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Abstract
Recently, scene based classification has become a new trend for very high spatial
resolution remote sensing image interpretation. With the advent of deep learning, the
pretrained convolutional neural networks (CNNs) have been proved effective as feature
extractors for scene classification tasks in the remote sensing domain, but the potential
characteristics and capabilities of such deep features have not been sufficiently analyzed
and fully understood. Facing with complex remote sensing scenes with huge intra-class
variations, it is still not clear about the limitation of these powerful deep features in
exploring essential invariant attributes of remote sensing scenes of the same kind but,
in most cases, from separate sources. Therefore, this paper makes an intensive inves-
tigation in the feature representation ability of such deep features from the aspect of
inter-dataset scene classification of remote sensing images. Four well-known pretrained
CNN models and three different commonly used datasets are selected and summarized.
Firstly, deep features extracted from various intermediate layers of these models are
compared. Then, the inter-dataset feature representation ability is evaluated using cross-
classification of different datasets and discussed in terms of imaging spatial resolution,
image size, model structure, and time efficiency. Finally, several instructive findings are
revealed and conclusions are drawn regarding the strength and weakness of the CNN
features in the application of remote sensing image scene classification.

Keywords Remote sensing image . Scene classification . Inter-dataset feature representation .

Deep learning features . Convolutional neural networks (CNNs)

Multimedia Tools and Applications (2019) 78:9667–9689
https://doi.org/10.1007/s11042-018-6548-6

* Lijun Zhao
zhaolj01@radi.ac.cn

1 Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101,
People’s Republic of China

2 Univiersity of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-018-6548-6&domain=pdf
http://orcid.org/0000-0002-7140-8105
mailto:zhaolj01@radi.ac.cn


1 Introduction

With the constant development of imaging technology of satellite sensors, the spatial resolu-
tion has been greatly improved. These very high spatial resolution (VHSR) remote sensing
images can provide more detailed information about the Earth, compared with the traditional
middle and low resolution remote sensing images. These ground details usually contain
multiple land-cover types and complex ground objects, e.g., airports, parking lots, and
residential areas, making the previous homogenous regions in middle or low resolution images
become highly heterogeneous. Under such circumstances, traditional pixel-based or object-
based land-cover classification methods [2, 14, 43] can no longer meet the demand of the
present research of image interpretation. These years, scene based remote sensing image
classification has attracted more and more attention from the remote sensing community [6,
7, 9–11, 26, 31, 36, 39, 44, 46–48], which provides a new way to exploit the information of
VHSR remote sensing images.

Observe that, in order to do scene classification, feature extraction and representation
becomes a key procedure. Inspired by recognition technologies from the computer vision
community, earlier studies mainly focus on the well-known bag-of-visual-words (BOVW)
model [6, 7, 12, 31, 34, 36, 44, 47–49]. Although these studies have produced good results in
VHSR remote sensing image scene classification, no more breakthroughs in classification
performance have further been achieved using the BOVW-type methods in recent years, owing
to the limitation of description capability of the BOVW model itself.

Recently, with the advent of the deep learning methods [1, 15, 23] which have achieved
great success in many practical applications like video retrieval and popularity prediction [8,
27], clothing matching [38], aerial image object detection [32] and hyperspectral image
classification [41], the feature representation for image scenes has stepped into a new era.
Unlike the traditional hand-crafted features (e.g., the BOVW model), the deep learning model
can learn a set of rich nonlinear representations directly from the input data with no assump-
tions or prior knowledge [25]. Compared with the shallow-structured spatial pyramid matching
(SPM) model [20], a popular BOVW-type feature which represents an image in different
scales, the deep learning features contain much more powerful feature representations and
representative structural information of data with multiple levels of abstraction. Such an
advantage makes the deep learning features more competent for exploring the intrinsic
attributes of complex remote sensing scenes with huge intra-class variations. In the most
recent year, preliminary attempts [17, 20, 24, 25, 30, 42, 45] have been made to apply the deep
learning models to deal with the VHSR remote sensing image scene classification tasks.
Among these existing studies, the deep convolutional neural networks (CNNs) [22] become
the most popular deep learning approach in the image classification field. Owing to their high-
powered feature learning and representation abilities, dramatic improvements have been
achieved beyond the state-of-the-art records on several benchmark datasets [17, 30]. Penatti,
Nogueira, and dos Santos [30] first proposed to evaluate the generalization power of the deep
CNNs trained for recognizing everyday objects in the aerial and remote sensing domain. Also,
Hu et al. [17] thoroughly investigated the CNN features extracted from different layers and
proved that not only the fully-connected layers but also the convolutional layers play an
important role in the representation of image scene features.

Although the pretrained CNN models from the natural image domain, regarded as feature
extractors, have been proved to be successfully applied to the remote sensing community, the
application scenarios usually appear in intra-dataset scene classification, i.e., training and
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prediction data are from one same dataset or the same regional satellite images, even though
they are separate and non-overlapping. Up till now, few studies have ever been concerned
about the inter-dataset representation ability of deep features. Here, the deep feature refers to
the feature extracted by some pretrained CNN model and the inter-dataset feature representa-
tion ability means the ability of deep features in extracting invariant information of data from a
same category but from different datasets. Figure 1 visually shows an example of intra-dataset
and inter-dataset feature representation and classification. This study is of great importance and
makes great senses because in practical applications, we usually have to recognize new
unknown remote sensing scene images based on previously learned scene patterns, and these
unknown images may not be always from the same dataset or the same regional satellite image
as the training samples, but from a separate data source with different imaging conditions most
of the time. As remote sensing scene images are easy to be affected by the changed imaging
conditions, e.g., imaging orientations and imaging spatial resolutions, the scene images of the
same kind usually show various changes under different imaging conditions. Thus, it is
demanded that the deep features be powerful enough to extract the most essential features of
scenes from the same category. It naturally becomes a question whether such deep features are
insusceptible to the changes of imaging conditions and can capture the intrinsic invariant
attributes of scene images of the same kind but from different datasets. However, this question
has not been answered by any other references, and it is needed that the performance of such
deep features should be further analyzed and investigated in the application scenario of inter-
dataset classification where training and prediction data are from different datasets.

Based on this motivation, this paper conducts an intensive analysis of the inter-dataset
representation ability of deep features for VHSR remote sensing image scene classification. To
this end, four well-known pretrained CNN models are selected as feature extractors, including
AlexNet [19], Caffe [18], GoogLeNet [40], and VGG-16 [37]. The selection criteria are that
these four models are commonly used in the recent research of remote sensing image scene
classification [4, 17, 30] and are also the top two winners in the ImageNet Large Scale Visual

Fig. 1 Illustration of inter-dataset classification and intra-dataset classification
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Recognition Challenge (ILSVRC) in recent years. To analyze their inter-dataset representation
ability, deep features are evaluated by inter-dataset classification, i.e., the patterns learned from
the deep features in one dataset are utilized to distinguish scene images of the same scene
categories but from another dataset with variations in image size, imaging angle, orientation,
and spatial resolution. Three public VHSR remote sensing scene datasets [13, 44, 49] are used
for inter-dataset classification.

The main contributions of this paper are: 1) our work is the first to intensively study and
analyze in details the potential characteristics and capabilities of deep CNN features in the
application scenario of inter-dataset scene classification of VHSR remote sensing images,
which is what previous studies seldom consider and investigate in. Figure 2 shows the
difference of previous works and the study in this paper. 2) our results answer the question
whether such deep features are insusceptible to the changes of imaging conditions and can
capture the intrinsic invariant attributes of scene images of the same kind but from different
datasets and reveal their potential in the application of inter-dataset scene classification. The
findings provide important significance for high-level feature representation in remote sensing
image scene classification and also instructions for later works in further understanding the
applicability of CNN feature extractors in remote sensing image scene classification.

2 Materials and methods

2.1 Data

To evaluate the performance of the deep CNN features in VHSR remote sensing image scene
classification, three VHSR remote sensing scene image datasets with varied sizes, imaging
angles, orientations and spatial resolutions were used to perform the following experiments.

The first dataset (Dataset-1) [44] is a well-known public dataset for remote sensing image
scene classification, which is available at http://vision.ucmerced.edu/datasets. This dataset was
extracted from United States Geological Survey (USGS) National Map and contains 21 land-
use scene categories (Fig. 3), including agricultural, airplane, baseball diamond, beach,
buildings, chaparral, dense residential, forest, freeway, golf course, harbor, intersection,

Fig. 2 Comparison of previous works and the study in this paper
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medium density residential, mobile home park, overpass, parking lot, river, runway, sparse
residential, storage tanks, and tennis courts. Each class includes 100 images and each image
has an image size of 256 × 256 pixels. All the images consist of three bands of red, green, and
blue with a spatial resolution of about 0.3 m.

The second dataset (Dataset-2) [13] is also a publicly available one, which can be
downloaded at http://dsp.whu.edu.cn/cn/staff/yw/HRSscene.html. All the scenes in the
dataset were extracted from a set of satellite images exported from Google Earth with
spatial resolution up to 0.5 m and three bands of red, green, and blue. The whole dataset
contains 19 classes of scenes including airport, beach, bridge, commercial area, desert,
farmland, football field, forest, industrial area, meadow, mountain, park, parking lot, pond,
port, railway station, residential area, river, and viaduct. For each scene category, there are
about 50 scene images, with 1005 images in total for the entire dataset. The image sizes are
600 × 600 pixels. This dataset is a challenging one because all these scenes are extracted from
very large satellite images on Google Earth, where the illumination, appearances of objects and

Fig. 3 Examples of Dataset-1
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their locations vary significantly, with frequent occlusions [13]. Figure 4 shows some
examples of each class in this dataset.

The third dataset (Dataset-3) [49] was created by the authors and has been made available
for other researchers, which can be downloaded at http://pan.baidu.com/s/1mhagndY. This
dataset was manually extracted from Google Earth, which covers the images of several USA
cities including Washington DC, Los Angeles, San Francisco, New York, San Diego, Chicago,
and Houston. Three spectral bands were used including red, green, and blue. The spatial
resolution is about 0.2 m. All the regional images were cropped into a uniformed image size of
512 × 512 pixels by an overlapped sampling strategy, and then manually picked out and
labeled by the specialists in the field of remote sensing image interpretation for about a
week, with those cropped images containing multiple scenes abandoned. Finally, there are
11 complicated scene categories including dense forest, grassland, harbor, high buildings, low
buildings, overpass, railway, residential area, roads, sparse forest, and storage tanks. Many of
the scene categories are quite similar in vision, which increases the difficulty in distinguishing

Fig. 4 Examples of Dataset-2
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all the scenes. The dataset includes 1232 images in total, with each class about 100 images.
Figure 5 shows examples from the dataset.

2.2 Involved deep convolutional neural networks

The CNN model is a type of feed-forward artificial neural network models for deep learning,
which is biologically inspired by the organization of the animal visual cortex. Generally, CNN
can be considered to be made up of two main parts. The first part contains alternating
convolutional and max-pooling layers, in which the convolutional layer outputs feature maps
by computing a dot product between the local region in the input feature maps and a filter and
the max-pooling layer performs a down-sampling operation to feature maps by computing the
maximum on a subregion. As the input of each layer is just the output of its previous layer, a
hierarchical feature extractor can be formed to map the original input images into feature
vectors. Following the several stacked convolutional and max-pooling layers, the second part
contains fully-connected layers, with the last layer (e.g., softmax layer) used to classify the
extracted feature vectors. Figure 6 shows an illustration of a typical CNN architecture.

In this paper, pretrained CNN models are used to extract deep CNN features for remote
sensing image scene classification. Several architectures have achieved great success in the
image classification domain. Here, four successful modern CNN architectures will be briefly
depicted and utilized in the following experiments, considering their popularity in image
classification tasks. All the pretrained CNN models are utilized from the Caffe Library that
is available at https://github.com/BVLC/caffe/wiki/Model-Zoo.

2.2.1 AlexNet

AlexNet, the winning model in the ILSVRC 2012, is developed by Krizhevsky, Sutskever, and
Hinton [19]. As shown in Fig. 7, it contains eight layers, in which the first five are

Fig. 5 Examples of Dataset-3
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convolutional and the remaining three are fully-connected, with the output of the last fully-
connected layer fed to a 1000-way softmax layer.

Several new characteristics make AlexNet successful in the application of visual recogni-
tion tasks, such as rectified linear units (ReLU) nonlinearity, data augmentation, and dropout.
To be specific, the ReLU nonlinearity can significantly accelerate the training phase, the data
augmentation can effectively combat overfitting by generating image translations and hori-
zontal reflections and altering the intensities of the RGB channels in training images, and the
dropout technique can reduce substantial overfitting when used in the first two fully-connected
layers.

2.2.2 Caffe

Caffe, also trained in ILSVRC 2012, is maintained and developed by the Berkeley Vision and
Learning Centre (BLVC) [18]. It is short for convolutional architecture for fast feature
embedding, which can provide multimedia scientists and practitioners with clean and modi-
fiable framework for state-of-the-art deep learning algorithms and a collection of reference
models. Similar to AlexNet, it comprises of five convolutional layers and three fully-connected
layers, but the order of pooling and normalization layers are exchanged, with no data
augmentation in training stage.

2.2.3 GoogLeNet

GoogLeNet, the winning model in ILSVRC 2014, is presented in [40]. The name of
GoogLeNet is homage to LeCun’s pioneering LeNet-5 network [21]. It is a 22-layer deep

Fig. 6 Illustration of a typical architecture of a CNN model

Fig. 7 The overall architecture of AlexNet
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CNN when counting only layers with parameters (see Table 1). In contrast to AlexNet,
GoogLeNet not only uses much fewer parameters, but also is significantly more accurate.

The core of GoogLeNet is a convolutional neural network architecture, namely the
Inception module, which can effectively reduce the complexity of the expensive filters of
convolutional architectures by applying dimension reduction and projection, leading to an
improved utilization of the computing resources inside the network. As shown in Fig. 8, 1 × 1
convolutions are used to compute reductions before the expensive 3 × 3 and 5 × 5 convolu-
tions. The convolutions with different sizes in the Inception module can produce features at
different scales and they are then aggregated and fed to the next layer.

2.2.4 VGG-16

The VGG team secured the first and the second places in ILSVRC 2014 in the localization and
classification tasks respectively. Two best-performing deep models, presented by Simonyan
and Zisserman [37], were further improved and released after the competition, named as VGG-
16 (containing 13 convolutional layers and 3 fully-connected layers) and VGG-19 (containing
16 convolutional layers and 3 fully-connected layers).

Rather than using relatively large receptive fields in the convolutional layers, such as 11 ×
11 with stride 4 in the first convolutional layer as in AlexNet, the VGG network uses very
small 3 × 3 receptive fields through the whole net. Followed by a stack of convolutional layers
are three fully-connected layers, two 4096-channel fully-connected layers and one 1000-
channel layer for softmax output. In this work, the pretrained VGG-16 model was selected
for feature extraction, since it has fewer layers with competitively high performance. Table 2
shows the architecture of VGG-16 network.

3 Experimental setup

To compare and analyze the inter-dataset representation ability of deep features, the inter-
dataset classification was conducted with the support vector machine (SVM) as the unified
classifier like many studies [3, 17, 28, 30, 33] that directly use the pretrained CNN models.
The flowchart of the feature evaluation procedure is presented in Fig. 9, which consists of two
main steps, including feature representation and feature classification.

Table 1 The architecture of GoogLeNet network

Type Dimension Depth Type Dimension Depth

Input 224 × 224 × 3 0 Inception(4b) 14 × 14 × 512 2
Convolution 112 × 112 × 64 1 Inception(4c) 14 × 14 × 512 2
Max pool 56 × 56 × 64 0 Inception(4d) 14 × 14 × 528 2
Convolution 56 × 56 × 192 1 Inception (4e) 14 × 14 × 832 2
Convolution 56 × 56 × 192 1 Max pool 7 × 7 × 832 0
Max pool 28 × 28 × 192 0 Inception(5a) 7 × 7 × 832 2
Inception(3a) 28 × 28 × 256 2 Inception(5b) 7 × 7 × 1024 2
Inception(3b) 28 × 28 × 480 2 Average pool 1 × 1 × 1024 0
Max pool 14 × 14 × 480 0 FC 1 × 1 × 1024 1
Inception(4a) 14 × 14 × 512 2 Output 1 × 1 × 1000 0
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For the deep feature representation, all the involved pretrained CNN models were used as
feature extractors and the CNN features were extracted from the intermediate outputs of the
convolutional and fully-connected layers. Thus, for the deep features extracted from different
layers, the dimension of the obtained feature vector is identical with that of the layer selected.
Input images were all resized to the size of ImageNet (i.e., 256 × 256) so as to meet the
requirements of the pretrained CNNmodels. Besides, for comparison purpose, the well-known
SPM [20] model was added as the baseline hand-crafted feature extraction method, as it
generates features in different scales by partitioning the image into increasingly fine subre-
gions, which is, to some degree, similar to deep learning. Dense regions using a regular grid
with 8 pixels spacing and 16 × 16 pixels patch size were used to generate image patches, based
on each of which its scale-invariant feature transform (SIFT) feature is represented by
histograms of eight-bin gradient directions computed over a 4 × 4 spatial grid. A three-level
pyramid was applied as Lazebnik, Schmid, and Ponce [20] to generate increasingly fine
subregions. The vocabulary sizes were set to be 100, 300, 500, 700, and 900, and the settings
with the best classification results were applied.

For feature classification, the popular LIBSVM toolbox [5] was applied as the unified
classification method throughout the experiments. For deep CNN features, the radial basis
function (RBF) and linear kernels were applied considering their popularity [17, 29, 30]. For

Fig. 8 Inception module with dimension reduction in GoogLeNet

Table 2 The architecture of VGG-16 network

Type Dimension Depth Type Dimension Depth

Input 224 × 224 × 3 0 Conv4_2 28 × 28 × 512 1
Conv1_1 224 × 224 × 64 1 Conv4_3(after pool) 14 × 14 × 512 1
Conv1_2(after pool) 112 × 112 × 128 1 Conv5_1 14 × 14 × 512 1
Conv2_1 112 × 112 × 128 1 Conv5_2 14 × 14 × 512 1
Conv2_2(after pool) 56 × 56 × 128 1 Conv5_3(after pool) 7 × 7 × 512 1
Conv3_1 56 × 56 × 256 1 FC6 1 × 1 × 4096 1
Conv3_2 56 × 56 × 256 1 FC7 1 × 1 × 4096 1
Conv3_3 (after pool) 28 × 28 × 256 1 FC8 1 × 1 × 1000 1
Conv4_1 28 × 28 × 512 1 Output 1 × 1 × 1000 0
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SPM, the corresponding pyramid match kernel was used as described by Lazebnik, Schmid,
and Ponce [20]. The cross-validation method with the grid search mechanism [16] was used
for SVM model selection. For the RBF based SVM, the optimal model parameters were
obtained to minimize a five-fold cross-validation estimate of the classification error rate using
different penalty parameters C = [23, 21, 2−1, 2−3, 2−5, 2−7, 2−9, 2−11, 2−13, 2−15] and kernel
parameters γ = [2−5, 2−3, 2−1, 21, 23, 25, 27, 29, 211, 213, 215] for each classification. For the
linear SVM and the pyramid match kernel based SVM, the only parameter to select is the
penalty parameter C, and their search space was set C = [23, 21, 2−1, 2−3, 2−5, 2−7, 2−9, 2−11, 2−13,
2−15], with the parameters yielding the minimum five-fold cross-validation errors as their
optimal SVM parameters.

To evaluate the representation ability of deep CNN features in inter-dataset classification,
the common categories in every two datasets were picked out. The corresponding relations of
common scene categories between every two datasets are given in Table 3.

To quantitatively evaluate the performances of deep features extracted from different
pretrained CNN models, the classification result was evaluated by average overall classifica-
tion accuracy from five runs on all scene categories. The overall classification accuracy is
defined as the number of correctly predicted samples divided by the total number of testing
samples. In different experiments, different datasets were used as the reference data for
evaluation. Detailed information is given in Section 4.

Fig. 9 Flowchart of the comparative study scheme

Table 3 Corresponding relations of common scene categories between every two datasets

Class
Index

Dataset-1 Dataset-2 Dataset-1 Dataset-3 Dataset-2 Dataset-3

1 Agricultural Farmland Buildings High
build-
ings

Commercial
area

High
build-
ings

2 Beach Beach Dense & medium
density residential

Residential
area

Forest Dense
forest

3 Buildings Commercial
area

Forest Dense
forest

Industrial
area

Low
build-
ings

4 Dense & medium
density residential

Residential
area

Harbor Harbor Meadow Grassland

5 Forest Forest Overpass Overpass Railway
station

Railway

6 Overpass Viaduct Storage tanks Storage
tanks

Residential
area

Residential
area

7 Parking lot Parking lot Viaduct Overpass
8 River River
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4 Results

To evaluate the deep CNN features in VHSR remote sensing image scene classification, the
involved factors in scene classification were intensively compared, in which half of the images
in the original datasets were used as training samples and the rest half were used as testing
samples. Then, every two datasets were used as training and testing data in cross-classification
to test the inter-dataset representation ability of CNN features and only the common categories
were involved, as shown in Table 3. Take the cross-classification case of Dataset-1 and
Dataset-2 as an example. There are eight common categories that both of the datasets share.
If the images from the eight categories in Dasetset-1 are used as training data, the images from
the eight categories in Dasetset-2 will then be used as testing data.

4.1 Comparison of involved factors

For AlexNet and Caffe, they have a similar architecture that contains three fully-connected
layers and five convolutional layers. For VGG-16, it contains 13 convolutional layers and
three fully-connected layers. For these three CNN architectures, their deep CNN features were
extracted from the last convolutional layer (Conv5/Conv5_3), the first fully-connected layer
(FC6), and the second fully-connected layer (FC7). However, for GoogLeNet, as it only has
one fully-connected layer before output, the last convolutional layer [inception (5b)] and the
last fully-connected layer (FC) were used to extract its deep CNN features. Note that the last
fully-connected layer is not considered for all the models because it is actually a softmax layer
that computes the scores for each defined class by specific tasks, and thus this layer does not
contain so much general feature information as previous layers. Comparison results are shown
in Fig. 10 and Table 4.

As shown in Fig. 10, the classification results are promising. To be specific, the best
classification accuracies for Dataset-1 and Dataset-2 can exceed 94% and the best result for
Dataset-3 can reach 90%, which indicates that the deep CNN features extracted from the
pretrained CNN models are very good at capturing the essential characteristics of the remote
sensing image scenes. For comparison of different kernels, the results obtained by the linear
kernel are consistently better than those done by the RBF kernel. This is because the RBF
kernel usually maps the samples from the original low dimensional feature space to a higher
dimensional space, whereas the deep CNN features extracted from the convolutional or fully-
connected layers already have very high dimensions, e.g., the Caffe model has a 4096-
dimensional feature vector for the FC6 layer and a 43,264-dimensional feature vector for the
Conv5 layer. Under such circumstances, the original feature space is high enough for discrim-
inating different classes and does not need to be mapped into a much higher feature space.
Therefore, the RBF kernel becomes unsuitable for such high dimensional feature vectors. In
particular, for the high dimensional features from the convolutional layers, the higher the
feature dimension is, the worse the RBF kernel performs, compared with the linear kernel,
which can be corroborated by Fig. 10a, d, and g. Take VGG-16 and GoogLeNet as an
example. For VGG-16, the feature vector from the last convolutional layer (Conv5_3) has a
dimension of 25,088; for GoogLeNet, the feature dimension of the last convolutional layer
[inception (5b)] reaches 50,176, one time higher than that from the VGG-16 architecture.
When the convolutional layers are utilized to extract CNN features, the linear SVM can
improve the classification accuracy of VGG-16 by around 10%, compared with the RBF
based SVM, whereas the improvement for GoogLeNet is much more, reaching more than
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25%. This just verifies that the feature dimension does have impacts on the classification
performance of the RBF kernel. Note that in Fig. 10d, the extremely low classification
accuracy of GoogLeNet using the RBF based SVM may also result from the characteristics
of the RBF kernel. In the following experiments, the linear SVMwill be used for learning deep
CNN features.

Table 4 Comparison of classification results using CNN features of different pretrained models and the SPM
hand-crafted feature

Models Conv-Last(%) FC-First(%) FC-Second/Last(%) Hand-crafted feature(%)

Dataset-1 AlexNet 86.30 92.90 91.62 \
Caffe 87.98 93.66 92.23 \
GoogLeNet 90.30 \ 91.39
VGG-16 91.90 94.50 92.32 \
SPM(baseline) \ \ 78.72

Dataset-2 AlexNet 87.67 92.84 92.09 \
Caffe 89.15 93.72 93.56 \
GoogLeNet 91.05 \ 93.20
VGG-16 91.33 94.63 93.56 \
SPM(baseline) \ \ 82.00

Dataset-3 AlexNet 80.75 87.34 86.72 \
Caffe 81.79 87.63 87.31 \
GoogLeNet 85.73 \ 87.14
VGG-16 87.34 91.04 89.74 \
SPM(baseline) \ \ 79.06

Fig. 10 Comparison of classification results with CNN features by classifiers of different kernels: using the last
convolutional layer for classification of aDataset-1, d Dataset-2, g Dataset-3; using the first fully-connected layer
for classification of b Dataset-1, e Dataset-2, h Dataset-3; using the second/last fully-connected layer for
classification of c Dataset-1, f Dataset-2, i Dataset-3
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In Table 4, comparisons are made for the classification results obtained using features from
different layers of pretrained CNN models. As can be seen in Table 4, the classification
accuracies of different pretrained CNN models are quite similar, with GoogLeNet and VGG-
16 slightly better than the other two CNN models in general, and the deep CNN features
significantly outperform the SPM features in classification accuracy on all the three datasets,
which indicates that the CNN features have relatively stronger feature representation abilities,
compared with the hand-crafted features. The probable reason is that with such a brain-like
feature learning mode, the feature representation learned from the CNN model is very close to
the high-level semantic information of the whole image. Besides, by comparing the numbers
of hidden layers, it can be observed that both GoogLeNet and VGG-16 have deeper architec-
tures than the other two CNN models that only have eight hidden layers. With the increase of
the number of hidden layers, the extracted features are deeper and become closer to high-level
semantic information, which makes the feature vector of the scene image more descriptive.
That is why AlexNet and Caffe have very close classification accuracies and why GoogLeNet
and VGG-16 show relatively better classification results. These results just prove that the depth
of the CNN architecture does play an important role in the feature representation ability of the
extracted deep features. For each of the four pretrained CNN models, the features extracted
from the fully-connected layers consistently excel those from the convolutional layers, which
can be attributed to the fact that the fully-connected layers can usually learn more abstract
semantic information than the convolutional layers. For the two fully-connected layers, the
classification results from them both are more or less the same, but the features from the first
fully-connected layers do slightly better in most cases.

4.2 Evaluation of inter-dataset feature representation ability

To evaluate the representation ability of CNN features in inter-dataset classification, each
dataset was utilized as the training or testing samples, with the entire samples involved. Note
that these three datasets are quite different in image size, spatial resolution, class patterns, and
intra-class complexity. This experiment will test whether or not the CNN features are able to be
learned and transferred to predict scene images from heterogeneous sources. As analyzed in
the previous experiment, the first fully-connected layer of the pretrained CNN models will be
applied to extract deep features, with the linear SVM as the classifier. Note that the GoogLeNet
architecture only has one fully-connected layer, so this layer will be used to extract deep
features. Table 5 gives the comparison results for cross-classification among three datasets
using different pretrained CNN models. As shown in Table 5, the GoogLeNet and VGG-16
models do comparatively better than the other CNN models in classification accuracy, which

Table 5 Comparison of cross-classification results among three datasets using the CNN features of different
pretrained models

Training- > Testing AlexNet(%) Caffe(%) GoogLeNet(%) VGG-16(%)

Dataset-1- > Dataset-2 67.92 74.94 62.53 70.96
Dataset-2- > Dataset-1 64.56 53.33 65.89 59.11
Dataset-1- > Dataset-3 84.99 84.11 87.03 90.09
Dataset-3- > Dataset-1 80.71 81.14 85.43 81.57
Dataset-2- > Dataset-3 54.59 51.02 61.10 65.56
Dataset-3- > Dataset-2 58.96 59.22 62.86 68.57
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further confirms the positive effect of deep hidden layers on the classification performance. For
cross-classification of Dataset-1 and Dataset-3, the classification accuracies using the CNN
features can reach above 80%, however, for cross-classifications of Dataset-1 and Dataset-2, as
well as Dataset-2 and Dataset-3, the classification performances using varied pretrained CNN
models are not high and even the best accuracies only reach around 60%. The probable reason
may be that Dataset-1 and Dataset-3 are almost identical in spatial resolution and their
common categories are also similar in vision, whereas the spatial resolution of Dataset-2 is a
little different from that of Dataset-1 and Dataset-3, which may lead to visual differences for
some common scene categories under different spatial resolutions. These relatively low
classification results also reveal that the feature representation capability of the deep features
is limited and it needs to work with some conditions to meet with.

Besides, the classification accuracies of Dataset-3- > Dataset-1 are relatively worse than
those of Dataset-1- > Dataset-3 for all the pretrained CNN models, which may result from the
reason that compared with Dataset-1 that has an image size of 256 × 256, Dataset-3 has a larger
image size (512 × 512) that is quite different from the input image size (224 × 224) of all the
pretrained CNN models, and when Dataset-3 is used as the training set, many useful infor-
mation will be lost after image scaling, largely affecting the recognition capability of the
learned classification model. By comparing the cases of Dataset-1- > Dataset-2 and Dataset-
2- > Dataset-1, as well as Dataset-2- > Dataset-3 and Dataset-3- > Dataset-2, it can be observed
that for the CNN features, when two datasets are different in spatial resolution, the classifica-
tion result using the lower spatial resolution dataset (e.g. Dataset-2) as the training set and the
higher spatial resolution dataset (e.g., Dataset-1 and Dataset-3) as the testing set is generally
worse than that using the higher spatial resolution dataset as the training set and the lower
spatial resolution dataset as the testing set. Such a phenomenon may suffer from the fact that 1)
the lower spatial resolution dataset may discard more detailed spatial information and thus
cannot, to some extent, cover the feature details of the higher resolution dataset; 2) as input
images need to be resized to fit the pretrained CNN models, the Dataset-2 with the largest
image size will lose relatively more information than the other two datasets after down
sampling.

To further verify the negative effect of down sampling on the classification performance,
we conducted another experiment using Dataset-3. To perform the experiment, half of the
dataset was randomly divided for five different runs and used as the training set, with the
remaining half as the testing set. For the images in the training set, they were down sampled
from 512 × 512 to 128 × 128 to generate a down sampled set. Then we used the original
training set or the corresponding down sampled set as training samples and used the testing set
as testing samples (without down sampling), so that it can be tested whether down sampling
will bring down the classification performance. Here, we use the down sampled set and the
dataset without down sampling as two different datasets of different image sizes. Table 6

Table 6 Comparison of classification results on Dataset-3 using the CNN features of different pretrained models
with and without image down sampling

Methods Without down sampling With down sampling

AlexNet(%) 89.98 80.56
Caffe(%) 88.80 82.06
GoogLeNet(%) 90.42 83.48
VGG-16(%) 92.98 89.98
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shows the comparison results. Note that in the table, Bwithout down sampling^ means using
the original training set as training samples (512 × 512) and the testing set as testing samples
(512 × 512), while Bwith down sampling^ means using the down sampled training set as
training samples (128 × 128) and the testing set as testing samples (512 × 512). As can be seen
in Table 6, for all the compared CNNmodels, the classification accuracies using their extracted
deep features decrease obviously after image down sampling of training samples. This further
confirms that down sampling does have a negative effect on the scene classification perfor-
mance and coincides with the analytical results of Table 5.

To make intensive comparisons, categorical classification accuracies are given in Fig. 11
with all the class indexes corresponding to the class names in Table 3. As shown in Fig. 11,
most of the common scene categories can be correctly classified using the CNN features,
except for a few cases, e.g., class 3 (buildings/commercial area) in the case of Dataset-1- >
Dataset-2, classes 3 (commercial area/ buildings) and 6 (viaduct/overpass) in the case of
Dataset-2- > Dataset-1, class 1 (commercial area/high buildings) in the case of Dataset-2- >
Dataset-3, and classes 1 (high buildings/ commercial area) and 3 (low buildings/industrial
area) in the case of Dataset-3- > Dataset-2. Figure 12 visually gives these wrongly classified
categories among different datasets using the CNN features. It is apparent from Fig. 12 that the

Fig. 11 Comparison of cross-classification results among three datasets for common categories: a Dataset-1 as
training and Dataset-2 as testing; b Dataset-2 as training and Dataset-1 as testing; c Dataset-1 as training and
Dataset-3 as testing; d Dataset-3 as training and Dataset-1 as testing; e Dataset-2 as training and Dataset-3 as
testing; f Dataset-3 as training and Dataset-2 as testing
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low classification accuracies of these scene categories are likely to result from the big
difference in spatial resolution, even though the common categories have the similar semantic
information.

Table 7 shows the running time for feature extraction for a sample scene image using
different pretrained CNN models. Here, the experimental environment is an Ubuntu 14.04
operating system with a 3.6 GHz Intel Core i7-4790 CPU and 8GBmemory. It can be seen that
both GoogLeNet and VGG-16 have slightly lower computing efficiency than other models and
VGG-16 becomes relatively the most time-consuming one in feature extraction, but there does
not exist much difference. The probable reason that affects the efficiency lies in the depth and
complexity of the pretrained CNN model itself, as both VGG-16 and GoogLeNet are much
deeper than the other two compared models in network architecture.

5 Discussion

From the above experimental results obtained using different kernels, it can be confirmed that
the linear kernel is more suitable for high dimensional CNN features than the RBF kernel in
SVM classification, which just coincide with the results of the previous work [17]. For all the
compared models, the fully-connected layers have relatively better descriptive capabilities than
the convolutional layers.

Fig. 12 Examples of wrongly classified categories among different datasets

Table 7 Comparison of running time for feature extraction of a sample scene image from Dataset-1 using
different pretrained CNN models

Models AlexNet Caffe GoogLeNet VGG-16

0.1 s 0.09 s 0.26 s 0.84 s
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For the analysis of the feature representation ability, the performance of the deep CNN
features seems to be most sensitive to the variation of spatial resolution. Their representation
ability in inter-dataset classification is also affected by the image size which, however, is a
secondary factor. In the case that the spatial resolutions of the training dataset and the dataset
for prediction are nearly the same, the CNN features can achieve a relatively high classification
accuracy, effectively realizing the feature transfer and generalization among datasets from
different sources. However, under the circumstance that the spatial resolutions of two datasets
are different, such a feature representation ability will expose its weakness, especially when the
image sizes of these two datasets are also much varied. These observations can serve as
guidance for deep CNN features based VHSR remote sensing image scene classification in
practical applications. To predict new scene images from heterogeneous sources, classification
models using the deep features under different spatial resolutions can be constructed in
advance. As long as the resolution information of the new image is known, we can choose
the corresponding classification model for category prediction. Thanks to the powerful feature
mining capability of deep CNN models, an opportunity is provided to avoid the problem that
new classification models have to be retrained based on new classification tasks using new
training samples.

In future applications, the scene classification of large satellite images with more than three
spectral bands becomes a realistic problem. To meet the requirements of the pretrained CNN
models, the principal component analysis (PCA) transform can be applied to reduce the
spectral dimension. To realize the classification of large satellite scenes, the overlapping grid
partition [50] or the superpixel segmentation [35] can firstly be applied to obtain the subimages
to recognize, and then the pretrained CNN models can further be used to extract deep features.

6 Conclusions

Hitherto, few studies have looked into the strength and weakness of the deep CNN feature
itself in practical inter-dataset scene classification of VHSR remote sensing images. There still
leaves a question whether these deep CNN features have a powerful feature representation
ability and are able to explore the essential attributes of scenes of the same kind but with
different imaging conditions. This issue is of great significance since in practical applications,
the scene image to recognize is not always from the same dataset as the training data. To deal
with this problem, a comprehensive study is performed to discuss the characteristics of the
deep CNN features and to investigate the feature representation ability in inter-dataset classi-
fication. Experimental results with four well-known pretrained CNN models on three different
datasets revealed that 1) for remote sensing scene images of the same kind, the deep CNN
features are sensitive to the changes of spatial resolutions, especially when there is an obvious
resolution gap between training and prediction images, which indicates that such deep features
are unable to explore the invariant semantic attributes of scenes from behind the remote
sensing images under different resolutions; 2) the variation of image sizes between datasets
has a negative impact on CNN feature representation but such an effect is minor, especially
compared with the resolution factor; 3) provided that the spatial resolutions of the training and
prediction scene images are close, the CNN features show satisfactory representation ability,
under which circumstances the classification model learned from the deep CNN features of
one dataset can be effectively applied to distinguish, with a high accuracy, the scene images
from another different dataset; 4) among all the compared pretrained CNN models, the VGG-
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16 and GoogLeNet models, as a feature extractor, can extract comparatively more powerful
feature vectors in both intra- and inter-dataset scene classification tasks, which shows that it is
helpful to extract deep CNN features using a relatively deeper network.

In the ongoing studies, further researches need to be conducted to investigate the effect of
deeper pretrained CNN architectures on the performance of remote sensing image scene
feature representation, such as ResNet. Besides, efforts should be made to improve the deep
CNN features and make them resolution-invariant when dealing with inter-dataset scene
classification problems.
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