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Abstract
The Helitrons, an important sub-class of the transposable elements (TEs) class II, have been
revealed in diverse eukaryotic genomes. They are mobile elements with great impact on genomic
evolution. Till today, there is no systematic classification model of helitrons; that’s why we
thought of creating an efficient automatic model to identify these sequences. This paper focuses
on the discrimination between helitrons and non-helitrons using the Support Vector Machine
(SVM). In this study, we use all the SVM kernels and the higher accuracy rates are obtained by
reaching the optimal kernels-parameters (d, c and σ). Further, we introduce two methods to
represent the genomic sequences in the form of features to be considered later for the classification
task: (i) the temporal and the spectral features extracted from the Frequency Chaos Game Signals
order 2 (FCGS2) (ii) the features extracted from the Continuous Wavelet Transform (CWT)
applied to the FCGS2 signals. The dataset we used regards two types DNA classes in C.elegans:
the helitrons and the repetitive DNA sequences that contain microsatellites and do not form
helitrons. The classification results prove that the wavelet energy feature is more effective than the

Multimedia Tools and Applications (2019) 78:13047–13066
https://doi.org/10.1007/s11042-018-6455-x

* Rabeb Touati
Rabeb.touati.enit@gmail.com

Imen Messaoudi
imen.messaoudi@enit.rnu.tn

Afef Elloumi Oueslati
Afef.Elloumi@enit.rnu.tn

Zied Lachiri
Zied.lachiri@enit.rnu.tn

1 SITI Laboratory, National School of Engineers of Tunis (ENIT), University Tunis El Manar, BP 37, le
Belvédère, 1002 Tunis, Tunisia

2 Higher Institute of Information Technologies and Communications, Industrial Computing
Department, University of Carthage, Carthage, Tunisia

3 National School of Engineers of Cartage (ENICarthage), Electrical Engineering Department,
University of Carthage, Carthage, Tunisia

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-018-6455-x&domain=pdf
http://orcid.org/0000-0001-5982-7123


FCGS2 features in the helitron’s recognition system. The performance of our system achieves a
high recognition rate (Globally accuracy rate) reaching the value of 92.27%.

Keywords Helitrons . Repetitive DNA .Microsatellites . C.Elegans . FCGS2coding . SVM .

Features . Continuous wavelet transform . Kernel tricks

1 Introduction

Helitrons form an important part of Transposable Elements (TEs) DNA class II in eukaryotic
genomes [16, 45]. This specific DNA type transposes by a rolling circle replication mechanism
via a single-stranded DNA intermediate. During transposition, helitrons are the only TEs DNA
that does not create target site duplications [16]. Helitrons frequently capture miscellaneous
host genes, some of which can evolve into novel host genes. In the evolution of host genomes,
the helitrons seem to play a major role because some of the host genes become essential for the
helitrons transposition [34, 45]. They are also involved in a number of biological processes
such as heterochromatin development, gene expression regulation [54] and genome rearrange-
ments [51]. In addition, helitrons have the ability to synthesize new genes by nearby exons
capture, also by transcription readthrough and unrelated exons placement into common
transcripts [2]. Helitrons were firstly discovered in the nematode Caenorhabditis elegans
[15] then in plants (Arabidopsis thaliana and Oryza sativa) [33] and in fruit fly (Drosophila)
[4]. At present, they are identified in a diverse range of species like: fungus [11], lucifugus
[35], animals [55], vertebrates, specifically in the fish Daniorerio and Sphoeroidesnephelus
genomes [34]. In this paper, we focus on the helitrons characterization and classification from
a different point of view. Indeed, we harness the power of the signal processing tools to
identify these interesting elements in a visual way and we use the support vector machine
(SVM) as a classification technique. The SVM solves recognition problems of the two classes
and multi-class. It has been widely used in numerous domains due to its inherent discriminat-
ing learning and generalization capabilities; it is often applied to solve statistical learning
problems [50]. The SVM classification was applied with success in bioinformatics studies
[22], DNA [32], molecular genetics [7] and for the identification and characterization of
microRNAs and target prediction [12, 28]. In this framework, we propose using this classifi-
cation strategy to help non-specialists to easily annotate Helitrons. This work was driven by the
fact that helitron recognition using the signal processing methods has not been yet addressed.

The paper includes an introduction, a state of the art of the related works, two sections
describing the work and a conclusion. In the section proposed method, we provide a description
of the DNA coding technique and the analysis methods used to extract features as well as the
classification technique. Finally, we give the conclusion of this work. In the section experimental
results, we describe how we partitioned the parameters extracted for the C.elegans genome into
helitrons and non-helitrons databases. Then, we expose the classification results endorsed by a
comparison between results we obtained for two groups of parameters.

2 Related works

Since their discovery, helitrons have attracted widespread attention. To identify and analyze
these elements many computational tools were developed: HelitronFinder [5], HelSearch [54],
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a combination of BLAST search and the hidden Markov models [41] and HelitronScanner
[53]. These tools are typically based on the search for canonical helitrons which begin with a 5′
T (C/T) and terminate with a CTRR 3′as well as the existence of a hairpin structure (∼ 11 base
pairs). In this sense, a comparison of the searched area with the reference helitron is performed
by different alignment algorithms [6, 43].

These methods are generally hindered by the lack of information about the reference
sequences as well as the need of an enormous memory space [37, 42]. Besides the asymmetric
structure of helitrons, their abundance and diversity in genomes, present an enormous identi-
fication and annotation problem. Taking into account all these factors, we can comprehend
why the structure and the dynamic of the helitron sequences have not been yet well studied. In
fact, the available bioinformatics tools aim to identify the presence of helitron on the basis of
previous knowledge of its biological features [14] and do not provide a visual tool to detect the
presence of this element in a given sequence. Further, despite the availability of several
methods of helitron identification, a systematic classification method based on the information
(features) revealed by the sequence itself has not been yet taken forward.

As a solution, we propose in this work the combination of the signal processing tools with
the SVM-approach (a supervised learning algorithm) to identify helitronic sequences. The
main steps of the systematic recognition of helitrons are based on the choice of the classifier,
the features extraction methods and the choice of the non-helitrons databases.

3 FCGS Coding technique and Wavelet transform

To present a DNA sequence (a chainlike molecule composed of four bases: A, T, C, and G)
into a numerical form we need to transform these bases into a series of numerical values. For
this aim, we provide two ways to represent the DNA sequences into:

– explicit signals when we applied the FCGS coding technique
– explicit images when we applied the CWT to these signals.

3.1 FCGS2 coding technique

Thanks to the development of DNA coding techniques, different methods have emerged like
the binary coding [30], the structural bending trinucleotide coding (PNUC) [31], the Frequency
Chaos Game Signal (FCGS) [25, 26, 46], etc. The latter technique is a new one dimensional
coding. It is based on assigning the frequency value of each sub-pattern in the chromosome to
the same group of nucleotides existing in the sequence. In this work, we consider the
Frequency Chaos Game Signal of dinucleotides: FCGS2. It is based on the apparition’s
probability of all two successive nucleotides for an entry DNA sequence [25, 26, 46]. The
probability of a given dinucleotide (P2nucleotide) is calculated following this equation:

P2nucleotide ¼ N2nucleotide

LNChr
ð1Þ

N2nucleotide represents the apparition number in the whole sequence of a given dinucleotide.
LNChr represents the length of the chromosome in base pairs.
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Our goal is to establish a signals database for both helitrons and the repetitive sequences
which are considered as non-helitrons. For this, a dinucleotide (i), at a position (k) is replaced
by its occurrence’s probability:

S2nucleotide kð Þ ¼ ∑iP2nucleotide i; kð Þ ð2Þ
The FCGS2 consists in calculating the sum of all dinucleotide indicators (S2nucleotide):

FCGS2 kð Þ ¼ ∑kS2nucleotide ð3Þ

Therefore, the FCGS2 technique represents the temporal evolution of the dinucleotides
frequency along the chromosome which means that it reflects the statistical features of the
chromosome itself. To enhance such characteristics, we propose to apply a time- frequency
method, which is the wavelet transform.

3.2 Wavelet transform

The Wavelet Transform is widely used in the time-frequency analysis of biomedical and
biological signals [1, 13, 23, 29, 47]. In this work, we use the wavelet energy features that we
extract from the wavelet coefficients’ matrix to classify helitrons. The coefficients matrix is
obtained by applying the continuous wavelet transform to the FCGS2 signal with the Complex
Morlet Wavelet is taken as analysis window. After that, we prepare the features database
(energy dataset) of all genomic sequences to be passed to the SVM-classifier for the helitrons
classification purpose.

The CWT decomposes a given signal into a sum of windows called wavelets. The latters
are obtained by shifting and expanding a mother wavelet ψ(t) [9, 24, 27]. The set of wavelet
windows is obtained by:

ψs;u tð Þ ¼ 1ffiffi
s

p ψ* t−u
s

� �
; s > 0; u∈ℝ ð4Þ

Here * is the complex conjugate.
The Complex Morlet function is expressed by:

ψcmor tð Þ ¼ π−1
4 eiω0t−eiω02
� �

e−
t2
2 ð5Þ

Here ɷ0 is the oscillation’s number.
The continuous wavelet transform is performed by applying this formula:

W s;uð Þ FCGS2 tð Þ½ � ¼ 1ffiffiffiffi
s

p ∫þ∞
−∞ FCGS2 tð Þψ* t−u

s

� �
dt ð6Þ

In the following, we consider the complex Morlet wavelet transform (CWT) along 64 scales
with the parameter ɷ0 fixed at 5.4285.

The final result is a matrix of coefficients which we use to generate the scalogram
representation by calculating the absolute value of these coefficients. Here, we use the
scalogram presentation as a new way to visualize the DNA sequences. The time-frequency
plan allows us to distinguish a DNA class by a specific signature (specific motifs with different
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periodicities). Thanks to this property, we are able to visually recognize a given helitron class.
In the following (Fig. 1), we provide the representation that characterizes each helitron class.
Since we will classify helitrons and non helitrons (repetitive DNA), we also give an example
of the time-frequency signature of a repetitive DNA sequence containing the microsatellite
(CAACG)n. The horizontal axis indicates the DNA position in base pairs while the vertical
axis indicates the frequency.

Note that these scalograms are the result of the wavelet analysis applied to the FCGS2 of some
concatenated helitrons belonging to chromosome I of C.elegans. The scalogram of the microsat-
ellite type in Fig. 1 corresponds however to two concatenated sequences of repetitive (CAACG)n
DNA in chromosome I. These scalograms examples present the overall behavior of the considered
DNA types. For example, helitrons of type Helitron2_CE, HelitronY2_CE, HelitronY3_CE and
Ndnax2_CE have specific signature presented by small repetitive motifs spread over a large
frequency band. On the other hand, helitrons of type Helitron1_CE, HelitronY1_CE,
HelitronY4_CE and Helitron1A_CE present similar signatures characterized by a pronounced
energy around the frequency 0.15 (which is equivalent to periodicity 6). Other similar repetitive
motifs are noticed for Helitron1_CE and HelitronY1A_CE around the frequency 0.1 (which
corresponds to the periodicity 10). These helitrons present various motifs around different
periodicities compared to other helitron families. As for helitrons NDNAX1 and NDNAX3, they
have specific repetitive patterns compared to the other helitron classes which renders them very
distinctive.

Finally, the microsatellite adopt a different time-frequency signature which facilitates the
distinction between this DNA class and helitrons.

From these figures, we can see that the repetitive patterns and the energy concentration
around the frequency bands allow to visually differentiate between the helitron classes and the
non helitron ones. In the following, we will exploit these results to automatically classify
helitrons based on SVM.

4 SVM classification

Our aim is to recognize helitrons from the non-helitron sequences. For this goal, we use the
supervised learning model: the Support Vector Machines: SVMs. The SVM classifiers are
based on the VapnicChervonenkis (VC) theory and the principle of the structural risk mini-
mization (SRM) [38]. The SVM model was developed by Vapinik in 1998 [50]. The main
principle that encompasses this technique, is the structural risk minimization (SRM) [10, 38,
49]. Using the function of Kernel, the original input is set and remodeled to a high-dimensional
feature space to achieve optimal classification performance in the new feature space [50].
Maximizing the error margin could give effective discriminate SVMs classifiers. They have
also the advantage of being able to deal with samples of a very higher dimensionality. They
have been successfully used in different pattern recognition applications like face, EEG
signals, speaker and DNA [8, 17, 18, 40, 48, 52]. The SVMs are particularly attractive to
the biological sequences analysis due to their ability to handle large dataset and large input
spaces [20, 39].

The SVM have better generalization abilities which are achieved through the
minimization of the upper bound of the generalization error. It aims to maximize
the margin; distance from a separating hyperplan to the closest negative (−1) or
positive (+1) sample between classes. One or several hyperplans are constructed in
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Fig. 1 Examples of Helitron and repetitive DNA signatures
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order to separate different classes. Elsewhere, an optimal hyperplan must be found.
This optimal hyperplan [3], a linear decision function, has to be with the maximal
margin. However, this margin should be between the vectors of the two classes. The
hyperplan can be described as:

f xð Þ ¼ wtxþ b ð7Þ

Were w is the weight vector, x is the input vector, and b is the bias.

4.1 Kernel functions

The major tricks of SVM are the kernel functions. For the case in which no linear separation is
possible, these functions are used. In the case when data are not linearly separable the kernel
tricks extend to the class of decision functions. In addition, the kernel function can be
explained as a measure of similarity between the input samples xi and xj [18], which allows
SVM classifiers to meet the separation rule even with highly divergent and complex
boundaries.

In what follows, we focus on finding the best kernel and the kernel function parameters to
classify helitrons. Several choices for the kernel function are available, including: linear,
polynomial, sigmoid, RBF. In the next paragraphs, we present a quick overview of the most
frequently used kernel functions.

1) Polynomial Kernel

The Polynomial kernel, a non-stationary kernel, is well adapted for problems where all the
training samples are normalized. Its parameters should be carefully tuned; which are the slope
σ, the polynomial degree d and the constant term r.

K xi; x j
� � ¼ σxTi x j þ r

� �d
; σ > 0 ð8Þ

Here, we consider d = 3 and r = 0.

2) RBF kernel

The Gaussian functions (Radial basis functions: RBF) are a family of kernels that
measures the distance between feature vectors smoothed by an exponential function
[36]. The carefully chosen parameters (c, σ) can play a major role in the performance
of the kernel.

Below, we present the equation of RBF (radial basis function) kernel [21].

K xi; x j
� � ¼ σ xi−x j

�� ��� �2
; σ > 0 ð9Þ

The accuracy of the classifier is highly sensitive to the choice of the parameter σ. The latter
must be tuned to control the amount of smoothing. In fact, the behaviors of SVM change when
σ becomes too small or too large.

In this work, we use the following couples (c, σ):

σ ¼ c ¼ 2−6; 2−5;…29; 210
� 	 ð10Þ
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3) Sigmoid kernel

Typically, the kernel must satisfy Mercer’s theorem (the kernel is a positive definite function).
Despite its widespread use, sigmoid kernel is not positive semi-definite for certain values of
parameters.

K xi; x j
� � ¼ tanh σxTi x j þ r

� � ð11Þ

Here, gamma is the scale parameter of the input samples and r is the shift parameter that
controls the threshold of mapping (r = 0). Hence, the parameters σ and r have to be properly
chosen. If this choice is not properly done, it yields to wrong results.

5 Material and Method

This section is devoted to the helitron recognition in C.elegans genome based on the FCGS2
coding technique and the SVM classification.

5.1 Material

For this work, the C.elegans sequences were retrieved from the NCBI public database [44].
Two genomic datasets were then used for the current study: one is the Bhelitrons^ dataset and
the other represents the Bnon-helitrons^ dataset. In this context, the non-helitronic sequences
we have chosen are also consisting of small repetitive motifs (one or more nucleotides) that
frequently appear in the genome. The basic repetitive patterns we used here are of a
microsatellite’s type with a ranging length from 2 to 5 base pairs (pb) [7, 28]. Our choice
goes to the following patterns: (A)n, (AATAG)n, (ATG)n, (ATGGTG)n, (ATTG)n, (CA)n,
(CAA)n, (CAGG)n, (CAGA)n,(CAACG)n, (CAAT)n and (CAATA)n. This choice is justified
by the fact that helitrons contain themselves microsatellites sequences; which misleads the
helitron recognition rates in most of bioinformatics tools.

The helitron classes, we have investigated here, are of the number of ten: Helitron1_CE
(H1), Helitron2_CE (H2), HelitronY1_CE (Y1), HelitronY1A_CE (Y1), HelitronY2_CE
(Y2), HelitronY3_CE (Y3), and HelitronY4_CE (Y4), NDNAX1_CE (N1), NDNAX2_CE
(N2) and NDNAX3_CE (N3). These families possess complex and variable structures. More
of this, the size of the helitronic sequences varies according to the family. Globally, the
apparition number of helitrons in the C.elegans genome varies from 77 to 1093 according to
their family (Table 1 in the next sub-section). The variability in terms of length, composition
and structure makes difficult the identification of these elements.

5.2 Method

In the following Fig. 2, we provide the flowchart describing this work.
The adopted methodology is composed by five steps.

– The first step consists in extracting all chromosomes data for the C.elegans model [44] and
generating the corresponding FCGS2 sequences. In this way, the DNA database will be
converted to a 1-D signals database.
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– The second step consists in extracting the helitron and the non-helitron sequences from the
NCBI database. Here the non helitronic DNA consists in repetitive sequences that contain
microsatellites and do not form helitrons.

– In the third step, helitron and non-helitron signals database regarding dimmers (sequences
of 2 bp length) is prepared. Then, a signal database that corresponds to all helitron types is
established as well as another database that do not contain helitrons but repetitive DNA of
microsatellite type [44].

– In the fourth step, we prepared the database which contains the corresponding temporal,
spectral and time frequency features of each of these helitronic and non-helitronic
sequences. In this way two types of features were extracted: the combination of the
spectral and the temporal features and the energy calculated based on the wavelet
transform. The ultimate database was splitted into two sub-databases: 70% for training
and 30% for testing. For SVM-classification system, the Table 1 specifies the helitrons

Fig. 2 SVM -Helitron recognizer flowchart

Table 1 The Helitron occurence
number in training and testing da-
tabases in C.elegans

Bold entries provide an idea
about the best result that we
obtained.

Helitron type Helitron number

Total training testing

H1 197 132 65
H2 469 313 156
Y1 483 322 161
Y1A 1093 729 364
Y2 337 225 112
Y3 117 24 93
Y4 532 415 117
N1 77 52 25
N2 188 126 62
N3 134 94 40
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number which we considered for training and test and thus for each helitron class. In the
other hand, we took the same number for the sequences which contain microsatellites.

From Table 1, we can see that the helitron of type helitronY1A_CE has the highest occurrence
number in the genome.

– Finally, the SVM technique was used for classification. The classification step involves
separating data into testing and training sets. In order to have accurate results (when the
system tends to give better recognition rates), all kernel functions were tested.

5.2.1 Features extraction

For the features extraction task, several methods have been reported in the signal processing field
including: the time domain, the frequency domain (like the Fourier transform) and the Time-
frequency domain (such as the short-time Fourier and the wavelet transforms). Here, we propose
using these methods to extract features from FCGS2 signals to be considered later in the classifi-
cation step. In the features extraction step, various independent variable values are prepared as input
of the classifier to predict the corresponding class to which belongs the independent variable.

a) Temporal features

For the temporal features, we use statistical measures including: maximum number of
peaks (Picsoccurence), average (μ), standard deviation (Std), Mahalanobis distance (X),
variance (Var), median(median), energy (E) and Root Mean Square (RMS).

Picsoccurence ¼ number maxFCGS2Chrið Þ
LNChri

ð12Þ

Where i is the number of the chromosome (Chr) and LN is the length of the chromosome i. For
the chromosomes I, IV and V the Maxpic feature presents the number of apparition of the
dinucleotide ‘TT’ and for the other chromosomes it presents the number of the dinucleotide ‘AA’.

b) Spectral features

As spectral features, we use the following parameters: mean power spectral density (Smean),
Power spectral density (PSD) and the Power root mean square (Prms).

Here, the Fourier transform is used to convert the time-based signal into the frequency
domain. The features we extract are:

& Mean power spectral density (Smean): it is the average Power spectral density. It measures
the energy of a signal when distributed in the frequency domain. Its mathematical
expression is given by:

Smean ¼ mean
2*

X fð Þ
N

����
����

N

0
BB@

1
CCA ð13Þ

Here N is the signal length and X(f) is the Fourier transform of the signal x.
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& Power spectral density (PSD): the computation of PSD is done by applying the Fast
Fourier Transform on the autocorrelation function (rxx(τ)).

& Power root mean square (Prms): the Prms measures the power of the signal’s magnitude. It
is calculated from the following equation:

Prmsfreq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑FCGS2 fð Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N−1

i¼1 FFT FCGS22i
� �q

ð14Þ

We further use the absolute value of Prms_freq whose expression is as follows:

Prms abs ¼ Prms freqj j ð15Þ
c) Time-frequency features

For the time-frequency features, the genomic sequences are firstly transformed into signals
using the FCGS2 technique. The signals are secondly transformed into the time–frequency
domain based on the continuous wavelet transform (CWT). Finally, a vector containing the
wavelet coefficients and their relative energies are used as features for helitrons and non-
helitron classification (Fig. 3).

The procedure consists of calculating the energy at each scale of the wavelet decomposition
using the following formula:

Ewavelet ¼ ∑L
s¼1 W s;uð Þ FCGS2 tð Þ½ �

 

2 ð16Þ

Here, L is the length of the FCGS2 signal. Since we have considered 64 scales for the CWT
computation (which means that the wavelet coefficients matrix contains 64 power spectra), we
have calculated 64 relative energy values.

The sub-figures (a) and (c) in Fig. 4 provide the scalogram representation (absolute
value of the wavelet coefficients) of two helitron examples; While the correspondent
energy (energy concentration around frequencies) are illustrated in the sub-figures (b)
and (d). For the scalograms, the horizontal axis indicates the helitron’s position in
base pairs. As for the energy representation, the horizontal axis gives the energy
amplitude.

The first example is an HelitronY4_CE which is positioned at [354,726 bp–355,316 bp] in
the C.elegans chromosome I. The second example is an NDNAX2_CE which is positioned at
[5,640,357 bp- 5,640,991 bp] in the same chromosome.

Fig. 3 SVM -Helitron recognizer flowchart based on features extracted from CWT
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As it can be seen, the scalogram serves to visualize the signature of helitrons [13]. Regarding the
energy plot, the pronounced peaks indicate the presence of repetitive motifs in the correspondent
scalogram. For example, in the case of HelitronY4_CE, the highest energy is concentrated around
the frequencies 0.05 and 0.15. This translates into a special repetitive motif within the frequencies
band [0–0.05] in the scalogram representation. We also note that the most pronounced peak in the
spectrum corresponds to the frequency 0.15, which is equivalent to the periodicity 6. In addition, the
frequency 0.027 indicates the existence of the periodicity 35 in the DNA sequence.

As for the helitron NDNAX2, particular repetitive motifs with a special energy pattern mark
their presence in the frequency band [0–0.2]. The energy plot proves that the highest energy is

(a)

Nucleotide Position

y
c

n
e

u
q

erf
d

e
zil

a
mr

o
N

50 100 150 200 250 300 350 400 450 500 550

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8
x 10

4

(b)

Amplitude

Nucleotide Position

y
c

n
e

u
q

erf
d

e
zil

a
mr

o
N

(c)

100 200 300 400 500 600

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
0 5000 10000 15000

Amplitude

(d)

Fig. 4 The scalogram and the relative energy representations of two helitrons
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included into this sub-band. The large energy band has high amplitudes that correspond to the
main periodicities: 6, 10 and 20. Finally, Fig. 5 presents the scalogram representation (sub-
figure (e)) and the energy-spectrum (sub-figure (f)) of a repetitive DNA sequence of type
(CAGA)n. The sequence has the size of 376 bases pair and the position [13,273,486 bp–
13,273,861 bp] at the C.elegans chromosome I. This sequence consists of the repetition of the
microsatellite ‘CAGA’, which size is obviously of 4 bp. The repetition of this subsequence in
the DNA sequence creates a periodicity 4. This periodicity is well translated in the scalogram
representation in the form of high energy frequency band around the frequency 0.25. Likely,
we can also see the existence of the periodicity 5 in the scalogram. These two periodicities
correspond to the peaks with the highest amplitudes in the sub-figure (f).

Based on this, we can see that the time-frequency is an effective way to represent DNA in
such way all periodicities that characterize the considered sequence can be detected.

Next, we will exploit this manner to extract information about DNA to be taken into
account by the SVM classification.

I. Experimental results

In this work, we mixed helitron sequences with the genomic sequences that do not contain
helitrons and whose number of training and testing are equal to the helitrons ones. One third of
data is taken then for testing and two-thirds for training.

We used, further, all the temporal, the spectral and the time-frequency features for all the
sequences. As for the kernel tricks, we used the Linear, Polynomial, RBF and Sigmoid
functions. For the SVM-kernels parameters, we found that using the Cross-Validation function
gives the optimal value of two parameters: the kernel width (σ) and the regularization
parameter (c) [19]. It is known that the recognition task is roughly divided into two stages:
the feature extraction and the recognition. The performance of the recognition system strongly
depends on the choice of the feature extraction method. Thus, we tried different methods to
extract features from the genomic data. In fact, we based the helitron prediction on two features
databases: the first database contains the temporal and the spectral features extracted from the
FCGS2 signals; while the second database contains the relative energy obtained by the

Fig. 5 The scalogram and the relative energy representations of repetitive DNA sequence of type (CAGA)n
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continuous wavelet transform of the FCGS2 signals. Consequently, a comparison between the
accuracy rates of the helitron prediction based on of the two methods was conducted. The first
database consists of the combination of 8 temporal features and 3 spectral features. The
parameters we considered are as follows:

– The temporal features are: max, μ, Median, Std, X, Var, E and RMS
– The spectral features are: Smean, PSD and Prms

As for the kernel tricks, we used Linear, Polynomial, RBF and Sigmoid functions which
parameters are varied according to the cross-validation function. For each kernel functionwe
defined and calculated the best parameters (d, c and σ) which give the best accuracy rates for
all helitron types’ recognition. In the following tableweprovide thebest recognition accuracy
rate for all helitron classes in the C.elegans. The results of the classification are based on the
combination of the temporal (8 parameters) and the spectral features (3 parameters).

The prediction performances, illustrated in Table 2, show very good results. In fact, the
accuracy values are between 75.88% and 95.65, depending on the helitron family. The best
accurate prediction (which is 95.65) is obtained for the helitron NDNAX1 class. In addition,
six helitron types were highly predicted (with an accuracy rate greater than 91%) which are:
HelitronY1_CE, helitronY1A_CE, HelitronY3_CE, NDNAX1_CE, NDNAX2_CE and
NDNAX3_CE. On the other hand, the SVM-Linear performs the better results for
HelitronY1_CE (ACC = 92.43%), Helitron1_CE (ACC = 83.5%), Helitron2_CE (ACC =
75.88%) and HelitronY2_CE (ACC = 83.66%). When we used the cross validation, we found
that with the Polynomial kernel d = 2 we get the best values of kernel parameter. As for the
RBF kernel, different values of c and σ have given best accuracy of some helitrons classes.

Table 2 The best SVM results of helitrons identification with different SVM-kernels and using the group of
temporal and spectral feautures extracted from FGCS2

Helitron type Helitron Rate (%) Non-Helitron
Rate (%)

KERNEL SVM parameters SVM
ACC %

H1 81.53 77.96 RBF c = 65,536 and σ = 0.000000015625 79.66
83.05 77.98 Linear 80.5

H2 77.30 66.66 RBF c = 65,536 and σ = 0.000000015625 66.31
76.59 75.17 polynomial d = 2 75.88

Y1 89.07 84.03 RBF c = 60 and σ = 0.0000015625 86.55
94.95 89.91 polynomial d = 2 92.43

Y1A 95.16 94.08 RBF c = 60 and σ = 0.01 94.62
95.16 88.70 polynomial d = 2 91,93

Y2 90.09 74.25 RBF c = 60 and g = 0.01 82.17
88.11 79.20 Linear 83.66

Y3 94.11 91.17 RBF c = 600 and σ = 0.05625 92.64
94.11 82.35 polynomial d = 2 88.23

Y4 80.64 84.51 RBF c = 600 and σ = 0.015625 82.58
83.22 78.70 polynomial d = 2 80.96

N1 95.65 95.65 RBF c = 600 and σ = 0.015625 95.65
95,65 91.30 Linear 93.47

N2 94.73 87.7 RBF c = 600 and σ = 0.015625 91.22
94.73 85.96 polynomial d = 2 90.35

N3 95 92.5 RBF c = 600 and σ = 0.015625 93.75
97.5 77.5 polynomial d = 2 87.5

Bold entries provide an idea about the best result that we obtained.
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Given the variability of the helitron’s sequences in composition and size, the wavelet coeffi-
cients matrix leads to a set of features which are not balanced in length. However, the SVM
method is limited when it is applied at imbalanced datasets. For this reason, we need to apply a
reduction method to obtain balanced datasets for the wavelet analysis while conserving the
useful information. Therefore, we have chosen the energy measure to balance these features.
Based on the energy vector calculated from the wavelet coefficients matrix, the features
database was established in a second step for both helitrons and non-helitronic sequences.
The experimental results are illustrated in Table 3 which represents the best SVM results.

This table shows that the high prediction accuracy (average of all accuracy which is equal to
92.27%) of our method is due to the ability of the time-frequency features to capture helitron/
non-helitron attributes.

We notice that the best rate for the NDNAX3 class, which is 96.25%, was obtained using
the RBF-Kernel with c = 65,536 and σ = 0. 000000015625. Also, the HelitronY3_CE class
was recognized with an accuracy rate reaching 92.64% with these parameters.

Overall, the kernel width σ = 0.000000015625, the penalty c = 60 and the SVM-RBF have
given best performance in terms of recognition rates for the Helitron1_CE class with a global
accuracy: ACC = 95.76%. Six other notable helitron classes were showing high accuracy rates:
HelitronY1_CE, HelitronY1A_CE, NDNAX1_CE, NDNAX2_CE, HelitronY4_CE, and
Helitron2_CE with the respective values of 95.43%, 95.38%, 93.48%, 92.98%, 91.24 and
85.46%. As it can be noted, with the polynomial kernel width parameter d = 2, we obtained the
best global accuracy rate reaching the value of 88.11% for the HelitronY2_CE class.

Based on these results, we can see that introducing a set of time-frequency features reveal
interesting results that can categorize the helitrons sequences.

Table 3 The best SVM results of helitron identification with different SVM-kernels using the feautures extracted
from the continuous Wavelet Transform

Helitron type Helitron
Rate (%)

Non-Helitron
Rate (%)

KERNEL SVM parameters SVM
ACC %

H1 98.30 93.22 RBF σ = 0.000000015625 and c = 60 95.76
91.5 96.6 polynomial d = 2 94.07

H2 84.39 86.52 RBF σ = 0.000000015625 and c = 60 85.46
82.27 81.56 polynomial d = 2 81.91

Y1 97.48 93.27 RBF σ = 0.000000015625 and c = 60 95.38
87.40 89.91 polynomial d = 2 88.65

Y1A 95.69 95.16 RBF σ = 0.000000015625 and c = 60 95.43
87.09 86.02 polynomial d = 2 86.56

Y2 91.08 84.15 RBF σ = 0.000000015625 and c = 65,536 82.67
88.11 88.11 polynomial d = 2 88.11

Y3 94.11 91.17 RBF σ = 0.000000015625 and c = 65,536 92.64
91.18 85.29 polynomial d = 2 88.23

Y4 93.43 89.05 RBF σ = 0.000000015625 and c = 60 91.24
87.59 90.51 polynomial d = 1 AND c = 0.01 89.05

N1 91.30 95.65 RBF σ = 0.000000015625 and c = 60 93.48
95.65 78.26 Linear 86.95

N2 98.24 87.71 RBF σ = 0.000000015625 and c = 60 92.98
100 82.45 polynomial d = 2 91.23

N3 100 92.5 RBF σ = 0.000000015625 and c = 65,536 96.25
97.5 87.5 polynomial d = 2 92.5

Bold entries provide an idea about the best result that we obtained.
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Now, if we compare these results (Table 3) with those obtained when we used the first
group of parameters (Table 2), we can clearly see that the SVM classifier better recognizes
helitrons when it is based on the features extracted from the wavelet transform. Indeed, the best
global accuracy rate using the temporal and the spectral features extracted from the FCGS2
signals reached 88.29%. However, the best global accuracy rate we obtained using the energy
wavelet features attained 92.27%.

From the present work, we can conclude that the choice of the features we have to extract
from the helitronic signals play a major role in their recognition. It turns that using a time-
frequency analysis gives better results than using temporal and spectral analysis in terms of the
helitron classification. In addition, the SVM-classifier parameters have shown a great influence
on the classification results.

6 Conclusion

In this work, we developed a highly accurate method for predicting the Helitron sequences. A
support vector machine classification approach based on all SVM-kernels has been adopted for
the helitron recognition in C.elegans. The obtained results revealed very encouraging classifi-
cation accuracies. The detailed experimental results presented here have shown the great effect
of the feature extraction step on the helitrons classification rates. In fact, for the feature
extraction, we have proposed two methods. The first method consists in extracting temporal
and spectral features from the FCGS2 of helitrons and non-helitrons sequences (a repetitive
DNA which contains microsatellites). However, the second method relies on the continuous
wavelet transform of the FCGS2 signals of helitrons and non-helitron sequences. To make a
balanced features database, we extracted the relative energy from the wavelet coefficients
matrix. The classification results have shown the superiority of the time-frequency analysis
compared to the temporal and spectral analysis in terms of the helitron classification. Further-
more, we demonstrated that choosing the optimal parameters for the SVM-kernels (d, c, and σ)
would greatly help improve the accuracy rates of the helitron prediction.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.
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