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Abstract
This paper presents a novel image defogging algorithm using fractional-order anisotropic
diffusion equation. The proposed algorithm uses the airlight map extracted from the foggy
model as the initial image in the anisotropic diffusion process. The iterative diffusion pro-
cess improves this airlight map. The anisotropic diffusion process is generalized to the order
of any real number between [1, 2) using the Riemann-Liouville definition of the fractional
order derivatives. The formulation of the iterative process is carried out in the spatial domain
to have a simple and computationally efficient implementation. Simulation results validate
that the proposed algorithm is outperforming over few of the existing algorithms. The com-
parison study is carried out using different metrics like contrast gain, colorfulness index,
contrast-to-noise ratio and visible edges ratio.

Keywords Airlight map · Anisotropic diffusion · Fractional-order partial derivative ·
Image defogging

1 Introduction

Digital images captured in foggy conditions suffer from poor visibility, colors artifacts and
low contrast due to the absorption and scattering of the atmospheric particles. One of the
main reasons for poor visibility is the particles/water droplets in the atmosphere. These
droplets reflect light which results in degradation of an image of the scene. Poor visibility
is an annoying problem as it adversely affects many computer vision applications such as
object detection [10, 15], image/video retrieval [9, 13, 14], and remote sensing [3, 7]. In this
context, restoration of the digital images degraded due to fog will be of great importance in
computer vision.

In this study, we solve this problem using a heat diffusion-based approach. In litera-
ture, several models were proposed using diffusion partial differential equation (PDE) for
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denoising of digital images [20, 28, 32]. In all these models, the noise is considered as the
discontinuities in the depth data because of image intensity as functions of the relative depth
of the object from the camera. Therefore, anisotropic diffusion acts as smooth filtering on
the noisy images by preserving the edge details. The factors responsible for the degradation
of an image in the presence of fog are the airlight and attenuation. The light reflected from
an object is partially absorbed by the particles in the atmosphere and gets attenuated and thus
reduces the contrast of the image. This process is known as attenuation. The scattered light
beams play the role of an infinite number of tiny light sources floating in the atmosphere.
These particles are responsible for unwanted whiteness observed in the scene, and hence,
the airlight is mainly because of these light sources. In the existing literature, an airlight
map is also considered a function of the distance of the scene from the camera [19]. In an
outdoor environment, the depths are varied for different objects, and thus the airlight should
be different for all these objects in the scene. The airlight map must be smooth except at
the edges of the scene. Therefore, a similar type of anisotropic diffusion model can be used
to correct airlight map degraded by the fog. Moreover, the process of removing fog from
a single image is a challenging task due to its ill-posed nature. Before applying restoration
process, its model must be analyzed for the well-posedness.

In recent past, several algorithms were given for restoring the fog affected images. The
first category of models was based on the simple image enhancement techniques to restore
the foggy images [16]. The enhancement achieved by such algorithms were found limited.
Moreover, it required multiple images of the same scene under the same weather conditions.
The second category of the algorithms was based on the use of polarization filters to remove
the fog effect from the images [22, 23]. In this class of methods, the depth of the scene was
restored using the polarization property of scattered light from multiple images captured
with varying degrees of polarization. In [19], the algorithm makes use of the multiple ref-
erence images of the scene in bright weather condition. Therefore, such a method needs a
particular imaging sensor to build a database of reference images under the same weather
conditions. It was one of the drawbacks of these methods for not befitting in real-time
applications.

The methods related to single image fog removal depend on the characteristics and tex-
tural information of the original (fog-free) image. In [25], the algorithm maximizes the
local contrast of the image using Markov-Random-Field (MRF) model. The results were
found impressive except few blocking artifacts around the depth discontinuities (edges).
The algorithm proposed in [5] used Independent Component Analysis (ICA). The results
obtained with this ICA-based approach were found satisfactory. However, an issue related
to the computational complexity was noticed. In the third category of the algorithms, Dark-
Channel-Prior(DCP) was used to address the defogging of images. Mainly, DCP depends
on the statistics of the images of an outdoor scene [8]. Such images use to have at least
one color channel in which pixels have intensities that are very low or close to zero and
termed them dark-pixels. In the presence of fog, the intensities of these dark pixels rise
due to the airlight artifact. Therefore correction of DCP results in the restoration of the fog
affected image. Several models were proposed by making use of DCP-based restoration of
the airlight map those include [6, 29] etc. The paper [24] lists a good review of the existing
fog removal algorithms. Recently, few algorithms use learnable filters to design governing
PDEs and associated boundary conditions [2, 17, 18]. These approaches are data-driven and
contain very few manually chosen parameters.

In this study, the proposed algorithm corrects the airlight map by using a fractional order
anisotropic diffusion (Fr-AD) process. The Fr-AD algorithm is a generalization of clas-
sical anisotropic diffusion (AD) [27]. Also, it is a pseudo-PDE-based algorithm between
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Perona-Malik model and fourth-order anisotropic diffusion equations [32]. However, use of
fractional anisotropic diffusion is made first time to the best of our knowledge for restoring
foggy images. The computations of the fractional derivatives are carried out in the spatial
domain instead of the existing Fourier domain-based methods [11]. Additionally, very few
parameters are selected manually in the proposed algorithm. These manually tuned parame-
ters do not depend on the image under restoration and remain fixed. The iterative algorithm
takes the initial airlight map as the input, and then subsequent iterations derive towards the
refined airlight map. The convergence analysis is carried out of the numerical scheme. The
presented numerical results validate the better performance of the Fr-AD over some of the
existing algorithms.

2 Preliminaries

2.1 Fractional order derivative

Let f (z) be an analytic function in a simple connected region of the complex z- plane
C containing origin. The fractional integral Iα

z f (z) of an order α of the function f (z) is
defined in [30]. The generalization of the fractional integral can be determined by taking
into account the natural n ∈ N and real μ in the n-fold integral, and then operating the
Cauchy’s formula for iterated kernel’s n − 1 times. With this process, the fractional integral
operator is given by

Iα,μ
z f (z) = (μ + 1)1−α

�(α)

∫ z

0
(zμ+1 − ξμ+1)α−1ξμf (ξ)dξ . (1)

where α,μ( �= −1) ∈ R.
When μ = 0, we get the classic Riemann-Liouville fractional integral. Further, we will

define Riemann-Liouville fractional derivatives using this fractional integral.
The generalized differential operator of order α resembling to the generalized fractional

integral is defined in the subsequent manner:

Dα,μ
z f (z) = (μ + 1)α

�(1 − α)

d

dz

∫ z

0

ξμ

(zμ+1 − ξμ+1)α
f (ξ)dξ, 0 ≤ α < 1 (2)

Dα
z f (z) = d

dz

(
z−α

�(1 − α)
∗ f (z)

)
= d

dz

(
z−α

�(1 − α)

)
∗ f (z) (3)

The partial fractional derivatives with respect to x and y variables are calculated by

convoluting the initial airlight map with fixed small size matrices

[ −1 1
−1 1

]
and

[ −1 −1
1 1

]

respectively weighted by using α and a constant viz. 0.25. The derivatives keep refining as
per the refinement in airlight map with increasing iterations. The convolution method we
followed returns the central part of the convolution that is the same size of the airlight map.
Figure 1 illustrates the norm of the gradient vector for different fractional orders.

2.2 Anisotropic diffusion

Images consist of structures with a large collection of scales. Many times it is not known
prior that which scale is suitable for the described information. Therefore, it is needed to
model the image at different scales. In 1990, Perona and Malik introduced anisotropic diffu-
sion [20] which simulates the process that generates scale space. Anisotropic diffusion is a
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Fig. 1 Norm of derivatives in x and y direction on initial airlight map of Tomb image for: (b) α = 1; (c)
α = 1.4; (d) α = 1.8

generalization of the linear diffusion (heat equation). Perona-Malik model diffuses the intra-
region prohibiting cross region boundaries in the images. Mathematically, linear anisotropic
diffusion (in divergence form) is given as the following elliptic PDE

∂tu = div(D∇u) (4)

where, div is the divergence operator, and ∇ is the gradient operator. Here, D is a collection
of symmetric and positive definite diffusion tensors. The above equation is complimented
with an initial condition as u(x, 0) = u0, and the Neumann’s type boundary conditions
[28]. If we consider D = Id , the d-dimensional identity diffusion tensor, then the above
equation is converted into standard heat equation. The standard heat equation is appropriate
to remove the artifacts like noise and fog from the image. However, it blurs the sharp details
of the output image.

In the nonlinear anisotropic diffusion, the diffusion tensor D is defined in terms of the
filtered image u. Mathematically, the equation for nonlinear anisotropic diffusion is given as

∂tu = div(Du∇u)

together with again an initial and Neumann’s type boundary conditions. In [20], following
tensors were used to define the above nonlinear anisotropic diffusion equation

Du(x, t) = cu(x, t)Id with cu(x, t) = 1√
1 + ‖∇u(x, t)‖2λ−2

where λ > 0 is a user specified constant. The above equation reveals that the filter-
ing (smooth) will act with high impact in the uniform region, however it will be having
weak impact when the gradient ∇u is having higher response, i.e. near and on the edges
(boundaries of the uniform regions). This avoids the presence of blurry edges in the output
image.

3 Proposed algorithm

3.1 Model description

An illustration of the proposed algorithm is given in Fig. 2. In the existing literature, several
models have been proposed for the image with foggy information [19, 22, 26]. However,
the most general model to describe an image degraded with fog effect can be expressed as

I (x, y) = I0(x, y)e−kd(x,y) + I∞(1 − e−kd(x,y)) (5)
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Fig. 2 An illustration of the proposed algorithm

where I0(x, y) is the original image (intensity at pixel location (x, y) in the absence of fog),
k is the coefficient of the scattering related to the atmosphere and d(x, y) is the distance of
the scene from camera. The array I∞ is atmospheric light or sky intensity and I (x, y) is the
observed foggy image of the scene. Here, e−kd(x,y) is often represented as transmission map
and is given by t (x, y) = e−kd(x,y). In clear weather conditions, we have k ≈ 0. However, k
becomes non-negligible in foggy images. In (5), the first term I0(x, y)e−kd(x,y) is referred
as direct attenuation and second term I∞(1 − e−kd(x,y)) is the airlight map. The decay of
the scene radiance in the medium is occurred due to the presence of this direct attenuation
term. Generally, scene color is changed due to the diversion in the airlight map. Attenuation
is an decreasing function at an exponential rate. This reduces the contrast of the scene. The
airlight map A(x, y) produces whiteness in the scene. The (5) can be modified as

I (x, y) = I0(x, y)

(
1 − A(x, y)

I∞

)
+ A(x, y) (6)

Normalization is performed on foggy image for simulation. As effect of the fog is pure
white so the sky intensity may be taken as 1 throughout the array, and hence, (6) becomes

I (x, y) = I0(x, y)(1 − A(x, y)) + A(x, y) (7)

To restore I0(x, y) from its degraded version I (x, y), we need to estimate A(x, y) accu-
rately. The airlight map A(x, y) is a positive scalar map. Generally, outdoor images are
colorful(contains trees, purple red plants and blue water), hence, the assumption of using
DCP is true in case of natural images.

3.2 Implementation

In general, smoothing is considered as one of the impressive technique that has been used
in several applications related to restoration and enhancement of images. Here, our objec-
tive is to find a more refined/enhanced airlight map Â(x, y), so that the foggy image can
be restored using this in the (7). If we perform traditional smoothing filtering approach
on A(x, y) in order to get Â(x, y), it can contaminate the image features like lines, edges
and textures from this initial airlight map. In order to evade the damage, smoothing has to
be robustly controlled by the extent of smoothing and direction of smoothing. Anisotropic
diffusion theory proposed by Perona and Malik [20] is a classical example of adaptive
smoothing, where smoothing process is defined by PDEs. However, in this paper we gener-
alize it to fractional order as the novelty. To do this, fractional order derivatives are included
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instead of general integer order derivatives. Let c be the diffusion constant and t denotes the
time, the anisotropic diffusion is presented as

∂tA = div(c(∇A)∇A) (8)

The (8) is associated with the energy functional:

E(A) =
∫

�

f (|∇A|)d� (9)

where � stands for image support and f (.) ≥ 0 is an increasing function associated with
the diffusion coefficient defined as

c(s2) = f ′(s)
s2

(10)

Anisotropic diffusion is presented as an energy consuming function that explore for the
energy functional minimum. We consider the following functional defined in the space of
continuous images over a support of �

E(A) =
∫

�

f (|DαA|)d� (11)

where Dα is the fractional derivative operator defined as DαA = (Dα
xA,Dα

yA) and |DαA| =√
(Dα

x )2 + (Dα
y )2. We can compute the Euler-Lagrange equation for this minimization

problem as follows:
Take any test function η ∈ C∞(�). Define

	(a) =
∫

�

f (|DαA + aDαη|)dxdy (12)

We obtain

	′(0) = d

da

∫
�

f (|DαA + aDαη|)dxdy |a=0

=
∫

�

(
f ′(|DαA|) Dα

xA

|DαA|D
α
xη

+f ′(|DαA|) Dα
yA

|DαA|D
α
yη

)
dxdy

=
∫

�

((Dα
x )∗(c(|DαA|2)Dα

xA)

+(Dα
y )∗(c(|DαA|2)Dα

yA))ηdxdy (13)

for all η ∈ C∞(�), where (Dα
x )∗ and (Dα

y )∗ are adjoint of Dα
x and Dα

y , respectively. Hence,
the Euler-Lagrange equation becomes

(Dα
x )∗(c(|DαA|2)Dα

xA) + (Dα
y )∗(c(|DαA|2)Dα

yA) = 0 (14)

The Euler-Lagrange equation can be solved using the following gradient descent method:

∂tA = −(Dα
x )∗(c(|DαA|2)Dα

xA) − (Dα
y )∗(c(|DαA|2)Dα

yA) (15)

taking initial condition as the observed image A(x, y). The solution is reached as t → ∞
but the growth time can be stopped prior to attain the optimal trade off between fog removal
and edge preservation.

When α = 1, the (14) is absolutely the Perona-Malik (8); when α = 2 (14) is absolutely
the fourth order anisotropic diffusion in [32]; when 1 ≤ α ≤ 2, (14) leads to a “natural
interpolation” between them.
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3.3 Numerical algorithm

For practical applications, firstly assume that initial discrete image A is of m × m pixels. It
has been sampled from its continuous version at uniformly spaced points starting at (0, 0),
i.e. A(x, y) = A(x
x, y
y) for x, y = 0, ...,m − 1. The grid size 
x and 
y is chosen as

x,
y = 1.

Let K1 and K2 be purely diagonal operators in the spatial domain, defined by

K1 = F−1(diag
((
1 − exp(−j2π(ω1)/m))α × exp(jπαω1/m

)))

K2 = F−1(diag
((
1 − exp(−j2π(ω2)/m))α × exp(jπαω2/m

)))
where,

K∗
1 = F−1(diag

(
conj

((
1 − exp(−j2π(ω1)/m))α × exp(jπαω1/m

))))
, (16)

and

K∗
2 = F−1(diag

(
conj

((
1 − exp(−j2π(ω2)/m))α × exp(jπαω2/m

))))
. (17)

We compute the evolution of the initial image A , along flow (14) work in the spatial
domain only. Moreover, we define

hxn = c
(
|DαAn|2

)
Dα

xAn (18)

and

hyn = c
(
|DαAn|2

)
Dα

yAn (19)

To summarize, our fog removal approach is done in following steps.

3.4 Analysis

The iterative scheme defined in the previous section needs to be converged for getting an
enhanced airlight map u = Â(x, y). In this subsection, we briefly describe the convergence
analysis of the scheme. The scheme defined in the Algorithm 1 converges for any choice of
the initial image, if the energy function f (|∇αu|) defined in (11) is smooth and convex [21].
Alternatively, there exists a unique solution of the diffusion PDE given in (14) if energy
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function defined in (11) is smooth and convex. From [31],the eigenvalues of the Hessian
matrix of the energy function f (|∇αu|) can be written as

λ1 = f ′(|∇αu|)
|∇αu| and λ2 = f ′′(|∇αu|) (20)

This gives λ1 = c(.). Here, the value of λ1 is positive due to our choice of the func-
tion c(s2) = s−1, since f ′(s) = s2.c(s2). To make the anisotropic diffusion problem as a
well-posed, the value of second eigenvalue of the hessian matrix is quite important. In this
scheme, we have

λ2 = d

ds
f ′(s) = f ′′(s) = 1 > 0

due to the choice of the edge preserving function c(s). This indicates that the Hessian matrix
associated with the integrand of energy function f is positive definite and hence the function
is strictly convex. In this case, the function f attains a unique global minima for any choice
of initial image u0 = A(x, y) which is the airlight map extracted from the degraded image.

3.5 Post-processing

After estimating airlight map Â then de-foggy image I0(x, y) can be restored as

I0(x, y, c) = (I (x, y, c) − Â(x, y))

(1 − (Â(x, y)/I∞(c)))
(21)

where c ∈ (r, g, b). The above method can also be applied for gray-scale images. The only
difference will be the initial airlight map.

Histogram stretching is applied as a post-processing step of the proposed algorithm. The
restored image I0(x, y, c) obtained from the improved airlight map may be of poor contrast.
Thus, the restored image may be visually dim because of the difference in the brightness of
the scene radiance and the atmospheric light. The later one finds a bit brighter. In general,
histogram equalization is a favorite technique for contrast enhancement. However, it may
not be that worthy due to the saturated output image of the fog removal step. Moreover, his-
togram specification technique cannot be applied due to the absence of a standard reference
image. Here, we adopted the histogram stretching in our algorithm for the task of contrast
enhancement.

4 Results and discussions

This section presents the numerical results obtained with the proposed algorithm to enhance
the digital images degraded by the fog effect. The proposed algorithm tests the performance
on seven different images, namely Forest, Wheat, Tomb, Ny17, Swan, N6 and Train. These
images are having different textural details and degraded with varying amount of the fog.
In this study, the fractional order parameter α takes a real value in the interval [1, 2). For
the computational purpose, we choose five fixed values of α = {1.0, 1.2, 1.4, 1.6, 1.8}
as taken in many references [1]. It is worth to mention that at α = 1, the proposed scheme
behaves similarly to AD scheme [27]. In existing literature, different strategies were adopted
to stop the iterative process of anisotropic diffusion. We follow the stopping criteria as in [1].
Four different metrics contrast gain (CG), colorfulness index (CI), contrast-to-noise ratio
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Table 1 Details of the metrics used for quantitative analysis in this study

ssecorplanoitatupmoCnoitpircseDcirteM

Contrast Gain (CG) It is defined as the difference
between mean contrasts of the
degraded and recovered images.
Due to the high contrast of the
atmospheric light, an image is visu-
ally more clear and having better
contrast than an image captured in
foggy environment. Therefore, con-
trast gain is considered directly pro-
portional to the accuracy of the pro-
posed algorithm, i.e. better output
will be having a higher value of
contrast gain.

If the mean contrasts of the degraded
and recovered images are given by

and , respectively, then the contrast
gain in the restoration process is defined
as

where, the contrast of a pixel is the ratio
with

Colorfulness Index (CI) It estimates the quality of the color
in the recovered image. In gen-
eral, the images degraded by the
fog are likely to have more white-
ness which results as the less CI
value. Thus, the CI value of a
restored image must be higher than
its degraded version.

The CI value of a RGB image
(having , and bands) is com-
puted as

where and denotes the standard
deviation and mean of an image, respec-
tively. The images and

are computed
using color bands of .

Contrast-to-Noise
ratio (CNR)

In the image restoration applica-
tions like fog removal, signal-to-
noise ratio may not be considered
as a good measure. An alternate
of this is contrast-to-noise ratio
(CNR). CNR is similar to the met-
ric, signal-to-noise ratio (SNR), but
subtracts off a term before taking
the ratio. This is important when
there is a significant bias in an
image, such as from fog or haze.

Mathematically, it is defined as

where and are signal intensities
for the signal structure and , respec-
tively; and is the standard deviation
of the image noise [12]. Here, we list
the differences of CNR values between
the foggy image and restored image in
Tables 4 and 6.

Visible edges ratio
(VER)

The ratio of visible edges is defined as

(22)

where and are the cardinalities of
visible edges in the foggy image and
the fog free image respectively. Thus,
higher value of shows the better edge
preservation.

We use an algorithm proposed
in [24] for computing the visible
edges ratio.

1
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Table 2 Contrast gain (CG)
obtained with the proposed
algorithm with different
fractional orders α with 30
iterations as stopping criteria

α = 1.0 1.2 1.4 1.6 1.8

Forest 0.1078 0.1082 0.1086 0.1084 0.1086

Wheat 0.0852 0.0853 0.0854 0.0854 0.0856

Tomb 0.0891 0.0897 0.0896 0.0895 0.0893

Ny17 0.1347 0.1351 0.1352 0.1351 0.1350

Swan 0.0752 0.0753 0.0753 0.0753 0.0754

N6 0.0729 0.0732 0.0734 0.0734 0.0735

Train 0.1064 0.1067 0.1069 0.1069 0.1065

(CNR) and visible edges ratio (VER) are used to measure the performance of the proposed
algorithm (See Table 1). The stopping criterion is chosen to be 30 iterations of the diffusion
process based on all these metrics. The proposed algorithm uses the airlight map extracted
from the degraded image as the initial image of the diffusion process. We compare the
performance of the proposed algorithm with some of the existing algorithms such as DCP-
based approach [8], Kernel regression model with DCP [29], Two-Layer Gaussian process
regression (GPR) [4] and Integer order AD [27].

Table 2 lists the numerical results in terms of contrast gain (CG). In case ofWheat, Swan
and N6 images, fractional order α = 1.8 gives the best CG value. For Forest, Ny17 and
Train images, α = 1.4 is giving a slight better CG value. For Tomb image, the best CG value
is obtained at α = 1.2. It is also worth to mention that the results are significantly improved
with fractional orders as compared to the case of α = 1 (AD [27]).

The numerical results in terms of colorfulness index (CI) are listed in Table 3. The best
CI values for all the images are obtained for the fractional orders α = 1.6 & 1.8. This is due
to the textural details of the image. Unlike the CG value, best CI values are obtained with
α = 1.6 for Forest andWheat images. For rest of the images, the best performance is found
at α = 1.8. However, in all the these images, Fr-AD gives better results when compared to
the AD.

Similar type of results are obtained in case of contrast-to-noise ratio. Table 4 lists the
values of CNR at different fractional orders in case of all these images. It is noticeable that
the best results are obtained with fractional orders and not with α = 1.0. It is also noticeable
from Table 5 that the Fr-AD based approach gives better visible edges ratio (VER) than the
AD. From these observations, the significance of fractional order derivatives in anisotropic
diffusion can be observed especially in the restoration of fog affected images.

Table 3 Colorfulness index (CI)
value obtained with the proposed
algorithm with different
fractional orders α with 30
iterations as stopping criteria

α = 1.0 1.2 1.4 1.6 1.8

Forest 0.1178 0.1188 0.1191 0.1192 0.1192

Wheat 0.0901 0.0905 0.0906 0.0907 0.0907

Tomb 0.1340 0.1349 0.1351 0.1351 0.1352

Ny17 0.4085 0.4122 0.4136 0.4141 0.4142

Swan 0.2394 0.2410 0.2416 0.2418 0.2419

N6 0.1628 0.1643 0.1648 0.1650 0.1651

Train 0.2901 0.2931 0.2941 0.2944 0.2945
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Table 4 Contrast-to-noise ratio
(CNR) obtained with the
proposed algorithm with
different fractional orders α with
30 iterations as stopping criteria

α = 1.0 1.2 1.4 1.6 1.8

Forest 19.9636 20.1646 22.1766 23.1968 24.2256

Wheat 5.6686 5.9215 6.8548 7.7767 7.8552

Tomb 6.0246 7.0256 7.0657 7.0689 7.0805

Ny17 5.5305 6.1981 6.2973 6.4577 6.5920

Swan 7.8502 8.1070 8.2166 8.4867 8.6664

N6 24.1493 25.1423 25.1987 25.2607 25.3376

Train 10.1965 10.5583 10.6444 10.7655 10.8092

The performance of the proposed algorithm is compared with four different algorithms.
Table 6 lists the results of this comparison study. We make the following remarks based on
this comparison study.

1. In case of contrast gain, the proposed algorithm performs better than other all the four
algorithms for Forest and Tomb images. The DCP algorithm performs better than the
proposed algorithm in case of rest images. For Ny17, Swan and Train images, the
proposed algorithm performs better than the three algorithms KRM, GPR and AD.

2. The proposed algorithm performs better in case of colorfulness index for Ny17, Swan
and Train images. The KRM algorithm performs better than all algorithms for Forest,
Tomb and N6 images. The GPR algorithm performs best for Wheat image.

3. In case of metric CNR, the KRM algorithm performs better for Tomb, Ny17 and Swan
images. The proposed algorithm gives best results for Forest, N6 and Train images.
The GPR algorithm performs best for Wheat image. For Swan image, the proposed
algorithm performs better than the three methods DCP, GPR and AD.

4. The proposed algorithm gives better VER value than DCP, KRM, GPR and AD for
images Forest, Swan andN6. The KRM algorithm [29] performs better for other images.
In case of visible edges ratio, the proposed algorithm performs better than the three
methods DCP, GPR and AD for the images Wheat, Tomb, Ny17 and Train.

Based on the overall comparison of the results, the proposed algorithm is a good choice
to restore the foggy images. The computational time taken in the implementation of the
proposed diffusion process is compared with a Fourier domain-based algorithm [1]. On
a single processor, the proposed algorithm takes less than half of the computational time
taken by other algorithms (See Table 7). In case of multi-chip, the Fourier domain based
implementation may be a better choice.

Table 5 Visible edges ratio
(VER) obtained with the
proposed algorithm with
different fractional orders α with
30 iterations as stopping criteria

α = 1.0 1.2 1.4 1.6 1.8

Forest 0.2245 0.2308 0.2308 0.2326 0.2289

Wheat 0.2340 0.2372 0.2372 0.2390 0.2353

Tomb 0.0123 0.0263 0.0263 0.0170 0.0193

Ny17 0.1578 0.1586 0.1609 0.1609 0.1609

Swan 0.5390 0.5419 0.5535 0.5506 0.5506

N6 0.7825 0.7899 0.7899 0.7899 0.7895

Train 0.2061 0.2121 0.2121 0.2239 0.2239
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Table 7 Computational time (in
seconds) obtained in Fourier
domain and by the proposed
algorithm in spatial domain

Image Fourier domain [1] Proposed(Spatial)

Forest(256 × 256) 2.986921 1.007776
Wheat(256 × 256) 2.861586 1.012766
Tomb(256 × 256) 2.936528 0.985334
Ny17(256 × 256) 2.850443 1.010316
Swan(256 × 256) 2.661488 0.896816
N6(256 × 256) 2.651796 0.895613
Train(256 × 256) 2.980296 1.048273

Fig. 3 The original foggy images are given in first column. Restored images with DCP [8], KRM [29], GPR
[4], AD [27] and the proposed algorithm (at α = 1.8) are shown in second, third, fourth, fifth columns and
sixth columns, respectively
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Figure 3 gives a qualitative representation of the results obtained with DCP, KRM, GPR,
AD and the proposed algorithm. These qualitative results affirm that the restored images
with the proposed algorithm are visibly better than other four existing algorithms. The
results obtained with KRM algorithm [29] has a whiteness along the edges which is smooth
in case of the results obtained with the proposed algorithm. Hence, this apparently makes
the proposed algorithm a better choice for image restoration where the fog degrades the
original images.

5 Conclusions

This paper addresses the issue of defogging of the digital images by using a fractional order
generalization of the anisotropic diffusion. The quality of restored images in the proposed
algorithm depends on the diffused airlight map. The proposed algorithm diffuses airlight
map visually better when compared to classical anisotropic diffusion. The proposed algo-
rithm gives restored images better than some of the benchmark algorithms based on different
metrics. The computation of the fractional order derivatives in the proposed algorithm takes
lower computational efforts when compared to a Fourier domain-based implementation. In
this study, five fixed values between [1, 2) are considered for computing fractional order
derivatives. An adaptive choice of the fractional orders and use of learnable PDEs might be
possible future directions to extend the proposed work.
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