et al. [50] and Elad and Kimmel [16], they matched isometric shapes by embedding
them into a Euclidian space, and implement a rigid shape matching in that space. Since it is
generally impossible to embed a non-flat 2D manifold into a flat Euclidean domain without
introducing some errors, Jain et al. [20], Mateus et al. [26] and Sharma and Horaud [37]
suggested alternative isometry-invariant shape representations using eigendecomposition of
discrete Laplace operators.

The spectrum of the Laplace operator provides large descriptive feature vectors, that is
isometric-invariance, robust to local noise and sampling, shape-intrinsic, and multi-scale.
Rustamov [33] proposed a Global Point Signature (GPS) for shape comparison by employing
the discrete Laplace-Beltrami operator, which captures the shape’s geometry faithfully.
Ovsjanikov et al. [29] construct their Heat Kernel Signature (HKS) and Heat Kernel Maps,
respectively. Zaharescu et al. [48] suggested an extension of 2D descriptors for surfaces, and
used them to for shape matching. Hu and Hua [19] used the Laplace-Beltrami operator for
matching using prominent features, and Dubrovina and Kimmel [14] suggested employing
surface descriptors based on its eigendecomposition, combined with geodesic distances, in a
quadratic optimization formulation of the matching problem. The above methods, incorporat-
ing pair wise constraints, tend to be slow due to high computational complexity.

Memoli and Sapiro, Bronstein et al., [5, 27, 28] compared shapes using different approx-
imations of the Gromov-Hausdorff distance. Bronstein et al. [6] used diffusion geometry in
order to match shapes with topological noise, and Thorstensen and Keriven [40] extended it to
handle surfaces with textures. The GMDS algorithm [5] results in a non-convex optimization
problem, therefore it requires good initializations in order to obtain meaningful solutions, and
can be used as a refinement step for other shape matching algorithms. Anguelov et al. [1]
optimized a joint probabilistic model over the set of all possible correspondences to obtain a
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sparse set of corresponding points, and Tevs et al. [39] proposed a randomized algorithm for
matching feature points based on geodesic distances between them. Zhang et al. [49] per-
formed the matching using extrema curvature feature points and a combinatorial tree traversal
algorithm, but its high complexity only allowed them to match only a small number of points.
Moreover, there is no guarantee that this result minimizes the difference between pairwise
geodesic distances of matched points. Instead of detecting the non-rigid mapping between two
shapes, [21, 24, 30] search for a mapping from the shape to itself, and thus are able to detect
intrinsic symmetries.

2.2 Shape correspondence

A recent survey of shape correspondence methods can be found in [41]. The most well-known
approach is Iterative Closest Point (ICP) algorithm [2], which is used in [18] to align 3D
shapes. However, this approach only computes rigid transformation for shape correspondence.

Recent works, most notably the TPS-RPM method of Chui and Rangarajan [7], attempt to
incorporate non-rigid deformations into the ICP framework, using thin-plate splines (TPS) to
model the deformation. To perform non-rigid alignment of shapes, some approaches embed the
shapes in a common space to represent them. Themost popular methods areMulti-Dimensional
Scaling [50] and the spectral transform [16, 20, 26, 31, 32, 42, 44, 45]. Transforming a shape
into the spectral domain can obtain a more intrinsic representation of the shape.

Computing a correspondence between shapes is one of the key problems that can benefit
from semantically-driven techniques, some works segment a mesh into parts, finding analogies
between these parts, transferring information or part styles [35, 36, 38], and using prior
knowledge to learn how to label a shape or establish a correspondence [11, 22, 43].
Recently, some symmetry-aware algorithms have been proposed to improve the accuracy of
intrinsic correspondence [34, 46, 47].

Our work is inspired by the spectral matching method [7, 42]. However, we find these
methods are computationally costly because of the large number of dense points in each shape.
So we propose a sparse graph representation method based on BLewis weight^ theory and
MST; By using the multi-scale eigenfunctions it efficiently indicates the intrinsic structure
among the deformable shapes. And eventually we apply TPS to implement shape similarity
estimation and shape matching.

As it is shown in Fig. 1, our method takes a 3Dmesh model as input. First, we combine the row
sampling theory by Lewis Weights and polynomial approximation method to obtain a set of sparse
and stable key points that are robust to noise and pose variance. Second, a sparse graph is constructed
with the sampling points based on MST that compute the intrinsic affinity matrix efficiently. And
then the 3D mesh is embedded in a sparse spectral space. Finally, the similarity between each two
shapes is evaluated with the help of TPS method. A series of experimental results have shown the
efficiency and accuracy of our method in similarity measurement and shape classification.

3 Sparse graph representation

3.1 Sparse sampling

Randomized sampling is an important tool in the design of efficient algorithms. A random
subset often preserves key properties of the entire data set while allowing one to run algorithms
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on a much smaller sample. Recently, row sampling of matrices has received much attention in
numerical linear algebra [8, 10, 12, 13, 23].

Theorem 1. (Row sampling) For a n × d matrix A where n > > d and any error
parameterε > 0, we can find A′with a few (rescaled) rows of A.

Axk kp≈1þε A0xk kp ð1Þ
for all vectors x ∈Rd. Here ≈1 + ε denotes a multiplicative error between (1 + ε)−1and(1 + ε). Let
n and d to denote number of rows and columns respectively, and aito denote the vector
corresponding to the ithrow of A. A crucial definition in ℓ2 row sampling and matrix
concentration bounds is statistical leverage scores τi:

τ i Að Þ ¼def aTi ATA
� �−1

ai ¼ ATA
� �−1=2

ai
��� ���2

2
ð2Þ

The well-known sampling results for general ℓp norms [8–10, 13], are based on a Bchange of
density^ construction originally due to Lewis [23]. This construction assigns weights wi,
analogous to a leverage score, to each row ai; these weights can be used directly as the
sampling probability.

Theorem 2. (Lewis Weight) For a matrix A and norm p, the ℓpLewis weights w are the

unique weights such that for each row i we have w ¼ τ i W1=2−1=pA
� �

or aTi

ATW1=2−1=pA
� �−1

ai ¼ w2=p
i [9].

Note that for the case where p = 2, that is ℓ2, W1/2 − 1/p is the identity matrix, so the Lewis
weights are just the leverage scores.

Fig. 1 Ourmethod applies a two-stage sample-based approximationmethod to obtain stable key points and constructs a
sparse graph; the efficient similarity is evaluated by a sparse spectral correspondence with the help of TPS
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Drineas etc. [12] solve a sampling algorithm and corsets for ℓp regression based on BLewis
Weight^ theory, and provide a well-conditioned basis to obtain an exponentially better
Bcondition number .̂

Theorem 3. (ℓp regression problem) Let ‖ ⋅ ‖denote the p-norm of a vector. Given as input
a matrixA ∈ Rn ×m, a target vector b ∈ Rn, and real number p ∈ [1,∞), find a vector
xOPTand a number Z such that

Z ¼ min
x∈Rm

Ax−bk kp ¼ AxOPT−bk kp ð3Þ

Theorem 4. (well-conditioned basis) Let A be an n × dmatrix of rank d, let p ∈ [1,∞), let q
be its dual norm, where 1/p + 1/q = 1, then an n × d matrix U is an (α, β, p)-well-
conditioned basis for the column space of A if the columns of U span the column space
of A and (1) ‖‖U‖‖p ≤α,and (2) for all z ∈ Rd, ‖z‖q ≤ β‖Uz‖p. We will say that U is a p-
well-conditioned basis for the column space A if α and β are dO(1), independent of m and

n. If p < 2, then α ¼ d
1
pþ1

2and β = 1; if p = 2, then α ¼ d
1
2 and β = 1; and if p > 2, then

α ¼ d
1
pþ1

2 and β ¼ d
1
q−

1
2 [12].

The significance of a p–well-conditioned basis is that it is able to minimize the
variance in sampling process by randomly sampling rows of the matrix A and
elements of the vector b according to a probability distribution that depends on norms
of the rows of the matrix U. This will allow us to preserve the subspace structure of
span (A) and thus to achieve an(1 + ε)−1-approximation to the ℓp regression problem
more efficiently.

In this paper we adopt the ℓp regression algorithm [12] and BLewis weights^ theory [9] to
efficiently extract the key sample points over 3D mesh model.

We define a polynomial surface and compute the importance of each point in a mesh model
for surface approximation by solving a ℓ2 regression problem. The importance of each point is
used as sampling probability to extract key sample points. We demonstrate the two-stage
approximation algorithm and the sampling results to prove the efficiency and robustness of our
sampling method.

3.2 Sparse sampling by Lewis weights

An important question in algorithmic theory is whether there exists a small subset of the input
such that if computations are performed only on this subset, the solution to the given problem
can be approximated well.

In this paper, we adopt a two-stage sampling-based approximation algorithm to
obtain the key sample points from a mesh model [12]. The first stage of the algorithm
is sufficient to obtain a constant factor approximation to a polynomial surface. The
second stage of the algorithm carefully uses the output of the first stage to construct a
coreset and achieve arbitrary constant factor approximation, which can be considered
as sampling probability.
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Assume that we have a series of points A = {(x1, y1, z1),…(xn, yn, zn)}, and an approximat
polynomial surface f(x, y) of degree d:

z ¼ f x; yð Þ ¼ ∑iþ j≤dci; jx
iy j ð4Þ

And all these polynomials constitute a linear space Sd:

Sd≔ f x; yð Þjdeg f x; yð Þ≤df g ð5Þ
The distance between point and surface f is defined as:

distance A; fð Þ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
zi− f xi; yið Þð Þ2

s
ð6Þ

Then there exists a unique f0(x, y) that satisfies:

distance A; f 0ð Þ≔min
f ∈Sd

distance A; fð Þ ð7Þ

So the greater the value of d is, the better the surface f0(x, y) approximates the set A. We now
can rewrite distance(A, f) as matrix format:

distance A; fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 zi− f xi; yið Þð Þ2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 zi−∑iþ j≤dci; jxiy j
� �2

r
Define

B ¼
1 x1 y1 x21 x1y1 y21 … xd1 xd−11 y1 … yd1
1 x2 y2 x22 x2y2 y22 … xd2 xd−12 y2 … yd2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
1 xn yn x2n xnyn y2n … xdn xd−1n yn … ydn

0
BB@

1
CCA C ¼

c0;0
c1;0
⋮
c0;d

0
BB@

1
CCA Z

¼
z1
z2
⋮
zn

0
BB@

1
CCA ð8Þ

Now the distance(A, f) can be written as:

distance A; f 0ð Þ ¼ BC−Zk k2 ð9Þ

Matrix C is the coefficients of polynomial surface f and ordered in sequence, and we have:

min
f ∈Sd

distance A; fð Þ ¼ min
C∈R dþ1ð Þ dþ2ð Þ

2

BC−Zk k2 ð10Þ

Here R dþ1ð Þ dþ2ð Þ
2

is the dþ1ð Þ dþ2ð Þ
2 Euclidean space.

Ideally, there exists a C0 to satisfies BC0 = Zwhichmakes all points of A fitting the polynomial
surface f0(x, y), but for a fixed d, it becomes an over-determined problem since the number of rows
of matrix B is often far bigger than the number of columns, that is n> > d. It means that a few rows
of the matrix B play an important role for the ℓpregression problem as described in the
Theorem1.3. Hecne we can use row sampling to solve this approximation problem.
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In this paper we use a two-stage row sampling algorithm to sample the matrix and the
corresponding optimal solution is between (1 + ε)−1 and (1 + ε) [9, 12].

Given a mesh M with n points, and an approximated polynomial surface f, we build the
matrix B (Eq. 8). The row sampling algorithm takes as input an n ×m matrix B of rank d, a
target vector z ∈ Rn. And a number p = 2 means ℓ2 regression problem. It returns vector qi ∈ Rm

as Lewis weight to each row, which is used as the sampling probability.
Algorithm 1: Row sampling by Lewis Weights

The algorithm first computes a p–well-conditioned basis U for span (B), as described in the
Theorem1.4. Then, it uses information from the norms of the rows of U to sample constraints
from the input ℓp regression problem. In particular, roughly O(dp + 1) rows of B, and the
corresponding elements of z, are randomly sampled according to the probability distribution
given by

pi ¼ min 1;
‖Ui*‖

‖‖Ukkpp
r1

8<
:

9=
;;where r1 ¼ 16 2p þ 2ð Þdk dln 8⋅12ð Þ þ ln 200ð Þð Þ: ð11Þ

In our method, we choose p = 2 and solve a ℓ2 regression problem. We use S to denote the
sampling matrix for the first-stage sampling probability.

In the second stage, we use the output from the first stage to refine the sampling probability.

qi ¼ max pi;
ρ̂̂ij jp
ρ̂̂k kpp

r2

( )
;wherer2 ¼ 150⋅24pdk

ε2
dln

280

ε

� 	
þ ln 200ð Þ

� 	
: ð12Þ

And the constant factor qi as Lewis eight of each row is finally obtained which represents the
importance for the approximation.

The ultimate goal of row sampling is to evaluate the importance of each point to the
approximated surface. And it is obvious that the points approximate well when the degree d is
larger (see Fig. 2). We choose d = 6 as a trade off in our experiments.
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All the points in the matrix are reordered with Lewis weight qi in descending order, and
then the key sample points can be selected according to user’s choice. In our experiments we
set ε = 0.01, and as we can see in Fig. 3a key sample points (black balls) are extracted with
different sparse ratio τ = 0.1, τ = 0.2, τ = 0.5.

To evaluate the sampling results it usually needs two kinds of metrics: the control metric r
and the distance metric dm. The control metric r reflects the user preferences of the sampling
pattern, such as density, adaptivity. The distance metric dm reflects properties of the underlying
sample space Ω, essentially defining the distance between any pairs of samples within Ω [15].
It is usually used to evaluate the stability of sampling method.

Here we define the distance between the pair of sample points d(s1, s2) via the surface
geodesic and let r be the distribution of the histogram of geodesic distance which indicates the
sampling density.

We normalize the geodesic distance between all pairs of sample points and divide the
normalized geodesic distance into five ranges; the distribution of sample points in each range
is calculated as shown in histogram in Fig. 3a, we can see that our method obtain the similar
density distribution r of geodesic distance even with different sparse ratio τ. It effectively
reveals the stability of the sample space.

Figure 3b shows the comparison of sampling results, our sample points indicate better
structural distribution than those based on salient geometric sampling (SGS) method [17] and
MLS method [3], and it achieves similar simplified results with fewer sample points compar-
ing with Poisson disk (PD) method [4, 15]. In Fig. 3c we can see our sampling method is
robust to the Gaussian noise (δ = 0.0015) and the distribution density of sample points in
human model with sparse ratio τ = 0.3 is very stable.

Fig. 2 The polynomial surface of degree d (d = 4, 5, 6) and the approximation errors
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3.3 Sparse graph construction with MST

We build a sparse weighted graph representation for each mesh model with key sample points
by using minimum spanning tree (MST) algorithm.

Given a mesh model G = 〈V, E〉, we construct the shortest path P kð Þ
ij j v;…v j|fflfflffl{zfflfflffl}

k

∈V for each

pair of key sample points (vi, vj) (see Fig. 4), k is the number of the points on this shortest path,

and then the weight for this path can be evaluated as w kð Þ
ij :

w kð Þ
ij ¼

1 i ¼ j
dtij k ¼ 0; i≠ j
min dt k−1ð Þ

ij ; dt k−1ð Þ
ik þ dt k−1ð Þ

kj

� �
k≥1; i≠ j

8><
>: ð13Þ

Here dti j is the Euclidean distance between adjacent points (vi , vj), min

dt k−1ð Þ
ij ; dt k−1ð Þ

ik þ dt k−1ð Þ
kj

� �
means iteratively computing the distance of each pair of adjacent

Fig. 3 The comparison of sampling results. (a) The key points extraction with sample rates τ = 0.1, τ = 0.2, τ =
0.5 by our method. (b) sampling results based on SGS [17], MLS [3], PD [4] and ours. (c) sampling results on
different poses of human models and with Gaussian noise (δ = 0.0015)
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points on the shortest path between two sample points (vi, vj). Based onMSTa sparse weighted
graph G′=〈V′, E′, W〉 and its affinity matrix W are finally constructed.

Algorithm 2: Sparse graph construction with MST.

Fig. 4 has shown the key sample points by Lewis Weights and a constructed sparse graph
by using MST.

Since Laplace-Beltrami spectrum reveals intrinsic structure and morphology of the deform-
able shape, It provides a robust tool for shape analysis [19, 29, 33, 48].

Therefore, we embed our MST into spectral space to build sparse spectral representation in
order to find intrinsic similarities among shapes.

The affinity matrix W of MST is eigendecomposed as W =QΛQT, Λ is a diagonal matrix
where the diagonal elements (λ1 ≥ ... λn) are the eigenvalues and sorted in descending order.
Q = [v1··· vl] is a l × l matrix and v1,···vl are eigenvectors corresponding to the eigenvalues.

We choose the first k largest dimension eigenvector Qk for the corresponding ordered
eigenvalues. The row vectors of Qk can be regarded as the embedding coordinates of the
corresponding points in the k-dimensional spectral domain.

Figure 5 shows 2-dimensional eigenmaps of human model (with the 2nd, 3rd largest
eigenvalues) with 100 and 30% sample points. We can see that our sparse spectrum keeps
well structural description.

Fig. 4 The Sample points and the sparse graphs with MST (n = 800; n = 200)based on different sparse ratios: τ =
0.7; τ = 0.3
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4 Shape correspondence based on sparse spectral embedding

The purpose of transforming the 3D mesh from the spatial domain to the k-D spectral domain
is to attain invariance to isometric transformation, and uniform scaling, as well as robustness to
difference in mesh sizes.

In this work, we match each pair of sparse graphs that we constructed with spectrum by
TPS transformation [7].

Given two sparse spectral embeddings Â and B̂, the transformation function g : Âi∈Rk→B̂ j

∈Rk maps a point set in 2 dimensional space to another point set by minimizing the following
energy function:

E gð Þ ¼ ∑
n

j¼1
‖Â̂i−g B̂̂j

� �
‖þ β∬

∂2g
∂x2

� 	2

þ 2
∂2g
∂x∂y

� 	2

þ ∂2g
∂y2

� 	2
" #

dxdy ð14Þ

where β is the regularization (smoothing) parameter. Assume that the correspondence between

Â and B̂ j, the point B̂ jis thematching point for Âi. The unique g that minimizes the above energy
function has the form:

g B̂̂j; t;w
� � ¼ B̂̂j⋅t þ ∑

m

i¼1
wi⋅φ ‖ xi; yið Þ− x j; y j

� �
‖

� �
ð15Þ

Where t is an (k + 1) × (k + 1) affine coefficient matrix and w is a n × (k + 1) non-rigid warping
coefficient matrix. φ is the TPS kernel, φ(r) = r2 log r2, r = ‖(xi, yi) − (xj, yj)‖. The coefficients
of t and w can be calculated with

K B̂̂
T

B̂̂ 0

" #
w
t

� �
¼ Â̂

0

� �
ð16Þ

where Kij =φ(‖(xi, yi) − (xj, yj)‖).
Using this transformation form, we transform the point set Â to point set B̂. This process is

iterated until convergence. We have found experimentally that 5 to 10 iterations of the iterative
alignment are sufficient to align the embeddings. The value of the regularization parameter β is
set to be the mean distance between all embedded point pairs. Finally, we can obtain the

distance of each matching point pairs ai M1ð Þ; bi M2ð Þ
C ið Þ

� �
, ai M1ð Þ is the ith vertex of spectral

embedding Â and bi M2ð Þ
C ið Þ is the C(i)th vertex of spectral embedding B̂, where C is the

correspondence found by our algorithm.

Fig. 5 Human model and its 2-D spectral eigenmap with different sample points (τ = 1.0, τ = 0.3)
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This way, we use the sum of squared difference (SSD) and the correlation coefficient (CC)
as evaluation parameters of shape matching (Eqs. 18, 19). The larger value of SSD represents
the worse correspondence, but the larger CC will show the better shape similarity. Conse-
quently, the matching accuracy sim(Mi,Mj) between each two mesh models can be computed
(Eq. 20).

Ci ¼ argmin j‖Â̂i−B̂̂j‖; ð17Þ

SSD ¼ ∑
N

i¼1
ai M1ð Þ−bi M 2ð Þ

C ið Þ
� �2

� 	1=2

=N ; ð18Þ

CC ¼
∑
N

i¼1
a M1ð Þ
i −α

M1ð Þ� 	
b M2ð Þ
i C ið Þ−β

M2ð Þ
C ið Þ

� 	

∑
N

i¼1
a M1ð Þ
i −b M2ð Þ

i C ið Þ
� �2

� 	1=2
ð19Þ

Where α and β are the mean distances of Â and converted B̂ respectively. We set a threshold
parameterγ ¼ 0:05⋅ αþ β

� �
=2, for each matching point pair ai M1ð Þ; bi M2ð Þ

C ið Þ
� �

, if
‖a M1ð Þ

i −b M2ð Þ
i C ið Þ‖≤γ, it is an effective matching pair, if ‖a M1ð Þ

i −b M2ð Þ
i C ið Þ‖ > γ, then it is not

effective matching pair. We can then obtain the matching accuracy sim(Mi,Mj) of each two 3D
models Mi and Mj, Neff is the number of the effective matching pairs, m, n is the number of
points in Mi and Mj respectively.

sim Mi;M j
� � ¼ Neff

min m; nð Þ ð20Þ

Figure 6 has shown the results of sparse spectral correspondence, we first create affinity matrix
for each sparse graph, and then build a sparse spectral eigenmap (see Fig. 6b). The shape
correspondences are finally obtained in a spectral domain (see Fig. 6c). Figure 6d shows the
shape alignment in spatial domain which is difficult to reveal the consistency of non-rigid
shapes.

Clearly, our algorithm can effectively recognize the same category meshes. And it behaves
robustly against moderate stretching and pose-variance in shapes.

To summarize, the procedure of our spectral correspondence is described in Algorithm 3.
Algorithm 3: Procedure of spectral correspondence.
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5 Experimental results

In this work, we develop a row sampling and sparse graph construction method to generate a
sparse descriptor for most of shapes which is useful for shape matching and analysis.

In this section, we demonstrate experimental results and analyze the performance of our
algorithm. We choose Princeton Segmentation Benchmark as our test set. All experiments are
performed on Intel Core™ CPU 3.5 GHz, 8GB memory.

The time complexity of our algorithm is mostly dependent on the shape resolution. In our
method we firstly implement a row sampling to reduce resolution of complex shapes to less
than 2 K points. At the same time, the subsampled points can maintain well the geometrical
and topological properties for most of shapes.

We assume that the input shapewith n points. In the sampling stage, suppose that the average
number of sample points isNk (Nk < n), then the sampling procedure isO(nd2 log(n)),where d =
rank(B), and the computing of sparse graph and spectral embedding takes O(Nk log(Nk).

Fig. 6 The shapematching results based on sparse spectral correspondence. (a) The spectral eigenmap of two human
models (b) Sparse spectral eigenmap with sparse ratio τ = 0.3. (c) Sparse spectral correspondence based on TPS. (d)
Non-rigid shape matching based on sparse spectral correspondence. (e) shape alignment in spatial domain
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The spectral correspondence algorithm is dependent on initializing the affinity matrix. For a

pair of shapes, the computation complexity of shape matching is O N2
k log Nkð Þ� �

.

Table 1 has shown the efficiency of our method. The longest processing time is almost
2 min for the horse’s category since it has the greatest number of points in the model and the
shortest processing time is 5 s for the fish category. Figure 7 demonstrates the sparse spectral
correspondence results with different sparse ratio (the third column: τ = 0.2, the forth column:
τ = 0.5) for deformable shapes.

Table 2 provides a general comparison of the average accuracy of classification with other
methods. Although spectral embedding takes large computational time because of the eigen-
decomposition of large dense matrices, our method effectively reduces the size of input shapes
by extracting the key sample points and the sparse spectral embedding generates a better shape
descriptor. Experimental results have proved that our method achieves better accuracy rates of
classification than the others (see Fig. 8).

Because this algorithm defines a sparse ratio τ to build sparse representation of the model,
the choice of parametersτ may affect the classification accuracy; therefore the influence of the
parameter values τ was tested in our experiments. We chose eight equidistant distributions

Table 1 The performance of our method (s: seconds)

Models (points) Sample points (s) MST + spectral embedding (s) Sparse spectral matching (s)

Humans
(3206)

17.25 6.63 12.6

Cat
(1730)

10.21 3.08 6.4

Planes
(1038)

5.74 2.01 5.02

Fishes
(563)

1.98 1.22 2.26

Horses
(69451)

25.24 17.94 68. 47

Tiger
(2834)

15.31 12.64 20.05

Camel
(2830)

14.46 12.45 19.39

Wolf
(1243)

12.58 4.37 8.46

Cow
(2903)

16.31 12.96 20.21

Fig. 7 Sparse spectral correspondence for mesh models
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betweenτ = 0.1~0.8, the average recognition accuracy on all models are calculated respectively
as shown in Fig. 9b.

In order to test the robustness of our algorithm, we use Gaussian noise on the 3D models
(Fig. 9c). The shape matching result still keeps the roughly the same accuracy. The horizontal
axis indicates the intensity of Gaussian noise added, increasing the noise intensity from 0.1 to
1%. Longitudinal axis is the average recognition rate of the model under different noise
intensity in all tests. When the noise intensity is below 0.2%, the average recognition rate of
the algorithm can keep the high accuracy even with different sampling rate; when the noise
intensity is more than 0.2%, the recognition rate increases with the increase of τ. Overall, as the
noise intensity increases, the average recognition rate of the model gradually declines.

Figure 9d demonstrates the stable shape matching results between 3D models with Gaussian
noise added. We add δ = 0.0015 Gaussian noise on these human models, and build the sparse
representation by our row sampling (τ = 0.3), the shape similarity is revealed through the sparse
spectral correspondence as shown in the fourth and fifth columns in Fig. 9d, from which the
similarity estimation is obtained. The matching rates between these 3D models are 96.75 and
94.13% respectively. It verifies that our method is effective and robust to the noise and deforma-
tion. We further tested our method for incomplete models, as shown in Fig. 9e. The similarity
between two incomplete models is well recognized by using the sparse spectral correspondence.

Table 3 demonstrates the representative matching results produced by our approach on the
16 categories from the PSB. We take a mesh model as the query shape and apply our sparse

Table 2 The average classification accuracy of our method on different shape categories (%)

Category Ours MDS [50] ICP [2] Parts [25] TP S - RPM [7]

Humans 86.75 83.69 84.69 86.45 86.51
Four-legged animals 89.94 83.75 89.74 84.32 89.86
Airplanes 88.67 83.27 86.52 88.41 88.36
Birds 81.58 80.28 81.69 82.63 80.92
Fishes 72.32 71.57 70.86 70.96 72.24
Cups 66.87 67.38 65.41 60.24 66.97

Fig. 8 The comparison of classification accuracy with other methods
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sampling and spectral matching method to evaluate the similarity in the database, and the most
similar candidates (top 3 ranking models sorted by CC value) are obtained. From the

Fig. 9 The experimental results of our method. (a) The sparse spectrum of 3D models with τ = 0.8. (b) The
average recognition accuracy on all models with different sample rates (c) the effect of Gaussian noises. (d) The
shape matching with Gaussian Noise (δ = 0.0015). (e) The shape matching with incomplete models
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experiment results we can find that our algorithm can accurately identify similar shapes on a
large variety of categories of shapes, even though the input shapes undergo large deformation
in geometric structure. The algorithm has good recognition accuracy. In the 16 categories of
3D models, the majority of the models have more than 95% accuracy, and the average
recognition accuracy of all models is 88.5%.

Fig. 10 An example of shape classification of the dataset, obtained by running our similarity measurement
algorithm. Classes are encoded by color; note that two incomplete octopus and two human models with holes (in
gray) have been left unmatched

Table 3 Non-rigid Shapes Similarity Analysis

Name          Model Name                   Model

Human Bird

Ant Hand

Candle Spider

Fish Glass

Horse gorilla

Rabbit triceratops

plane piles

dog cat
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6 Conclusions and future work

In this paper, we present an efficient approach to find the similarity between 3D shapes. We
first build a sparse representation for each input shape by extracting a subset of key sample
points under the BLewis Weight^ constraint. And then we generate a sparse graph with MST.
After transformation from spatial domain to the spectral domain, match of the spectral
embeddings are constructed to ensure a consistent ordering and sign assignment of the
eigenvectors with TPS method. Our algorithm is robust against differences in mesh sizes
and choice of the dimensionality of the embeddings. It is invariant under isometric transfor-
mation. Experimentally, we find it to be robust against moderate stretching in the shapes as
well, and it outperforms well-known existing shape correspondence schemes. The complexity
for computing the spectral embeddings and the correspondence is O (Nk

2 log Nk), where Nk is
the average number of sample points in the larger mesh.

However, similar to the spectrum analysis methods, our method also relies on the compu-
tation of geodesics, we require the shape to have no significant missing parts, although our
sparse model can successfully deal with partial similarity, this partiality is not easily control-
lable. An example is shown in Fig. 10, where two octopus are left unmatched by our method,
and the human models with large holes are not matched either.

In the future we would like to extend the scope of the structure-based and semantic-based
shape descriptors for more efficient shape matching instead of time consuming point matching.
Furthermore, we will investigate shape co-segmentation for the application of shape retrieval.
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