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Abstract
The key problems of dynamic hand gesture recognition are large intra-class (gesture types,
without considering hand configuration) spatial-temporal variability and similar inter-class
(gesture types, only considering hand configuration) motion pattern. Firstly, for intra-class
spatial-temporal variability, the key is to reduce the spatial-temporal variability. Due to the
average operation can improve the robustness very well, we propose a motion pattern
descriptor, Time-Wise Histograms of Oriented Gradients (TWHOG), which extracts the
average spatial-temporal information in the space-time domain from three orthogonal projec-
tion views (XY, YT, XT). Secondly, for similar inter-class motion pattern, accurate represen-
tation of hand configuration is especially important. Therefore, the difference in detail needs to
be fully captured, and the shape descriptor can amplify subtle differences. Specifically, we
introduce Depth Motion Maps-based Histograms of Oriented Gradients (DMM-HOG) to
capture subtle differences in hand configurations between different types of gestures with
similar motion patterns. Finally, we concatenate TWHOG and DMM-HOG to form the final
feature vector Time-Shape Histograms of Oriented Gradients (TSHOG) and verify the effec-
tiveness of the connection from quantitative and qualitative perspective. Comparison study
with the state-of-the-art approaches are conducted on two challenge depth gesture datasets
(MSRGesture3D, SKIG). The experiment result shows that TSHOG can achieve satisfactory
performance while keeping a relative simple model with lower complexity as well as higher
generality.
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1 Introduction

Hand gestures are widely used as intuitive and convenient ways of communications in our
daily life, and hand gesture recognition has been broadly applied in human computer inter-
faces, robot control, and augmented reality, etc. [28]. Hand gestures are conceptually divided
into static gestures and dynamic gestures. Compared to static gestures, dynamic hand gestures
usually provide richer communication channels because of motion information is incorporated,
and are thus more difficult to recognize.

Approaches for dynamic hand gesture recognition can be broadly categorized into two
groups, depending on whether they use RGB information or depth information. Due to the
characteristics of RGB data, the results of RGB-based [1, 2, 9, 31, 37] methods always sensitive
to clutter, lighting conditions, and skin color. As the imaging technique advances, e.g. the
launch ofMicrosoft Kinect, more recent researchmethods on dynamic hand gesture recognition
have been performed using depth maps that captured by such cameras. Comparing with
conventional RGB images, depth maps provide a large body of advantages. For example, (1)
the depth maps provide the 3D structure and shape information. (2) Depth maps are insensitive
to illumination changes and color changes [42]. (3) The backgrounds of depth maps are fairly
clean. Therefore, the Kinect sensor gives a broader scope for dynamic hand gesture recognition.

Themost challenging problems of dynamic hand gesture recognition are large intra-class spatial-
temporal variability and similar inter-class motion pattern. Large intra-class spatial-temporal
variability:without considering hand configuration, the gestures with the same movement process
can differ in many respects including velocity, the shape of hand, duration, integrality, and distance
between hand and depth camera. Similar inter-class motion pattern:when only considering hand
configuration, many different gestures have very similar motion process. The only difference is that
the hands need to maintain different configurations in the movement.

Recently, researchers have presented numerous effective depth-based methods [3, 15, 18,
24, 25, 32, 35, 36, 38, 39, 42] and achieved important progresses in dynamic hand gesture
recognition. However, previous depth-based methods capture the superimposed shape infor-
mation or spatial-temporal information of depth sequences without specifically reinforce the
robustness of descriptors to spatial-temporal variability. Therefore they are influenced by many
factors (including the shape of hand, velocity, duration, integrality, and the distance between
hands and depth camera) and failed to achieve satisfactory results (the recognition rate of a lot
of methods is below 98% on MSRGesture3D dataset). Inspired by [40], we not only view a
depth sequence as a stack of spatial texture slices (XY) along the T-axis, but also view the
depth sequence as a stack of spatial-temporal texture slices (XT/YT) along the X/Y-axis. XT
and YT slices provide information about the space-time transitions [40]. Details are shown in
Fig. 2. Therefore, capturing the shape information of all the slices in order along every axis
(T/Y/X) can obtain the space-time characteristic of depth sequence. Furthermore, averaging
shape information can increase the robustness of shape features varying along the axis. This
motivates us to design a more discriminatory descriptor by capturing average shape informa-
tion on three projection views to alleviate intra-class spatial-temporal variability. Specifically,
the robustness of descriptor to shape variability (e.g. shape of hand, integrality, and the
distance between hand and depth camera) can be enhanced by averaging all features along
T-axis (XY slices). In the same way, by averaging all features along X/Y-axis (YT/XT slices),
the robustness of descriptor to spatial-temporal variability (e.g. velocity, duration) can be
enhanced. In addition, modified Histograms of Oriented Gradients (mHOG) algorithm is used
to capture the shape information of each plane in this paper.
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Furthermore, there are many gestures whose motion pattern are very similar, and only
have slight differences in hand configuration. For example, in MSRGesture3D both
“Where” and “Bathroom” are one hand repeatedly swinging left and right with the
same amplitude, and the only difference is the hand configuration. Specifically, gestures
“Where” maintain fist while index finger stretches, gestures “Bathroom” maintain fist
while thumb slightly protruding between index and middle fingers. In this occasion,
accurate representation of hand configuration is especially important. The difference in
detail needs to be fully captured, and the shape descriptor can amplify subtle differences.
Therefore, we introduce Depth Motion Maps-based Histograms of Oriented Gradients
(DMM-HOG) to capture subtle differences in hand configurations between different
gestures with similar motion patterns. Specifically, (1) “DMM” is used to calculate the
global shape information of depth sequence so that the subtle shape differences of every
depth map are accumulated. (2) HOG algorithm is used to enhance the shape information
of DMMs (DMMf, DMMs, DMMt). (3) Finally, three features of DMMs (DMMf-HOG,
DMMs-HOG, DMMt-HOG) are concatenated to construct DMM-HOG.

The final descriptor, TSHOG, is constructed by concatenating TWHOG and DMM-HOG.
Through analyzing the performance of our method on two challenge depth gesture datasets
(MSRGesture3D [18] and SKIG [21]), we observed that: (1) TWHOG is robust to spatial-
temporal variability and can effectively extract motion patterns from dynamic hand gestures.
(2) DMM-HOG enhances the inter-class discriminability of the final descriptor by extracting
subtle hand configurations differences between different types of gestures with similar motion
patterns. (3) Connecting TWHOG and DMM-HOG can effectively distinguish the part of
gestures that cannot be classified by the previous method. The result indicates that connecting
the two descriptors is effective, and the two descriptors complement each other in some
complex situations (spatial-temporal variability and differences in hand configurations are in
severe imbalances). We analyzed the effectiveness of the connection from the quantitative and
qualitative perspective (Section 3.2).

The outline of the paper is organized as follows. After a brief survey of related work in
Section 2, our approach is introduced in Section 3. Section 4 contains experimental results and
analysis of our method. Section 5 concludes the paper and looks at the future work.

2 Related work

Recent advances in depth sensing provide a new area for dynamic hand gesture recognition
and have attracted a lot of research efforts. Some works have been published to address
dynamic hand gesture recognition from depth sequences. We mainly focus on efforts which are
closest to our work, including: (1) Depth based methods. (2) Feature fusion approaches.

Depth based methods have been widely utilized for dynamic hand gesture recognition. Space
domain based methods: In 2012, Kurakin et al. [18] use cell occupancy features and silhouette
feature of depthmaps to train action graphs. Action graph is utilized tomodel the temporal dynamics
of the key postures of dynamic hand gesture. They get a purely data-driven system which can be
used to recognize any other gestures. In [36], the depth sequence is summarized in a motion map,
which is the average difference between the depth frames. Consequently, a single (HOG) descriptor
[8] is extracted from the motion map. In 2015, Chen et al. [3] combine DMMs-based Local Binary
Pattern (LBP) and Kernel-based Extreme Learning Machine (KELM) classifier to recognize the
hand gestures. These methods can capture shape information of depth sequences in subtle
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meanwhile sensitive to shape of hand, integrality, and the distance between hand and depth camera.
In addition, thesemethods collapse the temporal variations, and thus suffers when the temporal order
is of significance. Space-time domain basedmethods: In [32], RandomOccupancy Pattern (ROP)
features are extracted from depth sequences, and a sparse coding approach is utilized to encode these
features. They are less sensitive to occlusion because they only encode information from the regions
that are most discriminative for the given gesture. In 2014, Yang and Tian [35] group local
hypersurface normals into polynormal, and aggregate low-level polynormals into the Super Normal
Vector (SNV). Surface normals are utilized as local features of hand gestures, which show
robustness to occlusions. Oreifej and Liu [25] proposed a new descriptor as HON4D for activity
recognition which describes the depth sequences using a histogram capturing the distribution of the
surface normal orientation in a 4D space of time, depth and spatial coordinates. In 2018, Jiang ea. al.
[15] obtain VME-sequences by controlling the overlap of sub-depth sequences. Then calculate
Multi-Temporal DMM-LBP of each VME-sequence in three views to encode the patch descriptors
which result to a compact feature representation. By introducing time information, these methods
enhanced the performance of gesture recognition at a certain level. However, introduced time
information is heavily influenced by factors such as velocity, duration. At the same time, these
methods did not alleviate the problems of the space domain based approaches. Hence, they also
failed to achieve satisfactory results. Convolutional Neural Network based: In [14], a unique
multi-layer perception of neural network is built for classification by using back-propagation
learning algorithm. In [22], a hand gesture recognition system was introduced, which utilizes depth
and intensity channels with 3D convolutional neural networks, and realized automatic detection and
classification of dynamic hand gestures in real-world [13]. In 2016, KimYet al. [16] investigate the
feasibility of recognizing human hand gestures using micro-Doppler signatures measured by
Doppler radar with a deep convolutional neural network (DCNN). However, unlike image classi-
fication, improvement brought by end-to-end deep ConvNets remains limited compared with
traditional hand-crafted features for video-based action recognition [33]. For long-range temporal
structure not been considered as a critical factor in deep ConvNet frameworks.

Recently, features fusion methods improve the performance of depth based dynamic hand
gesture recognition significantly. In [29], 3D Spherical Histograms of Oriented Normal Vectors
(3DS-HONV) and Depth based Histogram of Optical Flow (DHOF) are combined as a descriptor
and then a spatial-temporal representation of the presented descriptors is obtained via sparse coding
concepts. In [38], Edge Enhanced Depth Motion Map (E2DMM) and Dynamic Temporal Pyramid
are combined to capture shape information and temporal structure of the depth sequences. In [10],
multiple depth based descriptors are combined for hand gesture recognition. The descriptors
included the hand region’s edge distance and elevation, the curvature of the hand’s contour, and
the displacement of the samples in the palm region. Although these methods have achieved good
results through feature fusion, few articles analyze the necessity of feature fusion from the point of
view of the problem and provide experimental evidence.

In this paper, TWHOG mitigates intra-class spatial-temporal variability by extracting the
average spatial-temporal information in the space-time domain, DMM-HOG alleviates similar
inter-class motion pattern by extracting subtle hand configuration differences between different
types of dynamic gestures. In addition, the complementarity of two descriptors in partial
gestures helps us to identify complex situations that cannot be solved by previous methods. We
verified the effectiveness of the complementarity of two descriptors in partial gestures from the
quantitative and qualitative perspective (Section 3.2).
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3 Our approach

The overview of the pipeline proposed in this paper is illustrated in Fig. 1, where dynamic
hand gestures are treated as sequences of frames changing over time. In Section 3.1, we
discuss the construction stage of Time-Shape Histograms of Oriented Gradients (TSHOG) in
detail. The complementarity between the Time-Wise Histograms of Oriented Gradients
(TWHOG) and Depth Motion Maps-based Histograms of Oriented Gradients (DMM-HOG)
in partial gestures is analyzed in Section 3.2.

3.1 Construction of TSHOG

In this section, we describe our method in detail. Specifically, construction stages of TWHOG
and DMM-HOG are discussed in Section. 3.2.1 and Section 3.2.2. Connecting two descriptors
is introduced in section 3.2.3.

3.1.1 Construction of TWHOG

Our goal is to compute a descriptor, which is able to mitigate intra-class spatial-temporal
variability. There are two conditions for descriptor to meet: (1) the descriptor is able to capture
effective space-time information. (2) The descriptor is robust to spatial-temporal variability.
Inspired by [40], the variation of shape along three axes (T, Y, X) reflects the spatial-temporal
characteristics of depth sequences. Furthermore, averaging shape information can increase the
robustness of shape features varying along the axis. Hence, we capture shape information
along three axes and averaging all shape features that along the same axis to enhance the
robustness of descriptor to spatial-temporal variability.

A sequence of depth maps could be represented by fourth-order tensor, denoted as:

fDMM sDMM tDMM

DMM

T
im

e

Depth sequence

fDMM HOG sDMM HOG tDMM HOG

DMM HOG

TWHOG

TSHOG

HOG

HOG is applied to the depth 

sequence on three orthogonal 

planes(XY, YT, XT)

Spatial-temporal Volume

Stack

xTW HOG yTWHOG tTWHOG

Fig. 1 The overview of the feature extraction. (1) mHOG algorithm is applied on each slice of depth sequence in
three projection views (X, Yand T as axes). (2) In each view, mHOG features are averaged and then obtain three
components of TWHOG. (3) Connecting three components (TWHOGt/ TWHOGx/TWHOGy) to establish
TWHOG. (4) Modified DMMs are applied to build energy maps of the whole depth sequences in three projection
views (X, Y and Z as axes). (5) HOG algorithm is applied on three energy maps and obtain three components of
DMM-HOG. (6) Connecting the three components (DMM-HOGf/ DMM-HOGs/DMM-HOGt) to build DMM-
HOG. (7) TWHOG and DMM-HOG of depth sequence are concatenated into a feature vector, named as
TSHOG, as the final representation of the depth sequence
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D ∈ R X×Y× Z× T (The X, Y and T represent the length, width and frame number of the
depth sequence, respectively. Z represents the maximum of depth value.) Using Matlab
style notation:

(1) We refer to the t-th slice of this tensor in front view as D:,:,t, which is a X× Y image
(matrix) with depth values as the pixel values.

(2) We refer to the x-th slice of this tensor in side view as Dx,:,:, which is a Y× T image
(matrix) with depth values as the pixel values.

(3) We refer to the y-th slice of this tensor in top view as D:,y:, which is a X× T image
(matrix) with depth values as the pixel values.

Constructing TWHOG descriptor needs three stages: (1) extracting modified Histograms of
Oriented Gradients (mHOG) features along three axes. (2) Processing mHOG features. (3)
Connecting components. The overview of TWHOG extraction is illustrated in Fig. 2, and
details are discussed below.

mHOG algorithm mHOG is constructed by removing the step of constructing block in
classical Histograms of Oriented Gradients (HOG) algorithm [8]. This operation is to
enhance the robustness of mHOG to subtle shape changes. Specifically: the gradient
image of the image patch (using a centered mask [−1, 0, 1]) is divided into rectangular
cells along the x- and y- directions. A 50% overlap between the cells is used. Within
each cell, an orientation histogram is generated by quantizing the angles of each gradient
vector into a pre-defined number of bins. These resulting histograms are concatenated to
form the final spatial feature vector.

Extracting mHOG feature along three axes mHOG algorithm is applied on XY (D:,:,1 ⋯
D:,:,T), YT (D1,:,: ⋯ DX,:,:) and XT (D:,1,: ⋯ D:,Y,:) slices of depth sequence. Specifically, along T-
axis (XY slices) the gradient image of depth map (using a centered mask [−1; 0; 1]) is divided
into rectangular cells along the X and Y directions with no overlap. Within each cell, an
orientation histogram is generated by quantifying the angles of each gradient vector into a pre-
defined number of bins. These histograms divide L2-norm of themselves and concatenated to
form the final feature vectormHOGt,i (mHOGt,i represents the feature ofD:,:,i,mHOGx,i represents
the feature of Di,:,:, mHOGy,i represents the feature of D:,i,:). The same operation is conducted on
XT and YT planes and obtains mHOGx,1···mHOGx,X and mHOGy,1···mHOGy,Y, respectively.

Processing mHOG features Calculating the average of mHOG features along three axes.
Specifically, along T-axis (XY planes), averaging mHOG features (HOGt,1···HOGt,T) to obtain
TWHOGt. The same operation is conducted along on Y/X-axis (XT/YT planes) to obtain
TWHOGx and TWHOGy, respectively.

TWHOGv ¼ 1

V
∑
V

i¼1
mHOGv;i ð3� 1Þ

Where i represents the frame index,mHOGv,i is the mHOG feature of i-th frame when v as axis
(v ∈ {t; x; y}). V (V∈ {T; X; Y}) denote the end frame index.
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Fusing components Piling TWHOGt, TWHOGx and TWHOGy into a composite vector to
obtain TWHOG. Fusion details are as follows:

TWHOG ¼ ⋯⋯⋯
1�1024

TWHOGt

" #
⋯⋯⋯
1�1024

TWHOGx

" #
⋯⋯⋯
1�1024

TWHOGy

" #" #
ð3� 2Þ

The dimension of TWHOGt/ TWHOGx/TWHOGy depends on parameters setting.
Note that in the construction of TWHOG, depth values of the depth map are considered as

pixel values. And TWHOG obtains motion pattern of gesture by capturing shape information
on spatial texture planes and spatial-temporal texture planes. In contrast, in the construction of
Histogram of Oriented 4D Normals (HON4D) [25] and Histogram of 3D Facets (H3DF) [39],
depth values are used directly to compute the normal vector distribution of hands surface.
Therefore, TWHOG is a new descriptor and different from the temporal HOG or spatial HOG.
The experimental results on MSRGesture3D dataset show that TWHOG perform better in
dynamic hand gesture recognition than HON4D.

TWHOG

tTWHOG xTWHOG yTWHOG

Spatial temporal Volume Spatial temporal VolumeSpatial temporal Volume

Mean
Mean Mean

XY plane

YT plane

XT plane

Spatial temporal Volume

: ,: ,1D

1 ,:,:D

:,1,:D

:, ,:YD
,:,:XD:,:,TD

,1tmHOG , /2t TmHOG ,t TmHOG
,1xmHOG , /2x XmHOG

,x XmHOG ,1ymHOG , /2y YmHOG ,y YmHOG

Fig. 2 Extraction of motion pattern information. The depth sequence is not merely viewed as a stack of spatial
texture slices (XY) along T-axis, but also a stack of spatial-temporal slices (XT/YT) along X/Y-axis. Along each
axis (T, Y, X), mHOG features of each slice are calculated and averaged to obtain the TWHOG component. Then
the three components are concatenated to establish TWHOG
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3.1.2 Construction of DMM-HOG

There are many different types of gestures in real-world applications that have very similar motion
patterns. The only difference is that the hands need to maintain a different configuration in the
movement. In order to broaden scope of application of our method. We introduce the DMM-HOG
[36] to capture shape information in subtle. In addition, we use themodified theDepthMotionMaps
(DMM) algorithm [4] to make the DMM-HOG more sensitive to shape change.

The construction of the DMM-HOG contains three stages: (1) calculating DMMs. (2)
Enhancing shape information. (3) Connecting components. Details are discussed below.

Calculating DMMs The concept of DMMs was considered in [4] where the procedure for
generating DMMs was modified. In this paper, we adopt the algorithm of DMMs described in
[4] due to it is more sensitive to shape change in subtle (By removing the threshold in the step
of calculating the absolute value of adjacent frames). Specifically, given a depth video
sequence with N frames, each frame in the video is projected onto three orthogonal Cartesian
planes (XY, XZ, YZ) to form three 2D projected maps, denoted by mapf, maps, and mapt.
DMMs are then generated as follows:

DMM f ;s;tf g ¼ ∑
N−1

j¼1
jmapjþ1

f ;s;tf g−map
j
f ;s;tf gj ð3� 3Þ

Where j is the frame index. The procedure of DMMs construction is illustrated in Fig. 3.

Enhancing shape information HOG algorithm [8] is used to enhance the shape information
in the DMMs. This stage including three steps: First, use Gaussian filter kernel to remove the
noise from each DMMs. Second, according to the parameter setting, each DMM is split into
many rectangular cells with no overlap. Third, within each cell, an orientation histogram is
generated by quantifying the angles of each gradient vector into a pre-defined number of bins.
These resulting histograms divide L2-norm of themselves and concatenated to form the final
feature vector. The vectors of DMMf, DMMs and DMMt are labeled as DMM-HOGf, DMM-
HOGs and DMM-HOGt.

x

y

z

mapf

maps

mapt

mapf :x-y projection

maps :y-z projection

mapt :x-z projection

DMMf

DMMs 

DMMt

.

.
.

Depth motion maps(DMMs) generationDepth Map Projection

Depth Sequence

(Where)

Fig. 3 The procedure of DMMs (DMMf, DMMs and DMMt) construction
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Fusing components Piling DMM-HOGf, DMM-HOGs and DMM-HOGt into a composite
eigenvector to obtain DMM-HOG [36]. Details are as follows:

DMM−HOG ¼ ⋯⋯⋯
1�1024

DMM−HOG f

" #
⋯⋯⋯
1�1024

DMM−HOGs

" #
⋯⋯⋯
1�1024

DMM−HOGt

" #" #
ð3� 4Þ

The dimension of DMM-HOGf/ DMM-HOGs/DMM-HOGt depends on parameters setting.

3.1.3 Connecting TWHOG and DMM-HOG

The DMM-HOGf, DMMM-HOGs and DMM-HOGt features are simply stacked into a composite
feature vector labeled as DMM-HOG. TWHOG are constructed at the same way, and TWHOGt,
TWHOGx and TWHOGy were normalized before concatenation. The TWHOG and DMM-HOG
are concatenated into a composite feature vector labeled as TSHOG, which is the final discrimina-
tory representation of the depth sequences. Final descriptor are established as follows:

TSHOG ¼ ⋯⋯⋯
1�3072

TWHOG

" #
⋯⋯⋯
1�3072

DMM−HOG

" #" #
ð3� 5Þ

The dimension of DMM-HOG/TWHOG depends on parameters setting.
Note that such direct fusion of TWHOG and DMM-HOG might not perform well because

the data range of these features are different. Hence, we map different features into a
comparable range through normalization. Specifically, suppose there are N depth sequences
in the database. The two types of features can form an N×D feature matrix F= fij, where fij is
the j-th feature component in feature vector fi,. and each fused feature vector is of D
dimensions. We normalize the entries in each column f., j to the same range (−1, 1) so as to
ensure that each individual feature component receives equal weight in determining the
similarity between two vectors.

3.2 Complementarity analysis between TWHOG and DMM-HOG in partial gestures

We consider the dynamic gesture recognition as two stages: (1) we use TWHOG, which is
robust to space-time variability, to capture the motion patterns of gestures. (2) Shape descriptor
DMM-HOG is used to distinguish different types of gestures with similar motion patterns. In a
problem perspective, TWHOG and DMM-HOG can complement each other in some complex
situations (spatial-temporal variability and differences in hand configurations are in severe
imbalances). We combine specific examples to prove this conclusion through qualitative
analysis and quantitative analysis respectively.

Qualitative analysis (1) In real-world applications, many different types of dynamic hand
gestures have similar movement processes, for example the “Where” and “Bathroom” in Fig.
4 (a). On this occasion, TWHOG unable to identify different types of gestures effectively.
Nevertheless, DMM-HOG can capture shape difference in subtle and assists in maximising
inter-class distance. (2) The same gesture finished by different “Subjects” with different
amplitude and different integrity, hence there is a significant difference in shape information,
for example the gestures in Fig. 4 (b). In this case, TWHOG, which based on shape change,
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can mitigate the influence of “Subject”, and conduce to minimise intra-class distance.
Therefore, TWHOG and DMM-HOG complement with each other in part of gestures.

Quantitative analysis To further prove TWHOG and DMM-HOG complement with each other
in part of gestures. Mutual Information (MI) is introduced to quantitatively validate this conclusion.
The Mutual Information (MI) can be a good measure of the redundancy between the two feature
representations. The Kraskov I [17] estimator of MI, is a measure that examines the similarity
between the neighborhoods of each datum, as defined on each representation via the k-NN rule. That
way, the MI estimation can be performed in several scales, revealing interesting properties of the
underlying features. Two features are denoted as X and Y, and MI is calculated as follows:

MI ¼ ψ kð Þ− 1

k
− < ψ nxð Þ þ ψ ny

� �
> þψ Nð Þ ð3� 6Þ

Here ψ(x) is the digamma function:

ψ xð Þ ¼ Γ xð Þ−1 dΓ xð Þ
dx

ð3� 7Þ

It satisfies the recursion ψ(x+ 1) =ψ(x) + 1andψ(1) = −C, where C= 0.5772156… is the Euler-
Mascheroni constant. In X/Y features, collection of the number of neighbor points for each element
isnx/ny.

Using a subset of MSRGesture3D dataset that consisting only of “Finish” gestures, we
compare the Mutual Information between TWHOG and DMM-HOG. The obtained MI for
various values of k is illustrated in Fig. 5 (blue line), and the data consists of 20 sequences
performed by 5 individuals.

We can easily observe that MI is relatively high at “k = 1”, which indicates that both
descriptors have adequate gestures-discriminative power. In the area that MI is near-zero,
meaning that the examined descriptors carry very different information. As a baseline, we

A B
( )a ( )b

5, , 70Subject Where X

5, , 76Subject Where Y

5, , 54Subject Bathroom X

5, , 93Subject Bathroom Y

5, , fSub ject W here D M M 5, , fSubject Bathroom DMM

Y

XX

Y

XX

YY

1, ' ', 49Subject Z X

1,' ', 81Subject Z Y

10,' ', 66Subject Z X

10, ' ', 64Subject Z Y

1, ' ', fSubject Z D M M 10, ' ', fSubject Z DMM

A B

 ,   Different gestures same individual  ,   Same gesture different individuals

Y

T

X

T

T

Y

T

X

Y

T

X

T

Y

T

T

X

Fig. 4 Depth sequence is a stack of spatial-temporal texture slices (XT/YT), along Y/X-axis. In this figure,
spatial-temporal slices and DMMf of four gestures are given.”Subject5, Where, X = 70″ means one Spatial-
temporal slice, which along X-axis, of “Where” gesture finished by”Subject5”
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compare the MI between TWHOG and HOG2 (a spatial-temporal descriptor that captures
spatial-temporal information by using the HOG algorithm twice in succession on the depth
sequence) [24]. We can easily observe that the MI (red dotted line) is generally higher,
reflecting there is weaker complementary between TWHOG and HOG2 in gestures “Finish”.

4 Experimental

In this section, we evaluate our method on publicly available MSRGesture3D dataset [18] and
compare with other methods that were conducted with the same experimental setup. Then, we
evaluate our approach on a more challenging dataset, SKIG [21], to verify the generalization of
our approach. Experimental results show that our method outperforms the state-of-the-art
methods on the two datasets.

LIBLINEAR [12] is employed as the linear SVM classifier. We choose the “support vector
classification by Crammer and Singer” solver for SVM. The parameter “C” was set to 10. Note
that the same parameter setting of SVM as in [41] is used. In addition, to demonstrate the
significant advantage of TSHOG, we conduct 15 sets of experiments using different SVM
parameters. All results outperform the state-of-the-art methods. The details are given in Table 5.

4.1 MSRGesture3D dataset and setup

MSRGesture3D [18] dataset was captured by aKinect device. There are 12 dynamicAmerican Sign
Language (ASL) gestures (“Z”, “J”, “Where”, “Store”, “Pig”, “Past”, “Hungary”, “Green”,
“Finish”, “Blue”, “Bathroom”, “Milk”) and 10 people. Each person performs each gesture 2–3
times. There are 336 files in total, each corresponding to a depth sequence. The hand portion (above
the wrist) has been segmented. There are four problems in this dataset impact the performance of
dynamic hand gesture recognition seriously. (1) Frame loss (several sequences even only 16 frames,
but average number of frames is about 50). (2) Hand positions are unaligned (in several sequences,
hands active at the corner). (3) Noise interference. (4) Segmentation is not clean. A region of the
interest algorithm is used to reduce the impact of these problems. Specifically, (1) in the construction
of DMMf, a bounding box is set to extract non-zero area (region of interest). (2) According to the

Fig. 5 Mutual Information using Kraskov I estimator (our method with baseline)
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boundary box size obtained in (1), the depth sequence is resize to realize gesture alignment. In order
to have a fair evaluation with the other methods, we use the leave-one-subject-out cross-validation
scheme proposed by [36], i.e., for a dataset withN subjects,N-1 subjects are used for training and the
rest one for testing. This process is repeated for every subject and the average accuracy is reported.
The performance is calculated as the overall accuracy which is the ratio of the correctly recognized
gestures over the total number of test sequences. We shows some example frames of
MSRGesture3D dataset in Fig. 6.

Parameter setting To improve the computational efficiency, Principle Component analysis
(PCA) [34] is utilized to reduce the dimension of the feature vector. The PCA transformed
matrix is calculated using the training feature set and then applied to the test feature set. The
principal components that account for 100% of the total variation of the training features were
considered. The parameters reported in [41] were used here for the sizes of DMMs. The sizes
for DMMf, DMMs and DMMt are set to 118 × 133, 118 × 29 and 29 × 133, respectively.
Experimental parameters are the cells and bins of mHOG/HOG algorithm which used in the
construction of TWHOG and DMM-HOG.

For TWHOG, we conduct 27 sets of experiments and the optimal parameters are
cells = (8 × 8); bins = 16. Detailed results are shown in Table 1. For DMM-HOG, we
conduct 27 sets of experiments and the optimal parameters are cells = (7 × 7); bins =
18. Detailed results are shown in Table 2. To find the optimal parameters of the final
descriptor, we fixed desirable parameters of the TWHOG or DMMHOG and optimize
the parameters of the other one. As showed in Tables 3 and 4, two sets of parameters
can achieve 100% recognition rate. Due to the complexity of TWHOG and DMM-
HOG features both depend on the parameters of HOG. Therefore, to obtain same
recognition rate (100%) at MSRGesture3D dataset with lower features dimension, we
select cells = (8 × 8); bins = 16 for TWHOG and cells = (9 × 7); bins = 16 for DMM-
HOG as desirable parameter.

Comparison of methods We compare our method with other nineteen competitive
methods that were conducted on MSRGesture3D dataset with the same experimental
setup. The recognition outcome of our method as well as nineteen existing methods is
shown in the Table 6. It can be noted that our method performs best (100%) in terms
of overall classification accuracy. Furthermore, our recognition result indicates that the
fusion features, TSHOG, obtain higher discriminatory power compared with TWHOG
or DMM-HOG feature.

J Where

Green

Store

Finish

Z

Hungry

PastPig

MilkBathroomBlue

Fig. 6 Some example frames of MSRGesture3D dataset

10660 Multimedia Tools and Applications (2019) 78:10649–10672



DLEH2 (a spatial-temporal descriptor, which is a fusion of multiple descriptors) [41]
employ DLE to capture 3D structure and shape information of hands in detail, and employ
HOG2 (a spatial-temporal descriptor) to capture Spatial-temporal information. Then, fusing
Spatial-temporal information and shape information for dynamic hand gesture recognition.
DLEH2 is more excellent than the previous method because both incomplete Spatial-temporal
and shape information is considered in descriptor construction stage. Comparing with DLEH2,
TSHOG has three principle advantages. (1) HOG2 uses the second order gradient to capture
the spatial-temporal information and lead to information loss, yet TWHOG capture spatial-
temporal information by the first order gradient can alleviate this problem. (2) In some
complex situations (spatial-temporal variability and differences in hand configurations are in
severe imbalances) the complementarity of our descriptors is obviously stronger than the
DLEH2 method. Detailed are shown in Fig. 7. (3) DMM-HOG can capture more effective
shape information with lower vector dimension (DLE feature dimension above 10,000, while
DMM-HOG feature dimension is about 3000).

Connection performance Classification results in detail is shown in Figs. 8 and 9.

(1) Using TSHOG, all gestures, subjects are classified with 100% classification accuracy.
(2) TSHOG perform better than TWHOG or DMM-HOG, which demonstrates that the

information carried by the TWHOG and DMM-HOG is complementary in partial
gestures (spatial-temporal variability and differences in hand configurations are in severe
imbalances).

(3) For TWHOG, eight out of twelve gestures in the MSRGesture3D dataset are classified
with 100% classification accuracy, and “Where” gesture has the lowest recognition rate.

Table 1 Recognition accuracy (%) of TWHOG with different parameters, on MSRGesture3D dataset

cells 7 × 7 7 × 8 7 × 9 8 × 7 8 × 8 8 × 9 9 × 7 9 × 8 9 × 9 mean

bins = 14 93.1 97.6 95.2 95.2 97.9 95.5 95.5 97.3 94.6 96.41
bins = 16 96.1 97.6 97.3 96.7 98.8 96.7 96.7 97.9 96.7
bins = 18 96.1 97.9 95.2 94.6 97.9 96.1 96.4 97.0 95.5

Table 2 Recognition accuracy (%) of DMM-HOG with different parameters, on MSRGesture3D dataset

cells 7 × 7 7 × 8 7 × 9 8 × 7 8 × 8 8 × 9 9 × 7 9 × 8 9 × 9 mean

bins = 14 94.6 95.2 94.6 94.3 93.7 94.0 94.6 94.0 95.2 94.68
bins = 16 94.0 93.4 94.0 94.3 93.4 94.0 94.3 93.1 94.9
bins = 18 97.3 95.8 97.0 95.5 94.9 94.3 97.0 94.9 94.3

Table 3 Recognition accuracy (%) of TSHOG with different parameters of TWHOG (cells: 7 × 7, bins: 18 for
DMM-HOG), on MSRGesture3D dataset

cells 7 × 7 7 × 8 7 × 9 8 × 7 8 × 8 8 × 9 9 × 7 9 × 8 9 × 9 mean

bins = 14 98.8 98.8 98.8 99.7 99.1 99.1 98.2 98.5 98.5 98.97
bins = 16 98.8 98.8 98.8 99.7 99.7 99.1 99.4 99.4 98.5
bins = 18 98.8 98.8 99.1 99.1 99.1 99.4 98.2 98.8 98.8
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This result indicates: i) TWHOG is effective in capturing motion patterns of different
types of gestures. ii) It is necessary to introduce DMM-HOG to maximise the inter-class
distance of partial gestures.

4.2 SKIG dataset and setup

SKIG dataset contains 2160 gesture sequences collected from six subjects (1080RGB sequence and
1080 depth sequence, we only use the depth sequence part). All of these sequences are captured

Table 4 Recognition accuracy (%) of TSHOG with different parameters for DMM-HOG (cells: 8 × 8, bins: 16
for TWHOG), on MSRGesture3D dataset

cells 7 × 7 7 × 8 7 × 9 8 × 7 8 × 8 8 × 9 9 × 7 9 × 8 9 × 9 mean

bins = 14 99.4 99.7 99.1 99.7 99.7 99.7 99.1 99.7 99.1 99.49
bins = 16 99.4 99.7 99.1 99.4 100 99.7 100 99.1 99.1
bins = 18 99.7 99.7 99.4 99.7 99.4 99.4 99.1 99.4 99.7

Table 6 Comparison of the proposed method and other methods on MSRGesture3D dataset

Method Accuracy(%)

Kurakin et al. [18] 87.7
HON4D (Oreifej and Liu [25]) 87.29
Random Occupancy Patterns (Wang et al. [32]) 88.5
DMM-HOG (Yang et al. [36]) 89.20
Edge Enhanced DMM (Zhang and Tian [38]) 90.5
HON4D +Ddisc (Oreife and Liu [25]) 92.45
HOG2 (Ohn-bar and Trivedi [24]) 92.64
Tran et al. [29] 93.31
Rahmani et al. [26] 93.61
DMM-LBP-FF (Chen et al. [3]) 93.4
DMM-LBP-DF (Chen et al. [3]) 94.6
DMM+KECA (Madany et al. [11]) 94.44
Super Normal Vector (Yang et al. [35]) 94.74
STPCM (Liang et al. [19]) 97.15
HAGR-D (Santos et al. [27]) 97.49
Depth Context (Liu et al. [20]) 98.21
Chen et al. [5] 98.50
Multi-Temporal DMM-LBP (Jiang et al. [15]) 98.80
DLEH2 (Zheng et al. [41]) 99.10
DMM-HOG 97.3
TWHOG 98.8
TSHOG (TWHOG + DMM-HOG) 100

Table 5 Recognition accuracy (%) of TSHOG (Optimal parameter setting) with different SVM parameters

svm_type C = 1 C = 5 C = 10 C = 15 C = 20

C_SVC 99.7 99.7 99.7 99.7 99.7
Epsilon_SVR 99.4 99.7 99.7 99.7 99.7
Nu_SVR 100 100 100 100 100
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synchronously with Kinect sensors (including RGB cameras and deep cameras). The data set
collects a total of 10 gestures: “round (clockwise)”, “triangular (counterclockwise)”, “up down”,
“right-left”, “wave”, “Z”, “cross”, “come here”, “turn-around”, and “pat”. In the collection
process, all ten categories use three configurations: fist, index and flat. Using three different
backgrounds (i.e, wood, white plain paper and paper with characters) and two lighting conditions
(i.e, light and differential) sequence. We divided all sequences into three subsets: “subject1+
subject2”, “subject3+ subject4”, and “subject5 + subject6”. The 3-fold cross-validation scheme
as [21] is used to evaluate our method. The performance is calculated as the overall accuracy which
is the ratio of the correctly recognized gestures over the total number of test sequences. Fig. 10
shows some example frames of this dataset.

Fig. 7 Mutual Information using Kraskov I estimator. (our method with DLEH2)

Fig. 8 Classification performance (recognition rates per gesture class) on MSRGesture3D dataset when use
DMMHOG, TWHOG or TSHOG alone
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Parameter setting As noted in [41], in our experiments SKIG dataset has the same resolution
240 × 320 with MSRAction3D dataset. Hence the sizes for DMMf, DMMs andDMMt are set to
102 × 54, 102 × 75 and 75 × 54, respectively. Experimental parameters are the cells and bins in
the mHOG/HOG algorithm, which is used to construct the TWHOG and DMM-HOG
descriptors in this paper.

For TWHOG, we conduct 27 sets of experiments and there are four sets optimal parameter: 1)
cells = (7× 7); bins = 16.2) cells = (7× 7); bins = 18.3) cells = (8× 7); bins = 16.4) cells = (9× 7);
bins = 18. Detailed results are shown in Table 7. For DMM-HOG, we conduct 27 sets of
experiments and get the optimal parameters: cells = (8× 8); bins = 16. Detailed results are shown
in Table 8. To find the optimal parameters of TSHOG, we fixed desirable parameters of the
TWHOG or DMM-HOG and optimize the parameters of the other one. As showed in Tables 9

Fig. 9 Detailed classification results, by separately performing our 3 kinds of descriptors on MSRGesture3D
dataset, for each fold in the leave-one-out cross-validation

Circle Triagnle Up-down Right-left Wave Z Cross Comehere
Turn

around Pat

Fig. 10 Some example frames of SKIG dataset
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and 10, cells = (7× 7); bins = 18 for TWHOG and cells = (7 × 7); bins = 16 for DMM-HOG are
desirable parameters of TSHOG and obtain 98.7% recognition rate on SKIG dataset.

Comparison of methods The comparison of our method with several other competitive methods
that with the same experimental setup, on SKIG dataset is shown in Table 11. TSHOG obtains the
state-of-the-art accuracy of 98.7%, which outperforms all previousmethods as showed on this table.
In spite of only 0.9% better than the third-best performance method Multi-stream Recurrent Neural
Network (MRNN) [23], our method is simpler than MRNN, which is based on Neural Network.
Furthermore, MRNN is trained on multiple modalities, including depth, color and optical flow but
TSHOG only used depth modality. In addition, compared with DMM-HOG or TWHOG alone as
features, 7.1 and 1.1% improvements are achieved by TSHOG on SKIG dataset respectively.

Fusion performance The confusion matrix is shown in Fig. 11. It can be observed from the

Table 7 Recognition accuracy (%) of TWHOG with different parameters, on SKIG dataset

cells 7 × 7 7 × 8 7 × 9 8 × 7 8 × 8 8 × 9 9 × 7 9 × 8 9 × 9 mean

bins = 14 97.5 96.9 97.4 97.4 97.4 96.9 97.4 97.4 96.0 97.21
bins = 16 97.6 96.8 97.3 97.6 96.8 97.4 97.0 97.5 96.9
bins = 18 97.6 97.1 97.4 97.3 97.1 97.3 97.6 97.3 96.8

Table 8 Recognition accuracy (%) of DMM-HOG with different parameters, on SKIG dataset

cells 7 × 7 7 × 8 7 × 9 8 × 7 8 × 8 8 × 9 9 × 7 9 × 8 9 × 9 mean

bins = 14 87.3 88.4 88.1 89.2 90.6 89.1 87.1 86.9 86.6 88.90
bins = 16 88.7 89.7 90.2 90.8 91.6 89.4 88.4 88.8 87.7
bins = 18 89.1 90.7 89.1 89.7 90.1 90.3 88.0 87.1 87.7

Table 9 Recognition accuracy (%) of TSHOG with different parameters of TWHOG (cells: 8 × 8, bins: 16 for
DMM-HOG), on SKIG dataset

cells 7 × 7 7 × 8 7 × 9 8 × 7 8 × 8 8 × 9 9 × 7 9 × 8 9 × 9 mean

bins = 14 97.8 97.4 97.4 97.4 97.7 97.9 97.7 97.4 97.9 97.64
bins = 16 97.6 97.3 97.7 97.6 97.6 97.6 98.0 97.6 97.5
bins = 18 98.1 97.5 97.4 97.9 97.2 98.0 98.1 97.8 97.3

Table 10 Recognition accuracy (%) of TSHOG with different parameters for DMM-HOG (cells: 7 × 7, bins: 18
for TWHOG), on SKIG dataset

cells 7 × 7 7 × 8 7 × 9 8 × 7 8 × 8 8 × 9 9 × 7 9 × 8 9 × 9 mean

bins = 14 98.3 98.1 98.1 98.1 98.1 98.1 97.8 97.9 97.9 97.96
bins = 16 98.7 98.2 97.9 98.5 98.0 97.9 97.8 97.2 97.4
bins = 18 98.1 97.4 98.1 98.6 98.1 98.1 97.7 97.2 97.4
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confusion matrix that all the gestures are classified with above 94% classification accuracy.
Five gestures (“Round”, “Triangular”, “Wave”, “Z”, “Cross”) are classified with 100%
recognition accuracy. Classification performance in detail is shown in Figs. 12 and 13. As

Table 11 Comparison of proposed method and other methods on SKIG dataset

Method Accuracy (%)

RGGP +RGB-D (Liu et al. [21]) 88.7
Choi et al. [6] 91.9
4DCOV (Cirujeda et al. [7]) 93.8
Depth Context (Liu et al. [20]) 95.37
Tung et al. [30] 96.7
MRNN (depth only) (Nishida et al. 95.9
[23]) 97.8
MRNN (Nishida et al. [23]) 94.35
DLE (Zheng et al. [41]) 94.72
HOG2 (Zheng et al. [41]) 98.43
DLEH2 (Zheng et al. [41]) 98.6
R3DCNN (Gupta P M X Y S et al. [13])
DMM-HOG 91.6
TWHOG 97.6
TSHOG 98.7

Fig. 11 The confusion matrix of proposed method on SKIG dataset
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Fig. 12 Detailed classification results, by separately performing our 3 kinds of descriptors on SKIG dataset, for
the 3-fold cross-validation

Fig. 13 Classification performance (recognition rates per gesture class) on SKIG dataset when use DMMHOG,
TWHOG or TSHOG alone
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mentioned above, each type of gesture in the SKIG dataset uses three different configurations
(fist, index, flat), hence capturing shape information causes an unnecessary increase in the
intra-class distance. This also explains that why fusing TWHOG and DMM-HOG cannot
achieve significant improve on SKIG dataset. Furthermore, it can be seen that our method is
robust against pose, illumination and background. Experimental results on SKIG dataset
demonstrate that our method has good generalization ability.

5 Conclusion and future works

This paper has presented an effective feature descriptor, TSHOG,which can capture both themotion
pattern and shape information. Specifically, TWHOGmitigates intra-class spatial-temporal variabil-
ity by extracting the average spatial-temporal information in the space-time domain, DMM-HOG
alleviates similar inter-class motion pattern by extracting subtle hand configuration differences
between different types of dynamic gestures. We experimentally confirm the efficacy of our
proposed approach using two different datasets (100% for MSRGesture3D, 98.7% for SKIG).
And experimental results indicate that TSHOG is robust to spatial-temporal variability, illumination
and background. The future work mainly focuses on two aspects: (1) enhance the discriminative
power of TWHOG descriptor for the gestures with the similar motion. (2) Applying this proposed
method to more extensive tasks, such as person ReID.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.
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