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Abstract
This paper proposes a novel video co-segmentation method, which aims to extract multi-class
objects from a group of videos. A set of tracklets are first generated based on object proposals,
and then a novel directed graph is constructed to connect object tracklets. The directed graph is
transformed to an undirected graph, and the extraction of common object tracklets is solved by
using maximum weighted clique. The obtained common object tracklets are used as seed
regions to perform manifold ranking and to generate the object-level saliency maps. Based on
common object tracklets and object-level saliency maps, GrabCut is exploited to get the
refined co-segmentation results. Experimental results on a public video dataset show that the
proposed video co-segmentation method consistently outperforms the state-of-the-art methods.
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1 Introduction

Nowadays, video object segmentation is an important research area owning to its wide variety
of applications such as content-aware retargeting [5], content-based retrieval [3] and video
surveillance, just to name a few. Continuous improvements on video segmentation methods
have been achieved in recent years [20]. Unsupervised video segmentation methods were
proposed in [7, 18], which exploited appearance information and motion cues simultaneously.
In [13, 33], object proposals are introduced as a preprocessing step to catch high-level features
and obtain more robust segmentation results. However, unsupervised methods may be invalid
due to complex situations in different videos. In contrast, supervised methods [19, 28] provide
manually annotated labels for objects in some frames and design the appearance models with
motion cues, for the better segmentation quality. Nevertheless, supervised methods are hard to
be extended due to the need of manual intervention. Therefore, in order to achieve a better
video segmentation performance in an unsupervised manner, video co-segmentation methods
[2, 4, 8–11, 16, 23, 25, 27, 34, 35] were introduced to compensate for the lack of supervision
by exploiting additional information across multiple videos.

The aim of video object co-segmentation is to pursue a better segmentation for each object via
mining the similarity information among different videos. It is also regarded as an extension of
image co-segmentation [22, 24] and image co-saliency [12, 15, 32]. The video co-segmentation
methods in [2, 23] enforced a cooperative constraint with a global appearance model for
common objects. In [9, 10], the constraints of trajectory co-saliency and coherent moving for
the foreground local parts were introduced into video co-segmentation respectively. A multi-
class video co-segmentation method was proposed in [4], which was based on a nonparametric
Bayesian model. This model used a video segmentation prior as well as a global appearance
model that grouped dense image patches to obtain segments, which could potentially yield noisy
results. In [25], a spatiotemporal SIFT flow was designed to generate estimations of common
objects. Then, intra-frame saliency, inter-frame consistency and estimations of common objects
were incorporated into an energy optimization framework to obtain the common object regions.

Recently, the object-based methods were introduced in [8, 16, 29, 34], which discovered the
common objects by mining the consistency information among the segmentation proposals.
Specifically, bounding boxes are used in [29] to initialize a set of easy instances clusters for an
input video, and then an iterative growing process is exploited to detect the harder instances
throughout the entire video for each cluster. However, this method only focuses on segmenting
objects in a single video. The method [16] built a probabilistic graphical model across a set of
videos based on object proposals in each frame. Then an energy function incorporating
appearance, spatial and temporal consistency of primary objects was solved to obtain common
objects. The method in [8] formulated a multi-state selection graph in which each proposal was
a state in each frame node. Object score, region overlapping, intra-video and inter-video
coherence were considered in the graph to optimize the segmentation of different objects
jointly. However, this method suffers from restrictive assumptions that the number of object
classes in each video should be the same. It cannot deal with the situation that the common
object does not appear in some videos. In [34], object proposals were used to form a number of
tracklets, and then each tracklet was treated as a node to construct an undirected graph; inter-
video and intra-video constraints were considered to set an edge connecting each pair of nodes,
and then edges with the similarity lower than a manually set threshold were removed; last, the
multi-class object extraction problem was solved by obtaining the regularized maximum
weight cliques iteratively. However, in [34], a manual setting is needed to indicate the

10354 Multimedia Tools and Applications (2019) 78:10353–10372



similarity of common objects in all videos, and this makes the method hard to be extended to
practical applications and may cause failure in the situation that the common objects have a
large appearance difference among videos.

As an improvement work on [8], in [35], object clusters are used to construct a weighted
graph, which is employed to highlight the common object. In [11], a co-saliency based
segmentation scheme is built based on superpixels and employed to find out the co-salient
object regions among videos. In [27], video co-segmentation is designed by minimizing an
energy function, which incorporates co-saliency term, intra-video appearance term, inter-video
appearance term and spatiotemporal smoothness term. However, since these methods [11, 27,
35] utilize the co-saliency maps to segment the common objects, their common limitation is
incapable of identifying different classes of objects in the video set.

Therefore, in this paper, we propose a novel video co-segmentation method, which aims at
achieving more effective and automatic co-segmentation of multi-class objects. Our main
contribution lies in the following two aspects. First, a novel directed graph is designed to
effectively connect object tracklets via the tracklet-wise co-saliency maps. In [34], objects with
similarity lager than a threshold from different videos will be considered as the common
objects. Different from [34], in our method two salient objects that are in different videos and
point to each other by the directed edges are treated as belonging to the same class. This is an
obvious superiority over [34] since the proposed directed graph can avoid the fine-tuning on the
threshold for the object similarity in [34]. Besides, different from the co-saliency based methods
[11, 27, 35], our tracklet-wise co-saliency maps are used to connect similar object tracklets and
can deal with the segmentation of multi-class objects. Second, we propose to perform video
object co-segmentation via a new pipeline, which first extracts common object tracklets by
solving a maximum clique problem, then generates object-level saliency maps by manifold
ranking [31] and finally exploits GrabCut [21] to obtain the object co-segmentation results.

Different from the method in [29], which focuses on segmenting objects in a single video,
our method aims at co-segmenting objects in multiple videos. In [29], after iterative growing,
the obtained harder instances are used as weak supervision to segment foreground objects in
each video frame. Differently, our method first adopts the obtained tracklets to generate tracklet-
wise co-saliencymaps by combining the initial saliencymaps and tracklet-wise similarity maps,
where the tracklet-wise similarity maps are generated based on similarity between different
tracklets in different videos. Then, we construct the directed graph by connecting tracklets
based on the tracklet-wise co-saliencymaps between different videos, and the maximumweight
clique (MWC) is extracted from the directed graph for the final segmentation.

The rest of this paper is organized as follows. Section 2 details the proposed video co-
segmentation method illustrated in Fig. 1. Experimental results and analysis are presented in
Section 3, and conclusions are given in Section 4.

2 Proposed video co-segmentation method

2.1 Preprocessing

Given a set of videos Vmf gMm¼1, in which each video Vm contains a set of frames Fm;t
� �Nm

t¼1.

We transform each frame Fm, t into the Lab color space, which is more correlated with the
human perception. For each frame Fm, t, each color channel is uniformly quantized into 16 bins
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for generating the color histogram. Then the category independent object proposal algorithm

[6] is used to generate a set of candidate regions as object proposals xm;t;i
� �q

i¼1 for each frame

Fm, t. Let Ha denote the color histogram calculated for region Ra, the color similarity between
any pair of regions, Ra and Rb, is defined as follows:

Sim Ra;Rbð Þ ¼ 1−χ2 Ha;Hb½ � ð1Þ
where χ2[⋅] denotes the chi-square distance between histograms. For the videos shown in Fig.
1(a), the object proposals generated for video frames are shown in Fig. 1 (b).

2.2 Tracklet generation

A number of proposals have been generated for each frame, and each proposal may correspond
to a real object region, a background region, or a region with a part of object and a part of
background. In order to evaluate the likelihood of each proposal belonging to a real object, we
firstly obtain the initial saliency map ISm, t for each frame Fm, t by using the intra saliency map
generation step in [30], which combines spatial saliency, temporal saliency and object prior for
a maximal preservation of salient objects in terms of both appearance and motion. Specifically,
the initial saliency map is defined as follows:

ISm;t pð Þ ¼ SSm;t pð Þ þ STm;t pð Þ� �
⋅OPm;t pð Þ ð2Þ

where p denotes each pixel in the video frame. SSm, t(p) denotes the spatial saliency, which is
computed based on color contrast and spatial sparsity within the frame, and STm, t(p) denotes the
temporal saliency, which is generated based on motion distinctiveness from background and
temporal coherence in a period of consecutive frames. Besides, OPm, t(p) denotes the object prior,
which is calculated based on the observation that salient object regions connect with image borders
less than background regions, and such a prior can effectively highlight salient object regions and
suppress background regions. Then for each proposal xm, t, i, the object score is calculated as follows:

IOS xm;t;i
� � ¼ ∑p∈xm;t;i ISm;t pð Þ

∑p∈Fm;t
ISm;t pð Þ ⋅

∑p∈xm;t;i ISm;t pð Þ
jxm;t;ij ð3Þ

Fig. 1 Overview of the proposed video co-segmentation method. (a) Input videos; (b) object proposals; (c)
object tracklets; (d) tracklet-wise co-saliency maps; (e) graph construction; (f) object-level saliency maps; (g)
object co-segmentation results
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where p denotes each pixel in the video frame,∣xm, t, i∣ denotes the number of pixels in the proposal
xm, t, i. According to Eq. (3), the proposal with a higher object score contains a larger object region
with a smaller background region. Then we track each proposal xm, t, i backward and forward along
the whole video to form the corresponding track Xm, t, i.

For tracking object proposals, a similarity function combining color and location between
any pair of proposals extracted from adjacent frames is defined as follows:

S xm;t;i;xm;u; j
� � ¼ Sim xm;t;i;xm;u; j

� �
⋅
jxm;t;i∩warpu;t xm;u; j

� �j
jxm;t;i∪warpu;t xm;u; j

� �j ð4Þ

where warpu, t(xm, u, j) denotes the warped region from proposal j of frame u by using optical
flow [14] to frame t. For example, based on proposal i in frame u, we can find the most similar
proposal j in frame t + 1 according to Eq. (4); and then based on proposal j, we can also find
the most similar proposal l in frame t + 2. This process will be performed iteratively in
consecutive frames, and it is also performed similarly in the temporally backward direction.
Through this way, we can generate a track Xm, t, i from the whole video for the proposal xm, t, i.
As shown in Fig. 2, two tracking proposals examples are used to generate corresponding
tracks. This process will generate a large number of tracks since each object proposal
corresponds to a track. Most of the generated tracks are overlapping and therefore are
redundant. A non-maximum suppression process is then performed to remove the redundant
tracks for each video. Specifically, we first calculate the object score for each track as follows:

ITS Xm;t;i
� � ¼ ∑x∈Xm;t;i

IOS xð Þ ð5Þ

Based on Eq. (5), the track with the highest score is selected as a reference track XR. Then we
calculate the overlap ratio for all the other tracks Y = {Y1, ..., YNT} with respect to the reference
track XR as follows:

O XR; Y l� � ¼ ∑
t¼1

Nm

∑xm;t;i∈XR;ym;t; j∈Y l jxm;t;i∩ym;t; jj

∑
t¼1

Nm

∑xm;t;i∈XR;ym;t; j∈Y l jxm;t;i∪ym;t; jj
ð6Þ

Fig. 2 Illustration of the track generation. This picture only shows two examples of tracking proposals backward
and forward to generate corresponding tracks. Each line with arrow points to the most similar proposal in the next
frame or previous frame
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Based on Eq. (6), the tracks which have the overlap ratio larger than 0.5 with XR will be
removed. In the remaining track set, we select the track with the second highest score as a
reference track, and then a selection operation as above will be performed again; such a
process will be performed continuously until each of the remaining tracks has been used as the
reference track. Then each remaining track is split into some tracklets to ensure the consistency
of object proposals. Specially, the similarity between two proposals in adjacent frames is used
to determine whether the track should be split between two proposals or not. For each track,
the mean of such similarity measures is calculated, if the similarity between any two proposals
is 1.5 times the standard deviation away from the mean similarity measure, the track is split
between the two proposals in the adjacent frames as shown in Fig. 3. Using the above split

operation, we obtain the tracklets set Χ ¼ Xm;k
� �

m¼1;:::;M ;k¼1;:::;Km
for the whole video set

Vmf gMm¼1, where Km is the number of final tracklets in Vm. The examples of generated tracklets
is shown in Fig. 1(c).

Algorithm 1 Pseudo Code of Similarity Maps Generation

Input: The tracklet 
,m kX for which the similarity maps are calculated; all the other tracklets in 

,
1,..., ; 1,..., n

n k n M k K
X . 

Output: A set of similarity maps 
,

,
1,..., ; 1,..., n

n t
m k n M t N

SM SM for
,m kX .

Begin

Define and initialize the similarity map in each frame:
,

,n,
0,

n t
tkmSM p p F .

Define and initialize the mask in each frame:
,

,n,
1,

n t
tkmMASK p p F .

For 1n to M
For 1 nl to K

Find the tracklet Z which has the highest similarity with 
,m kX :

,

, ,
argmax ,

n l
m k n lX

Z Sim X X .

For 1 nt to N

Obtain the region
,

,

n t
m kCR in frame

,n tF for comparing with 
,m kX as follows:

If
, ,

zn t i

Continue;

Else

, ,

, , , , , ,
, z

n t n t
m k m k n t i n t iCR MASK z Z .

End

Set the pixels’ values in
,

,

n t
m kCR to the similarity between

,

,

n t
m kCR and

,m kX as follows:

,,,

,,,,
, ,

tntntn
m k m k m k m kSM p Sim X CR p CR .

Reset the mask as follows:

,,

,,
0,

tntn
kmkmMASK p p CR .

End

Delete the tracklet Z from tracklet set .

End

For 1 nt to N

Set the pixels’ values in
,

,

n t
m kMASK to the similarity between

,

,

n t
m kMASK and

,m kX as follows:

,,,

,,,,
, , ( 1)

tntntn
kmkmkmkmSM p Sim X MASK p MASK .

End

End

End

2.3 Graph construction

We obtained a lot of tracklets in Section 2.2, and each tracklet represents some kind of object
or background. Video co-segmentation aims at finding the relationship among videos and
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extracting multi-class objects from all videos. For this purpose, we propose a directed graph,
which tries to connect each tracklet belonging to the same class and extract the salient ones as
objects. We use G = (V, E,W) to denote the directed graph, where V is the set of vertices, E is
the set of directed edges. Each vertex vm, k ∈ V represents a tracklet Xm, k, and e = (vm, k, vn, l)
denotes the edge directing from vm, k to vn, l.

Based on the definition of directed graph, we try to connect each tracklet with the best-
matched tracklet obtained from all frames in all videos. Here we make an assumption that each
tracklet Xm, k tends to connect to the best-matched tracklet which contains complete and similar
objects. This means that a tracklet containing a part of object may connect to a tracklet
containing complete and similar objects, and two tracklets containing complete and similar
objects tend to connect with each other. For our purpose, the matching score of one tracklet Xm,

k with respect to another tracklet Xn, l is defined as follows:

FTSm;k X n;l
� � ¼ Sim Xm;k ;Xn;l

� �
⋅ ∑xn;t;i∈X n;l

∑p∈xn;t;i TCS
n;t
m;k pð Þ

∑p∈Fn;t
TCSn;tm;k pð Þ ⋅

∑p∈xn;t;i TCS
n;t
m;k pð Þ

jxn;t;ij

 !( )
ð7Þ

In Eq. (7), the tracklet-level similarity Sim(Xm, k, Xn, l) takes the form of Eq. (1), in which the
two color histograms are calculated based on the pixels of all proposals in Xm, k and Xn, l

respectively. The tracklet-wise co-saliency map of Xm, k with respect to the frame Fn, t is
defined as follows:

TCSn;tm;k pð Þ ¼ SMn;t
m;k pð Þ⋅ISn;t pð Þ ð8Þ

where SMn;t
m;k is the tracklet-wise similarity map of Xm, k with respect to Fn, t. Eq. (8) indicates

that the tracklet-wise co-saliency map is generated by integrating the initial saliency map with
the tracklet-wise similarity map by multiplication operation.

Fig. 4 Illustration of generating the tracklet-wise co-saliency maps. (a) One tracklet; (b) original frames; (c)
initial saliency maps; (d) similarity maps; (e) tracklet-wise co-saliency maps

Fig. 3 Illustration of splitting one remaining track into some tracklets. Splitting situations occur in two positions
(marked with a scissor) in this example, i.e., one is between frame 68 and 69, and another one is between frame
69 and 70
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The tracklet-wise co-saliency map TCSn;tm;k can highlight the regions, which are salient in the

frame Fn, t and similar with the proposals in tracklet Xm, k. As shown in Fig. 4, the initial
saliency maps highlight both objects, i.e., giraffe and elephant, based on appearance and
motion, while the similarity maps of the tracklet corresponding to giraffe can highlight the
regions of giraffe. By combining initial saliency maps with similarity maps, the obtained
tracklet-wise co-saliency maps can better highlight the regions of giraffe, and suppress other
regions irrelevant to the tracklet. It can be observed in Fig. 4 that the similarity map is
important to generate the tracklet-wise co-saliency map. The generation process of similarity
map for each tracklet is described in Algorithm 1.

To intuitively demonstrate the effect of tracklet-wise co-saliency map, a comparison is
shown in Fig. 5. Figure 5(a) shows the connection of two tracklets using Eq. (7) based on
initial saliency map. As shown in Fig. 5(a), since the initial saliency maps highlight the regions
of both the chicken and the turtle, the matching score of ‘chicken1’ with respect to
‘chicken2&turtle’ is larger than that with respect to ‘chicken2’, which results in the wrong
matching. In contrast, as show in Fig. 5(b), since the tracklet-wise co-saliency maps of
‘chicken1’ only highlight the region of chicken, the matching score of ‘chicken1’ with respect
to ‘chicken2’ is larger, which leads to the correct matching.

By using Eqs. (7–8), we can obtain the matching scores of each tracklet Xm, k with respect to
all the other tracklets. The matching scores are exploited to find the best-matched tracklets for
Xm, k. For each tracklet Xm, k, we search in each video frame to find another tracklet Xn, lwith the
matching score FTSm, k(Xn, l) as the highest one. Specifically, in video Vm, in which Xm, k exists,
we only search for Xm, k its best matched tracklet Xn, l with Sim(Xm, k, Xn, l) > 0.9. Then a
connection is added from Xm, k to Xn, l with a directed edge. The latter constraint of similarity
with a high threshold, 0.9, is exploited to discard tracklets in those video frames where similar
objects are unlikely to appear.

Figure 1(e) gives the illustration of graph construction. It can be seen that, based on the
matching score function, a tracklet of ‘chicken1’ directs to the same object class ‘chicken2’ in
video2 instead of ‘chicken2&turtle’ or ‘turtle’. Similarly, a tracklet of ‘chicken2’ directs to the
same object class ‘chicken1’ instead of ‘part of chicken’ or ‘chicken2&turtle’. It indicates that
the tracklets of complete and similar objects direct to each other, and such two objects pointing
to each other by the directed edges can be treated as belonging to the same class.

2.4 Common object extraction

After connecting each tracklet with the best-matched tracklet, we transform the directed graph
G = (V, E,W) into an undirected graph G' = (V, E',W). Based on the assumption that tracklets
connecting to each other contain complete and similar objects. Any pair of tracklets is

Fig. 5 Illustration of difference between using initial saliency map and tracklet-wise co-saliency map in the
directed graph construction. (a) Tracklet matching process using initial saliency maps; (b) tracklet matching
process using tracklet-wise co-saliency maps. The red arrow line in (a) or (b) denotes the best matched tracklet
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connected with an undirected edge if they are connected with each other by two directed edges.
The pairwise connected tracklets in G' belong to a complete subgraph. Thus, we can regard the
extraction of common object tracklets as the problem of Maximum Weight Clique (MWC).
Those tracklets corresponding to the primary objects will have high object scores. We use
Bron-Kerbosch algorithm [1] to find all maximal cliques,Ch(h = 1, ...,H), from G'. The weight
of each clique is defined as follows:

W Chð Þ ¼ ∑Xm;k∈Ch
ITS Xm;k
� � ð9Þ

Then the MWC from all cliques is obtained as follows:

MWC ¼ argmax
Ch

W Chð Þ½ � ð10Þ

The proposals in MWC are regarded as object queries to compute object-level saliency
maps by using the manifold ranking algorithm [31]. Then for each frame Fm, t, we
threshold the object-level saliency map adaptively by using the Otsu’s method [17]. The
obtained background pixels are used to estimate the background Gaussian mixture model

GMMb
m;t. The object Gaussian mixture model GMM f

m is estimated for each video Vm

based on the proposals which belong to Vm and MWC. Finally, the GrabCut [21] based

on GMM f
m and GMMb

m;t is used to obtain the co-segmentation result of primary object

class for each video frame Fm, t. For the object extraction of the second class, we set the
pixels of the extracted primary object regions in the initial saliency maps to zero. Then we
update the graph by recalculating the object scores of proposals and tracklets by using Eq.
(3) and (5) as well as the weights of cliques by using Eq. (9). The objects of the second
class can be extracted as a new MWC based on Eq. (10). The above process can be
performed multiple times in order to extract multiple classes of objects from the video set.
Examples of the final co-segmentation result are shown in Fig. 1(g), in which multi-class
objects are represented by using different colors.

3 Experimental results

We performed experiments on two public video datasets MOViCS [4] and Safari [34]. The
experimental settings, objective and subjective evaluations including comparisons with two
state-of-the-art video co-segmentation methods and video segmentation method on MOViCS
and Safari are presented in Section 3.1, Section 3.2 and Section 3.3, respectively. The
computation issue of video co-segmentation methods is discussed in Section 3.4.

3.1 Experiments on MOViCS dataset

The proposed video co-segmentation method is evaluated on the public video dataset
MOViCS [4], which contains a total of 11 videos grouped into 4 video sets. Each video set
contains one or two object classes. Originally, the manually annotated ground truths are
provided for only 5 frames in each video. For a comprehensive comparison, we extended
the ground truths by uniformly sampling 20 frames in each video and manually annotated the
pixel-level ground truths of all objects in these video frames. The proposed method is
compared with the two state-of-the-art video co-segmentation methods including MVC [4]
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and RMWC [34], which can extract multi-class objects. We tested both MVC [4] and RMWC
[34] with their publicly available codes. For RMWC [34], we used the best thresholds as
suggested in [34] for the four video sets, and for MVC [4], we used the default parameter
setting in the code.

Fig. 6 Video co-segmentation results on the MOViCS dataset. From left to right: original video frames, ground
truths, co-segmentation results generated using the proposed method, RMWC [34] and MVC [4], respectively.
From the 2nd to the 4th column, red regions correspond to the objects of the primary class and green regions
correspond to the objects of the second class
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The multi-class object co-segmentation results generated using our method and the other
two methods are shown in Fig. 6 for an intuitive comparison. It can be observed that the results
of MVC cannot provide a distinctive segmentation of real objects. Meanwhile, MVC tends to
generate results which break one object into a number of fragments. RMWC fails to segment
the common object into one class in the video set ‘Tiger’. Note that RMWC uses the manually
set thresholds for similarity measures between common objects. This may result in errors when
the common objects show a larger difference on appearance. Compared with the other two
methods, our method can correctly segment each class of object and can obtain more complete
segmentation results by using the directed graph, which avoids the manually parameter setting
for similarity measures between common objects.

Fig. 7 shows the effectiveness of our method in dealing with the absence of target objects in
some frames or the whole video. Fig. 7(a) shows the appearance, occlusion and disappearance
of lion and zebra in some frames, and Fig. 7(b) shows the absence of lion in the whole video.
The segmentation results demonstrate that our method can deal with the situations of object
appearance and disappearance in some frames or in the whole video.

To objectively evaluate the video co-segmentation performance, following the setup in [4],
we use the intersection-over-union metric to quantify the results as follows:

M S;Gð Þ ¼ S∩G
S∪G

ð11Þ

Fig. 7 Experimental results on the video set ‘Zebra&lion’ with two situations: (a) the appearance, occlusion and
disappearance of the lion and the zebra in some frames; (b) the absence of the lion in the whole video

Table 1 Quantitative evaluation on the MOViCS dataset

Video Set MVC RMWC Ours

Chicken&turtle 0.622 0.785 0.837
Zebra&lion 0.454 0.575 0.677
Giraffe&elephant 0.553 0.454 0.404
Tiger 0.243 0.361 0.462
Average 0.468 0.544 0.595
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Fig. 8 Video co-segmentation results on the Safari dataset. From left to right: original video frames, ground
truths, co-segmentation results generated using the proposed method, RMWC [34] and MVC [4], respectively.
From the 2nd to the 4th column, different colors indicate different object classes
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where S is a set of segments and G is the ground truth. The co-segmentation score of one
object class in the video set is defined as follows:

Score j ¼ max
Si

M Si;Gj
� �� � ð12Þ

where Si denotes all segments in the object class i, and Gj is the ground truth for the object
class j. The final co-segmentation score for the video set is defined as the average score on all
object classes as follows:

Score ¼ 1

C
∑ jScore j ð13Þ

Table 2 Quantitative evaluation on the Safari dataset

Video Set MVC RMWC Ours

Buffalo&lion 0.483 0.399 0.574
Elephant&giraffe&sheep&lion 0.195 0.151 0.481
Lion&buffalo 0.597 0.711 0.731
Sheep&elephant 0.120 0.090 0.326
Average 0.349 0.338 0.528

Fig. 9 Comparison between our method and SAGS [26] on the MOViCS dataset. For each video, from left to
right: original video frames, ground truths, segmentation results generated using the proposed method and SAGS,
respectively. From the 2nd to the 3th column, different colors indicate different object classes
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where C is the number of object classes in the ground truth. Table 1 shows the quanti-
tative comparison of our method with the other two methods. It can be seen that our
method outperforms the other two methods in 3 out of 4 video sets. The only video set on
which our method has a lower score is ‘Giraffe&elephant’ because the segments of
giraffe are not complete enough. On average, our method achieves the best performance

Fig. 10 Comparison between our method and SAGS [26] on the Safari dataset. For each video, from left to right:
original video frames, ground truths, segmentation results generated using the proposed method and SAGS,
respectively. From the 2nd to the 3th column, different colors indicate different object classes

Table 3 Quantitative comparison between our method and SAGS [26] on the MOViCS dataset

Video Name (Object) SAGS Ours

chickenNew (chicken) 0.725 0.841
chicken_on_turtle (chicken) 0.355 0.863
chicken_on_turtle (turtle) 0.570 0.804
elephant_giraffe_all1 (giraffe) 0.407 0.493
elephant_giraffe_all2 (elephant) 0.300 0.433
elephant_giraffe_all2 (giraffe) 0.295 0.426
lion_zebra2 (lion) 0.415 0.813
lion_zebra2 (zebra) 0.312 0.631
lion_zebra_all1 (lion) 0.556 0.773
lion_zebra_all1 (zebra) 0.313 0.792
lion_zebra_all2 (lion) 0.357 0.790
lion_zebra_all2 (zebra) 0.385 0.246
zebra_grass (zebra) 0.473 0.575
tiger1_all8 (tiger) 0.361 0.403
tiger1_all9 (tiger) 0.163 0.616
tiger1_all10 (tiger) 0.044 0.503
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on the whole dataset, and this demonstrates the advantage of our directed graph based
video co-segmentation.

3.2 Experiments on safari dataset

We also evaluated the proposed method on another dataset, i.e. Safari [34], which contains 9
videos with 5 classes of animals. The proposed method is also compared with the other two
state-of-the-art methods, i.e. MVC [4] and RMWC [34]. For both MVC and RMWC, we used
the default parameter settings in the codes provided by their authors.

We show the visual comparisons between our method and the other two methods in Fig. 8.
It can be seen that for different classes of objects with dissimilar appearances, such as the
elephants in the video set ‘Elephant&sheep&giraffe&lion’, our method can achieve the better
segmentation result than the other two methods. Our method does not perform well on the
video set ‘Sheep&elephant’, in which some background regions show very similar colors with
the sheep and elephant, while the other two methods also do not perform well on this video set.
Table 2 shows the quantitative comparison of our method with the other two methods. We can
see that our method consistently outperforms the other two methods on all the four video sets,
due to the effectiveness and superiority of our directed graph based video co-segmentation
method.

3.3 Comparison with the common video segmentation method

Following the settings in the reference [34], we compared our method with the state-of-the-art
video segmentation method, SAGS [26], which aims at segmenting objects in a single video.

Table 4 Quantitative Comparison between our method and SAGS [26] on the Safari dataset

Video Name (Object) SAGS Ours

buffalo (buffalo) 0.795 0.847
buffalo_lion (buffalo) 0.739 0.804
buffalo_lion (lion) 0.021 0.316
elephant (elephant) 0.813 0.897
elephant_giraffe (elephant) 0.601 0.665
elephant_giraffe (giraffe) 0.007 0.418
elephant_lion (elephant) 0.339 0.860
elephant_lion (lion) 0.159 0.442
elephant_sheep (elephant) 0.394 0.571
elephant_sheep (sheep) 0.175 0.195
giraffe (giraffe) 0.393 0.595
lion (lion) 0.813 0.883
sheep (sheep) 0.303 0.480

Table 5 Comparison of average processing time per frame taken by different video co-segmentation methods

Method MVC RMWC Ours

Time(second) 15.2 116 61.93
Code Matlab Matlab Matlab
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We performed segmentations on both datasets, i.e. MOViCS and Safari, and some segmenta-
tion results are shown in Figs. 9 and 10, respectively, for a visual comparison. It can be seen
that our method can identify multi-class objects by incorporating the information originated
from other videos, such as the chicken and the turtle in the video ‘chicken_on_turtle’.
Differently, due that both the chicken and the turtle are moving objects in this video, SAGS
treats them as an entire object and segments them together. Besides, in some low-contrast
videos, such as ‘tiger1_all8’, ‘tiger1_all9’ and ‘tiger1_all10’, SAGS fails to segment the tigers
in these videos, but our method is able to segment the tigers by incorporating the information
of these three videos simultaneously. Besides, we adopted Eq. (13) to evaluate the segmenta-
tion quality of the segmentation results generated using our method and SAGS, respectively,
for each object class in each video, and the quantitative comparisons on the MOViCS dataset
and the Safari dataset are shown in Tables 3 and 4, respectively. It can be seen that our method
outperforms SAGS on most of the videos, and this clearly demonstrates the effectiveness of
our method.

3.4 Computation cost

We analyze the computation cost of all video co-segmentation methods in this subsection. All
experiments are performed on a PC with Intel Core i7–3770 3.4GHz CPU and 16GB RAM.
Table 5 reports the average processing time per frame of each method on videos with a
resolution of 640 × 360 in MOViCS. The average processing time per frame taken by the
MATLAB implementation of our method is 61.93 s. It can be seen from Table 5 that our
method has a higher computation cost than MVC. The reason behind this is that our method
employs the object proposal generation algorithm which takes lots of time, while the MVC
uses the superpixels for co-segmentation. However, our method has a lower computation cost
than RMWC.

Therefore, in order to make our method more practical for applications with runtime
requirements, the computational efficiency of the object proposal generation algorithm, which
is the bottleneck of runtime, should be elevated with the highest priority. With the GPU-
accelerated implementation of the object proposal generation algorithm and an optimized
C/C++ implementation of other components in our method, we believe that the computation
efficiency of our method can be substantially accelerated.

4 Conclusion

This paper proposes a novel video co-segmentation method, which enables an effec-
tive and automatic co-segmentation of multi-class objects in a set of videos via the
proposed directed graph and a new pipeline for segmentation. Specifically, a novel
directed graph is first constructed to connect similar object tracklets, which are
generated by object proposals. Then, tracklet-wise co-saliency maps are generated to
make the matching score more correct and the video co-segmentation is treated as the
problem of MWC. Specifically, based on the extracted MWC, object-level saliency
maps are generated by manifold ranking and the GrabCut is further exploited to
obtain the final co-segmentation results. Experimental results show that the proposed
method consistently outperforms the state-of-the-art video co-segmentation methods on
both datasets.

10368 Multimedia Tools and Applications (2019) 78:10353–10372



Acknowledgements This work was supported by the National Natural Science Foundation of China under
Grant No. 61471230, and by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai
Institutions of Higher Learning.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an undirected graph. Commun ACM
16(9):575–577

2. Chen DJ, Chen HT, Chang LW (2012) Video object cosegmentation. In Proc. of ACM International
Conference on Multimedia 805–808

3. Cheng MM, Mitra NJ, Huang X, Hu SM (2014) SalientShape: group saliency in image collections. Vis
Comput 30(4):443–453

4. Chiu WC, Fritz M (2013) Multi-class video co-segmentation with a generative multi-video model. In: Proc.
of IEEE Conference on Computer Vision Pattern Recognition 321–328

5. Du H, Liu Z, Jiang J, Shen L (2013) Stretchability-aware block scaling for image retargeting. J Vis Commun
Image Represent 24(4):499–508

6. Endres I, Hoiem D (2010) Category independent object proposals. In: Proc. of European Conference on
Computer Vision 575–588

7. Faktor A, Irani M (2014) Video segmentation by non-local consensus voting. In: Proc. of British Machine
Vision Conference, article 8

8. Fu H, Xu D, Zhang B, Lin S, Ward RK (2015) Object-based multiple foreground video co-segmentation via
multi-state selection graph. IEEE Trans Image Process 24(11):3415–3424

9. Guo J, Li Z, Cheong LF, Zhou SZ (2013) Video co-segmentation for meaningful action extraction. In: Proc.
of IEEE International Conference on Computer Vision 2232–2239

10. Guo J, Cheong LF, Tan RT, Zhou SZ (2014) Consistent foreground co-segmentation. In Proc. of Asian
Conference on Computer Vision 241–257

11. Huang G, Pun CM, Lin C (2017) Unsupervised video co-segmentation based on superpixel co-saliency and
region merging. Multimed Tools Appl 76(10):12941–12964

12. Jacobs D, Goldman D, Shechtman E (2010) Cosaliency: Where people look when comparing images. In:
Proc. of ACM symposium on User interface software and technology 219–228

13. Lee YJ, Kim J, Grauman K (2011) Key-segments for video object segmentation. In: Proc. of IEEE
International Conference on Computer Vision 1995–2002

14. Liu C (2009) Beyond pixels: Exploring new representations and applications for motion analysis. Ph.D.
Dissertation, Massachusetts Inst. Technol., Cambridge

15. Liu Z, Zou W, Li L, Shen L, Le Meur O (2014) Co-saliency detection based on hierarchical segmentation.
IEEE Sign Proc Lett 21(1):88–92

16. Lou Z, Gevers T (2014) Extracting primary objects by video co-segmentation. IEEE Trans Multimed 16(8):
2110–2117

17. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man
Cyber 9(1):62–66

18. Papazoglou A, Ferrari V (2013) Fast object segmentation in unconstrained video. In: Proc. of IEEE
International Conference on Computer Vision 1777–1784

19. Perazzi F, Wang O, Gross M, Sorkine-Hornung A (2015) Fully connected object proposals for video
segmentation. In: Proc. of IEEE International Conference on Computer Vision 3227–3234

20. Perazzi F, Pont-Tuset J, McWilliams B, Van Gool L, Gross M, Sorkine-Hornung A (2016) A benchmark
dataset and evaluation methodology for video object segmentation. In: Proc. of IEEE Conference on
Computer Vision Pattern Recognition 724–732

21. Rother C, Kolmogorov V, Blake A (2004) Grabcut: interactive foreground extraction using iterated graph
cuts. ACM Trans Graph 23(3):309–314

22. Rother C, Minka T, Kolmogorov V, Blake A (2006) Cosegmentation of image pairs by histogram matching-
incorporating a global constraint into mrfs. In: Proc. of IEEE Conference on Computer Vision Pattern
Recognition 993–1000

23. Rubio JC, Serrat J, López A (2012) Video co-segmentation. In Proc. of Asian Conference on Computer
Vision 13–24

Multimedia Tools and Applications (2019) 78:10353–10372 10369



24. Vicente S, Rother C, Kolmogorov V (2011) Object cosegmentation. In: Proc. of IEEE Conference on
Computer Vision Pattern Recognition 2217–2224

25. Wang W, Shen J, Li X, Porikli F (2015) Robust video object cosegmentation. IEEE Trans Image Process
24(10):3137–3148

26. Wang W, Shen J, Porikli F (2015) Saliency-aware geodesic video object segmentation. In: Proc. of IEEE
Conference on Computer Vision Pattern Recognition 3395–3402

27. Wang W, Shen J, Sun H, Shao L (2017) ViCoS2: Video co-saliency guided co-segmentation. IEEE Trans.
Circuits Syst. Video Technol. doi: https://doi.org/10.1109/TCSVT.2017.2701279

28. Wen L, Du D, Lei Z, Li SZ, Yang MH (2015) JOTS: Joint online tracking and segmentation. In: Proc. of
IEEE Conference on Computer Vision Pattern Recognition 2226–2234

29. Xiao F, Lee YJ (2016) Track and segment: An iterative unsupervised approach for video object proposals.
In: Proc. of IEEE Conference on Computer Vision Pattern Recognition 933–942

30. Y. Xie, L. Ye, Z. Liu, and X. Zhou (2016) Video co-saliency detection. In: Proc. of International Conference
on Digital Image Processing, article 100335G

31. Xu B, Bu J, Chen C, Cai D, He X, Liu W, Luo J (2011) Efficient manifold ranking for image retrieval. In:
Proc. of International ACM SIGIR Conference on Research and Development in Information Retrieval
525–534

32. Ye L, Liu Z, Li J, Zhao W, Shen L (2015) Co-saliency detection via co-salient object discovery and
recovery. IEEE Sign Proc Lett 22(11):2073–2077

33. Zhang D, Javed O, Shah M (2013) Video object segmentation through spatially accurate and temporally
dense extraction of primary object regions. In: Proc. of IEEE Conference on Computer Vision Pattern
Recognition 628–635

34. Zhang D, Javed O, Shah M (2014) Video object co-segmentation by regulated maximum weight cliques. In:
Proc. of European Conference on Computer Vision 551–566

35. Zhang J, Li K, TaoW (2016) Multivideo object cosegmentation for irrelevant frames involved videos. IEEE
Sign Proc Lett 23(6):785–789

Yufeng Xie received the B.E. degree from China Jiliang University, Hangzhou, China, in 2014, and the M.E.
degree from Shanghai University, Shanghai, China, in 2017. His research interests include video co-saliency
models and video object co-segmentation methods.

10370 Multimedia Tools and Applications (2019) 78:10353–10372

https://doi.org/10.1109/TCSVT.2017.2701279


Zhi Liu received the B.E. and M.E. degrees from Tianjin University, Tianjin, China, and the Ph.D. degree from
Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai, China, in 1999,
2002, and 2005, respectively. He is currently a Professor with the School of Communication and Information
Engineering, Shanghai University, Shanghai, China. From Aug. 2012 to Aug. 2014, he was a Visiting Researcher
with the SIROCCO Team, IRISA/INRIA-Rennes, France, with the support by EU FP7 Marie Curie Actions. He
has published more than 150 refereed technical papers in international journals and conferences. His research
interests include image/video processing, machine learning, computer vision and multimedia communication. He
was a TPCmember/session chair in ICIP 2017, PCM 2016, VCIP 2016, ICME 2014, WIAMIS 2013, etc. He co-
organized special sessions on visual attention, saliency models, and applications at WIAMIS 2013 and ICME
2014. He is an area editor of Signal Processing: Image Communication and served as a guest editor for the
special issue on Recent Advances in Saliency Models, Applications and Evaluations in Signal Processing: Image
Communication. He is a senior member of IEEE.

Xiaofei Zhou received the B.E. degree from Anhui Polytechnic University, Wuhu, China, in 2012, the M.E.
degree from Shanghai University, Shanghai, China, in 2015, and the Ph.D. degree from Shanghai University,
Shanghai, China, in 2018. He is currently an Assistant Professor with the Institute of Information and Control,
Hangzhou Dianzi University, Hangzhou, China. His research interests include image processing, pattern
recognition and computer vision.

Multimedia Tools and Applications (2019) 78:10353–10372 10371



Wei Liu received the B.E. degree from the Department of Automation, Xi’an Jiao Tong University, in 2012. He
is currently pursuing the Ph.D. degree with the Institute of Image Processing and Pattern Recognition, Shanghai
Jiao Tong University, Shanghai, China. His current research interests include image processing and video
processing.

Xuemei Zou received the B.E. degree from Shanghai University of Science and Technology, Shanghai, China, in
1982, and now is an Associate Professor at the School of Communication and Information Engineering,
Shanghai University, Shanghai, China. Prior to join Shanghai University in 1994, she worked at Optical Fiber
Research Institute, Shanghai University of Science and Technology, Shanghai, China, from 1982 to 1990, and
then at the School of Communication and Information Engineering, Shanghai University of Technology,
Shanghai, China, from 1990 to 1994. Her research interests including image processing and video compression.

10372 Multimedia Tools and Applications (2019) 78:10353–10372


	Video co-segmentation based on directed graph
	Abstract
	Introduction
	Proposed video co-segmentation method
	Preprocessing
	Tracklet generation
	Graph construction
	Common object extraction

	Experimental results
	Experiments on MOViCS dataset
	Experiments on safari dataset
	Comparison with the common video segmentation method
	Computation cost

	Conclusion
	References


