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Abstract
Tracking a hand in interaction with an object based on vision is a challenging research topic. The
occlusions that occur during the hand-object interaction make it difficult to develop an effective
tracking system. To overcome the impacts of occlusions, we build 3D models for both the hand
and the manipulated object and propose a model-based tracking method to track the hand and the
object simultaneously from single depth images during the hand-object interaction. The most
likely hand-object state is searched by an improved particle filtering (PF) tracking algorithm in the
high-dimensional hand-object space, which uses Gaussian particle swarm optimization (Gaussian
PSO) algorithm to improve the process of particle sampling, moving the particles to the regions
with higher likelihood. According to the proposed tracking algorithm, two kinds of hand-object
tracking prototype systems are developed by using the graphics rendering engine OSG and off-
screen rendering techniques. Experimental results demonstrate that the proposed method can
track hand-object motion robustly with few particles.

Keywords Handtracking .Object tracking .Depth image .Particle filtering .GaussianPSO.OSG

1 Introduction

3D hand tracking based on computer vision is a challenging research topic and can be applied
in many fields, such as robot learning from demonstration, motion capture, human-machine
interaction, gesture recognition. Since a hand has multiple degrees of freedom (DOFs), hand
tracking is essentially a problem of motion tracking in a high-dimensional state space. The
development of an effective hand tracking system is hindered by many complicated factors [7],
such as the high-dimensionality of the state space, the self-occlusion during hand movements,
and the automatic recovery from a tracking failure. Up to now, there are mainly two kinds of
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hand tracking methods by computer vision: appearance-based hand tracking and model-based
hand tracking.

Appearance-based hand tracking methods [4, 5, 9, 10, 16, 17, 20] establish a mapping
through machine learning, which maps the image feature space onto the hand state space.
These methods estimate the hand states directly according to the image features. They don’t
need initialization and usually have high tracking speeds. However, the accuracy of these
methods depends on the number of training samples. Model-based hand tracking methods
[1–3, 14, 15, 19, 23, 25] generate hand pose hypotheses based on a pre-built 3D hand model,
and evaluate the similarity between the features extracted from the model and the features
extracted from visual observation. By using some kind of optimization method, the hand pose
state with the highest similarity is found and chosen as the solution. These methods can use a
lot of prior information (e.g. hand shapes and joint constraints), but the tracking process has to
be initialized and searching for the best solution in high-dimensional space will be difficult.
Above two kinds of methods are mainly applied to tracking a hand in isolation. However, they
can’t track hand motion effectively while the hand are in operation with an object, because of
the occlusions between the human hand and the operated object.

Nevertheless, an overwhelming majority of hand actions are interactive in the real world.
Among them, hand-object interaction is the most common kind of interaction. Therefore,
tracking a hand in interaction with an object is a very important research topic. During the
interaction, the manipulated object will occlude the hand frequently and the self-occlusion of
the hand will be intensified. On the other hand, the useful contextual information provided by
the object will facilitate the recognition and estimation of hand movements. Some researchers
[8, 11, 13, 18, 21, 22, 24] have conducted research on this topic. Kjellström et al. [11] proposed
a method to recognize hand actions and the manipulated objects simultaneously by modeling
the action-object correlations using conditional random fields, but this solution can’t present
the detailed information of hand poses. To make the tracking system robust to occlusions,
Hamer et al. [8] used an individual local tracker for each segment of the articulated hand and
connected two adjacent hand segments by using a pair-wise Markov random field. The optimal
hand state is found with belief propagation (BP). However, this method doesn’t model the
manipulated object. Romero et al. [21, 22] proposed a non-parametric real-time method for
tracking a hand in interaction with objects. This method extracts hand features using histogram
of oriented gradients (HoG) and searches the most likely hand pose through nearest neighbor
searching (NNS) in a large template database. However, as is appearance-based, it can’t track
hand motion precisely in high-dimensional space. For tracking hand motion more precisely,
some researchers have developed model-based tracking systems by using multi-view cameras
[18, 24] or depth cameras [13]. Oikonomidis et al. [18] proposed a model-based tracking
method for tracking a hand and the manipulated object simultaneously by using multi-view
cameras. The models for the hand and the object are both pre-built, and the tracking problem is
considered as a sequential optimization problem which searches for the most likely hand-
object state. By using a depth camera, Kyriazis et al. [13] proposed a method that only searches
hand states. The object states are inferred according to the hand states and the dynamics model
of hand-object interaction. However, the dynamics of hand-object interaction in the real world
involves many complicated factors and is difficult to be precisely modeled.

In this paper, a model-based method is proposed to track the hand and the manipulated
object simultaneously during the hand-object interaction by using single depth images as
observation. The most likely hand-object state is searched by using an improved particle
filtering algorithm. Particle filtering (PF) is a robust motion tracking framework in cases of
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clutter. By propagating multiple hypotheses along with time, it has the capability to describe
multi-peak distributions [6]. Many researchers have used PF framework for human body [3,
25] or hand [1, 2, 14] tracking. However, standard PF needs adequate samples to describe the
real posterior probability distribution of the system state, and it is difficult to sample the true
optimum in the high-dimensional space. So it is easy to cause tracking failure. To address this
problem, many researchers have combined some kind of optimization method (e.g. gradient
descent [1], genetic algorithm [2] and differential evolution [14]) with PF for hand tracking.
Based on the PF framework, these methods use the samples predicted by dynamic models as
the initial states of the optimization and describe the importance distribution according to the
optimized samples. This paper combines Gaussian particle swarm optimization (Gaussian
PSO) [12] with PF for hand-object tracking during the hand-object interaction. Gaussian PSO
algorithm is used to improve the PF sampling process, driving the particles to the promising
areas in state space with high likelihood values.

2 Overall framework of the tracking system

In this paper, a model-based method is used for tracking hand-object interaction (Fig. 1). 3D
models are built for both the hand and the manipulated object, which will be tracked in the
state space. During the tracking process, hand and object pose hypotheses are generated by
using the 3D hand model and the 3D object model. Then, the matching errors between the
model features and the observed features are calculated. The tracking problem is tackled by
searching for the best hand-object state with the smallest matching error in the high-
dimensional hand-object space. Finally, the best state found by the tracking problem is chosen
as the solution for the current frame of system input.

3 Hand-object model

In this paper, 3Dmodels of the hand and the manipulated object are both pre-built. The hand pose
and the object pose are described by one hand-object state vector xh ‐ o = (xh, xo). The hand state
vector xh includes 6 DOF for the global motion and 20 DOF for local finger motion. The object
state vector xo only includes 6 DOF for the translation and rotation of the object. The hand

Fig. 1 Overall framework of the model-based tracking system
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skeleton model is shown in Fig. 2. All CMC joints are fixed and the palm is modeled as a rigid
body with 6 DOF (3 for translation and 3 for rotation). Each finger is modeled with 4 DOF. Each
MCP joint except the thumb’s has 2 DOF (one for flexion-extension and one for abduction-
adduction). TheMCP joint of the thumb only has oneDOF for flexion-extension. All PIP andDIP
joints and the IP joint of the thumb only have a flexion-extension capability. The TM joint of the
thumb has 2 DOF. The motion for each finger joint DOF is limited within a certain range
according to hand anatomy. These anatomical constraints can ensure the effectiveness of the
hand pose solution and reduce the search range of hand states. In this paper, the joint angle values
of all fingers except the thumb are limited by the following constraints:

0∘ ≤θMCP F ≤90∘
0∘ ≤θPIP F ≤110∘
0∘ ≤θDIP F ≤90∘

−15∘ ≤θMCP AA≤15∘

and the joint angle values of the thumb are limited by the following constraints:

0∘ ≤θTM F ≤30∘
−15∘ ≤θTM AA≤3∘

0∘ ≤θMCP F ≤90∘
0∘ ≤θIP F ≤90∘

where θMCP_F, θPIP_F and θDIP_F denote the flexion-extension DOF values of MCP, PIP and DIP
joints respectively for all fingers, θMCP_AA denotes the abduction-adduction DOF value of the
MCP joint for each finger except the thumb, θTM_F and θTM_AA denote the flexion-extension DOF
value and the abduction-adduction DOF value respectively for the TM joint of the thumb, and
θIP_F denotes the flexion-extension DOF value for the IP joint of the thumb.

To balance model accuracy against computational complexity, the hand shape model is
constructed based on basic geometric primitives. The palm is built with an elliptic cylinder and

Fig. 2 Hand skeleton model
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two spheroids. The finger segments are built with cylinders and truncated cones. The finger
joints are built with spheres, while the finger tips and the thumb root are built with hemi-
spheres. The modeling process includes two steps. Firstly, the 3D model of the hand is
constructed with geometric primitives in the parametric modeling software PTC Pro/Engineer.
Secondly, the hand model is imported into the visualization modeling software Multigen-
Paradigm Creator through the intermediate OBJ file format. In Creator, the meshes of the hand
model are organized into a tree-like hierarchical structure. Then, the DOF nodes with local
coordinate systems are created and added into the hand model. The eventual 3D hand model
contains a total of 7104 vertexes, 2368 triangle meshes and 13 DOF nodes. Meanwhile, the
manipulated objects are modeled in Creator directly. In this paper, two types of objects
(spherical objects and cylindrical objects) in interaction with the hand are considered. How-
ever, the proposed method is also suit for tracking a hand in interaction with other types of
objects. The 3D model for hand-sphere interaction and the 3D model for hand-cylinder
interaction are shown in Fig. 3.

4 Observation model

In this paper, the hand state and the object state are integrated into a hand-object state
vector xh ‐ o = (xh, xo). The matching error for the current observation z is determined by
both the hand state xh and the object state xo. Meanwhile, the matching error function is
established by combining depth features with silhouette features. Using depth images
obtained from a Kinect depth camera as input, the foregrounds corresponding to the hand
and the manipulated object are extracted by depth segmentation to generate the observed
depth map zd(z). And, for each hand-object pose hypothesis xh ‐ o, the rendered depth map
rd(xh ‐ o) is generated by the rendering process of the 3D hand-object model. Then, the
observed silhouette map zs(z) is generated from the observed depth map (zd(z)) and the
rendered silhouette map rs(xh ‐ o) is generated from the rendered depth map rd(xh ‐ o). Both
zs(z) and rs(xh ‐ o) are binary images with value 1 for the hand-object foreground and
value 0 for the background.

(a) Hand-sphere model (b) Hand-cylinder model

Fig. 3 Hand-object model. The local coordinates of all DOF nodes are marked accordingly
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The incompatibility between the current observation z and the hand-object pose vector xh ‐ o
is measured by the matching error function. Smaller matching errors reflect higher compati-
bility. The matching error function is defined as follows:

E z; xh−oð Þ ¼ λdEd z; xh−oð Þ þ λsEs z; xh−oð Þ þ λmEm xh−oð Þ ð1Þ

E(z, xh ‐ o) is composed of a depth term Ed, a silhouette term Es and a penalty term Ep. λd, λs

and λp are the weights of these three terms, respectively.
For hand-object pose hypothesis xh ‐ o, the depth difference between the observed depth map

zd(z) and the rendered depth map rd(xh ‐ o) is measured by the depth term

Ed z; xh−oð Þ ¼ ∑min zd zð Þ−rd xh−oð Þj j; Tdð Þ
∑ zs zð Þ∨rs xh−oð Þð Þ ð2Þ

where depth differences (unit: mm) are calculated in a pixel-wise manner and accumulated
over the entire depth map. The result of the accumulation is divided by the total hand-object
area for normalizing. Some large depth differences will cause great changes of the matching
error, thus affecting the performance of the searching algorithm. Therefore, a constant Td is
introduced to clamp the depth differences in the range [0, Td].

The silhouette term Es measures the silhouette incompatibility by calculating the non-
overlapping area between the observed silhouette map zs(z) and rendered silhouette map
rs(xh ‐ o). Es is defined as:

Es z; xh−oð Þ ¼ ∑zs zð Þ 1−rs xh−oð Þð Þ
∑zs zð Þ þ ∑rs xh−oð Þ 1−zs zð Þð Þ

∑rs xh−oð Þ ð3Þ

where the first term calculates the area belonging to zs(z) but excluding from rs(xh ‐ o). The
second term calculates the area belonging to rs(xh ‐ o) but excluding from zs(z). These two terms
are normalized by their denominators, respectively. The introduction of the silhouette term Es

can smooth the objective function and reduce the number of local minima around the global
minimum, thus making the optimization process more likely to converge to the real global
minimum.

To penalize sudden changes of hand-object poses between two adjacent frames, a smooth-
ing term is introduced into the matching error function E(z, xh ‐ o) to smooth the recovered
hand-object motion. The smoothing term is defined as:

Em xh−o;t
� � ¼ xh−o;t−x̂̂h−o;t−1

�� �� ð4Þ

where xh ‐ o, t is a hand-object pose hypothesis of the current frame and x̂h‐o;t−1 is the recovered
hand-object pose of the previous frame.

The likelihood function is monotone decreasing with the matching error function E(z, xh ‐ o).
It is defined as:

p zjxh−oð Þ∝exp −λe⋅E z; xh−oð Þð Þ ð5Þ
where λe is a constant factor for normalizing and its value is decided by the noise of the
observation.
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5 The tracking algorithm

In this tracking problem, the hand and the manipulated object are both tracked during the hand
-object interaction. For this problem, the state transition model and observation model of this
problem are both nonlinear, and the probability distribution of the system state is multi-peak
due to incomplete observation and occlusions that occur during the hand-object interaction. In
this paper, PF is used for hand-object pose tracking, which is a robust motion tracking
framework in cases of clutter. By propagating multiple hypotheses along with time, PF has
the capability to describe multi-peak distributions and can be used to solve state estimation
problems of nonlinear and non-Gaussian systems [6]. According to a set of weighted particles

xit−1
� �N

i¼1 sampled from the posterior distribution p(xt − 1| z1 : t − 1) of the system state x at time t-

1, the PF algorithm constructs a new set of weighted particles xit
� �N

i¼1 to approximate the

posterior distribution p(xt| z1 : t) of x at time t by the state transition model p(xt| xt − 1) and the
observation model p(zt| xt). Where, the superscript i denotes the number of the particle, xt is the
system state at time t and in this paper it represents the hand-object pose xh ‐ o, t, wt is the weight
of xt, and z1 : t is a sequence of observations from time 1 up to time t.

A problem of the standard PF algorithm is that it uses the transition prior p(xt| xt − 1) as the
proposal distribution for importance sampling without considering the latest observation zt, so
the importance sampling is suboptimal. In this paper, the tracking problem is a high-
dimensional problem. During the tracking process, the standard PF needs large numbers of
samples to approximate the real posterior distribution of the system state, making it too slow.
Inadequate samples will lead to a tracking failure.

To solve the problem of the standard PF in high-dimensional state space, in this paper, the
Gaussian PSO algorithm [12] is integrated into PF to improve the PF sampling process.
Gaussian PSO algorithm is an improved PSO algorithm which generates the velocity vector
through Gaussian distributions. It is superior to the classic PSO algorithm in convergence
ability. The update equations for particle velocities and positions are as follows:

vi;kþ1 ¼ randnj j pi;k−xi;k� �þ randnj j gk−xi;k� � ð6Þ

xi;kþ1 ¼ xi;k þ vi;kþ1 ð7Þ

where |randn| is the absolute value of the random number generated according to a standard
Gaussian distribution N(0, 1). xi, k and vi, k are the position and velocity of the i-th particle at
generation k, respectively. In this paper, xi, k represents the hand-object pose hypothesis xi;kh‐o. pi,
k is the individual best position which stores the best position ever found by the i-th particle till
generation k. gk is the global best position which stores the best position ever found by the
whole particle swarm.

In this paper, the objective function of Gaussian PSO is the matching error
function E(z, xh ‐ o) with the latest observation zt. By searching for the hand-object
pose with the smallest matching error in the 32(26 + 6) dimensional space using
Gaussian PSO, the particles predicted from the transition prior p(xt| xt − 1) are evolved
and moved to the areas with higher likelihood values before the update of particle
weights. In this paper, a first-order self-regression model is used as the transition prior
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p(xt| xt − 1) to propagate the particles along with time. The particles at time t are
initialized by the following equation

xi;0h−o;t ¼ pi;Kh−o;t−1 þ r ð8Þ

where xi;0h‐o;t is the initial value of the i-th hand-object pose hypothesis at time t before

the Gaussian PSO optimization, pi;Kh‐o;t−1 is the individual best position of the i-th hand-

object pose hypothesis converged after K generations of Gaussian PSO optimization at
time t-1, and r~N(0,Σ) is a multi-dimensional Gaussian noise with average 0 and
covariance matrix Σ. The diagonal elements of Σ are determined according to the
maximum inter-frame angular or translational changes of the hand-object pose. At the
first frame, to initialize the model-based tracking process, the hand and the manipu-
lated object are put in their initial positions respectively for calibration.

The proposed hand-object tracking algorithm is summed up as follows:

1) Initialization: Sample N particles xih‐o;0; 1=N
n oN

i¼1
from the prior distribution p(xh ‐ o, 0),

and weight each particle as 1/N.

Start

Get the k-th frame

from depth input

Random initialization of

all particles in the

population

For iteration j< M

For particle i< N

Calculate the i-th
particle’s position

according to the

optimization algorithm

viewer.frame()

Camera

Calculate the weight

of particle i based on

it’s matching error

Model

Buffer object

NodeCallback

DrawCallback

Event object

Update step: Update the model

pose in the NodeCallback object

according to the i-th particle’s

position

Cull step: No
special user

operations

Draw step: In the DrawCallback object,

calculate the matching error between the

renderred depth image and the input depth

image, and use the Win32 SetEvent() function to

set the global event object signaled to inform the

main thread

End

Matching error

Output

Fig. 4 Flowchart of the single-virtual-camera system. This system only creates one virtual camera for depth map
rendering and calculating of matching errors. Each particle is rendered into its corresponding depth map all
through this one virtual camera. Only one particle’s matching error is calculated per OSG frame
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2) State transition: The importance sampling process is realized in this step. At time t, the
positions of the particles are initialized according to Eq. (8). By introducing the latest
observation zt into the objective function to be optimized, the particles are evolved and
moved to the areas with higher likelihood values based on Eqs. (6) and (7).

3) Update of weights: Weight the particles as wi
t∝wi

t−1p ztjxih‐o;t
� �

by using the observation

likelihood p(zt| xh ‐ o, t) and then normalize the weights wi
t

� �N
i¼1. Output the particle with

the biggest weight as the solution for the current frame.
4) Resampling: To avoid the degeneracy phenomenon of the particles, resample the particle

set xih‐o;t;w
i
t

n oN

i¼1
to generate a new equal-weighted particle set xih‐o;t; 1=N

n oN

i¼1
accord-

ing to the weights of the particles.
5) If the tracking process is over, exit from the tracking system. Else turn to Step 2.

6 Development of the prototype system

In this paper, a model-based method is used to track the hand poses and the object poses. This
method builds 3D models for both the hand and the object. During the tracking, hand and object
pose hypotheses are generated by using their 3D models respectively and the matching errors
between the model features and the observed features are calculated. This method then searches for
the hand-object pose with the smallest matching error in the hand-object state space. In this paper,
the hand-object tracking system is developed based on the graphics rendering engine

Start

Get the k-th frame

from depth input

Random initialization of

all particles in the

population

For iteration j< M

Calculate the positions of all

particles (particle i=
1,2,…,N) according to the

optimization algorithm

viewer.frame()

Camera N

Calculate the weight

for each particle

based on it’s

matching error

Model N

Buffer object N

NodeCallback N

DrawCallback N

Event object N

Update step: For each particle,

update its model pose in its

NodeCallback object according

to its position

Cull step: No
special user

operations

Draw step: For each particle, in its

DrawCallback Object, calculate its

matching error between its

renderred depth image and the

input depth image, and use the

Win32 SetEvent() function to set its

global event object signaled to

inform the main thread

End

Camera 1

Model 1

Buffer object 1

NodeCallback 1

DrawCallback 1

Event object 1

Matching errors
Output

Fig. 5 Flowchart of the multiple-virtual-camera system. This system creates a virtual camera for each particle in
the particle set. The matching errors of a whole set of particles are calculated per OSG frame
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OpenSceneGraph (OSG). At first, the hand and object models are loaded into OSG. In the tracking
process, hand and object poses are updated by controlling the DOF nodes of the models with the
osgSim::DOFTransform class. The hand and object models are rendered into depth maps through
off-screen rendering techniques, which are then used for calculating the matching errors of hand-
object hypotheses. As an open-source cross-platform rendering engine based on OpenGL, OSG
organizes scene models by a tree-like data structure and can provide high-performance rendering
based on the adopting of multiple cullingmethods, render state ordering and multi-thread rendering.

The rendering procedure of each frame in OSG can be divided into three steps, namely, the
update traversal step, the cull traversal step and the draw traversal step. During the update
traversal, OSG updates the user-defined dynamic data, adjusts the position and pose of the virtual
camera, and updates the states of moving objects. During the cull transversal, OSG traverses all
the nodes in the virtual scene and cull the invisible nodes. At the same time, the rendering states
are optimized and ordered. During the draw traversal, the OpenGL drawing commands are
invoked. The geometries and their rendering states are transmitted to the graphics hardware for
rendering. In OSG, Camera objects and GraphicsContext objects both can create threads. Under
default settings, OSG runs in a multithread mode, which creates a thread for each Camera object
and a thread for each GraphicsContext object. Cull operations are performed in Camera threads
and draw operations are carried out in GraphicsContext threads. This multithread rendering mode
will start the update and cull traversal of a new OSG frame before the draw operations of the last

(a) Matching errors on the real sequence of hand-sphere interaction 

(b) Matching errors on the real sequence of hand-cylinder interaction

Fig. 6 Matching errors on two real sequences for three tracking methods: PF, DE+PF and the proposed method
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frame are finished in GraphicsContext threads. This method can promote the rendering speed of
the system and explore the computing power of hardwares.

Based on the proposed particle-based tracking algorithm, two hand-object tracking prototype
systems are developed by using OSG and off-screen rendering methods. One of them is the
single-virtual-camera system. Under the PF framework, single-virtual-camera system only creates
one virtual camera for depth map rendering and the calculating of matching errors. Each hand-
object particle is rendered into its corresponding depth map all through this one virtual camera.
Thus, only one particle’s matching error is calculated per OSG frame. Another system is the
multiple-virtual-camera system which creates a virtual camera for each particle in the particle set.
For this system, the matching errors of a whole set of particles are calculated per OSG frame.

As in Fig. 4, the single-virtual-camera system only creates one virtual camera to
render depth maps for hand-object pose hypotheses. This camera has the scene root
node as its subnode and is connected with a buffer object which is used to store the
rendered depth map. The scene nodes are created by reading the 3D hand-object
models into OSG, and the buffer object is connected with the camera through a frame
buffer object (FBO). During the rendering process of each OSG frame, the virtual
camera renders its scene model into a depth map which is stored in its corresponding
buffer object. Additionally, the system creates an osg::NodeCallback object for the
scene root node in order to update hand and object poses during the update traversal
of each OSG frame. Meanwhile, the system creates an osg::Camera::DrawCallback
object for the camera. After the camera renders the updated hand-object model into a

(a) Results of hand-sphere interaction (b) Results of hand-cylinder interaction 

Fig. 7 Sample results of the proposed tracking method on real sequences. For (a), the results of frames 31, 121,
231 are shown, while for (b), the results of frames 31, 171, 231 are shown. For both (a) and (b), from left to right:
real RGB images, real depth images, and the tracking results
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depth map, the system will calculate the matching error between the rendered depth
map and the observed depth map in the osg::Camera::DrawCallback object. Since
OSG runs in a multithread mode under default settings, which creates a thread for
each Camera and a thread for each GraphicsContext. This multithread mode will start
the update traversal of a new frame before the draw operations of the last frame are
finished in the GraphicsContext thread. To avoid data conflict between multiple
threads, this system creates an event object for the camera and the synchronization
and communication of different threads are realized by using the Win32 SetEvent()
function and WaitForSingleObject() function. After the matching error calculating is
finished in the GraphicsContext thread, the corresponding event object will be set
signaled by the SetEvent() function, which will be then informed to the main thread.
The main thread won’t perform any other operation until it receives the signal of this
event.

(a) Palm translation along the x-axis           (b) Palm rotation around the y-axis

(c) PIP flexion of the ring finger              (d) MCP flexion of the pinky finger

(e) MCP flexion of the thumb finger           (f) TM flexion of the thumb finger

(g) Object translation along the x-axis          (h) Object translation along the y-axis

Fig. 8 Comparisons between experimental results and ground truth values on the synthetic sequence of hand-
sphere interaction
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Another system is the multiple-virtual-camera system. This system is developed to explore the
potential of themultithread renderingmode of OSG.As shown in Fig. 5, this system creates a virtual
camera, a scene root node, a buffer object, an osg::NodeCallback object, an
osg::Camera::DrawCallback object and an event object for each particle in the particle set. Given
that there are n particles in the particle set, this system will start n camera threads and n
GraphicsContext threads per OSG frame to explore the multithread parallel processing capacity of
the computer. For thread synchronization, different from the single-virtual-camera system, this
system creates an event object for each particle’s virtual camera. The synchronization and commu-
nication of different threads are realized by using the Win32 SetEvent() function and
WaitForMultipleObjects() function. The particle that firstly finishes calculating its matching error
in its GraphicsContext thread will firstly set the corresponding event object as signaled through the
SetEvent() function and be firstly served by themain thread. Themain threadwon’t turn to any other
operation until it has received the signals from all particles. So, the multiple-virtual-camera system is
a multi-thread accelerated counterpart of the single-virtual-camera system.

(a) Palm translation along the x-axis (b) Palm rotation around the y-axis

(c) PIP flexion of the middle finger (d) MCP flexion of the ring finger

(e) MCP flexion of the pinky finger (f) TM flexion of the thumb finger

(g) Object translation along the x-axis (h) Object rotation around the z-axis

Fig. 9 Comparisons between experimental results and ground truth values on the synthetic sequence of hand-
cylinder interaction
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7 Experiments

The proposed hand-object tracking algorithm was evaluated through experiments based on
both real and synthetic sequences. During all experiments in this paper, the proposed tracking
algorithm runs with 60 particles and 40 Gaussian PSO generations for each input frame.

7.1 Experiments on real sequences

First, the tracking algorithm is evaluated based on real depth image sequences. The real
depth images are acquired by Microsoft Kinect 1.0 depth camera with a resolution of
640 × 480 pixels and a frame rate of 30 fps. The experiment includes two parts. The first
one tracks the hand in interaction with a spherical object and the second one tracks the
hand in interaction with a cylindrical object. For evaluation, the proposed method is
compared with standard particle filtering (PF) and a tracking algorithm which combines
differential evolution with particle filtering (DE+PF) [14]. The matching error calculation
is the most time-consuming step in the tracking system. To be fair, standard PF uses 2400
particles, while DE+PF uses 40 particles and 60 generations for DE optimization of each
input frame. Hence, for the three methods, the numbers of matching error calculations for
tracking one frame are all 2400. Fig. 6 plots the matching errors of the three methods on
two real sequences. It can be seen that that standard PF can’t track hand-object motion well
with accumulated errors. The proposed method and DE+PF both have obviously better
performance than standard PF. For the real sequence of hand-sphere interaction, the
proposed method and DE+PF perform equally well. However, for the real sequence of
hand-cylinder interaction which is more difficult to track due to occlusions, the proposed
method performs better than DE+PF. Sample results of the proposed tracking method on

Table 2 Statistical analysis of the tracking errors on the synthetic sequence of hand-cylinder interaction

Pose parameter Mean error Standard deviation

Palm translation along the x-axis 0.5884 mm 0.5236 mm
Palm rotation around the y-axis 1.1793° 2.0406°
PIP flexion of the middle finger 4.7143° 2.9983°
MCP flexion of the ring finger 2.9296° 2.3519°
MCP flexion of the pinky finger 2.9617° 3.9455°
TM flexion of the thumb finger 1.5982° 1.6046°
Object translation along the x-axis 0.3143 mm 0.7198 mm
Object rotation around the z-axis 0.3138° 0.4521°

Table 1 Statistical analysis of the tracking errors on the synthetic sequence of hand-sphere interaction

Pose parameter Mean error Standard deviation

Palm translation along the x-axis 0.3453 mm 0.2896 mm
Palm rotation around the y-axis 0.6665° 1.1481°
PIP flexion of the ring finger 3.5181° 2.5534°
MCP flexion of the pinky finger 2.3356° 2.9465°
MCP flexion of the thumb finger 2.2100° 1.8216°
TM flexion of the thumb finger 0.7944° 0.8104°
Object translation along the x-axis 0.6265 mm 1.3522 mm
Object translation along the y-axis 0.3121 mm 0.5192 mm
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two real sequences are shown in Fig. 7. For each group of results, the first column shows
the RGB images captured by the Kinect RGB camera, the second column shows the depth
images acquired by the Kinect depth camera, and the third column shows the tracking
results on the real depth images. Experimental results demonstrate that the proposed
method can track the hand and the manipulated object effectively.

7.2 Experiments on synthetic sequences

Since it is impossible to acquire ground truth from real image sequences directly, synthetic
depth image sequences attached with ground truth of hand-object poses are used for
quantitative evaluation of the proposed method in this section. The tracking results of
the proposed method on the two real sequences are used as the ground truth to define the
synthetic sequences. The synthetic sequence of hand-sphere interaction is generated
according to the results on the first real sequence, while the synthetic sequence of hand-
cylinder interaction is generated according to the results on the second real sequence. The
two synthetic sequences are used as the input of the tracking system in this section. Results
of the proposed method on some hand-object pose parameters are shown in Figs. 8 and 9
compared with the corresponding ground truth values. The solid curves are the results and
the dotted curves show ground truth values. Statistical analyses of the errors of these pose
parameters on the whole sequences are listed in Tables 1 and Table 2. It can be seen from
Figs. 8, 9, Tables 1 and 2 that the results of the proposed method are consistent with
ground truth values.

7.3 Evaluation of tracking speeds

The tracking speeds of the proposed tracking algorithm implemented on both two kinds
of prototype systems (the single-virtual-camera system and the multiple-virtual-camera
system) are also evaluated experimentally. The experiments are conducted on a PC with
a 4 Core i5 2.9 GHz CPU, 4.0 GB memory and an Nvidia GeForce GTX 950 M GPU.
For both two systems, using the synthetic sequence of the hand-cylinder interaction as
input, the proposed tracking algorithm runs with 60 particles and 40 Gaussian PSO
generations for each input frame. During the tracking process, the rendered depth maps
for matching error calculating are generated through off-screen rendering using FBO.
The time consumptions of the single-virtual-camera system and the multiple-virtual-
camera system for tracking one input frame in average are listed in Table 3. Experimental
results demonstrate that the tracking speed of the multiple-virtual-camera system is
higher than that of the single-virtual-camera system. Although with higher tracking
speeds, the multiple-virtual-camera system requires the intrinsic parallel characteristics
of the tracking algorithm. Nevertheless, the single-virtual-camera system doesn’t have
this kind of restriction.

Table 3 Tracking speed compari-
son for two tracking systems Prototype system Time consumption for

tracking one frame

Single-virtual-camera system 5.85 s
Multiple-virtual-camera system 4.41 s
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8 Conclusions

Tracking a hand in interaction with an object based on vision is very challenging due to
the occlusions between the hand and the manipulated object. To overcome the impacts of
occlusions, we build 3D models for both the hand and the manipulated object and
propose a model-based tracking method in this paper to track the hand and the object
simultaneously during the hand-object interaction. Depth images acquired by a Kinect
depth camera are used as system input and an improved PF algorithm is adopted to
search for the most likely hand-object state. To overcome the difficulty of particle
sampling in the high-dimensional space, Gaussian PSO is combined with the PF algo-
rithm to improve the process of particle sampling, driving the particles to the regions
with higher likelihood values. According to the proposed tracking algorithm, the hand-
object tracking prototype systems are developed based on OSG and off-screen rendering
techniques. Experimental results have proved that the proposed method can track hand-
object motion robustly with few particles.

As our tracking method is a model-based method, the tracking process needs to be
initialized and searching for the best hand-object state in high-dimensional space has
high computational complexity. In the future, we will combine a learning-based method
with our model-based tracking method. For each frame, the initial estimation of the hand-
object state will be carried out by a learning-based method, while the follow-up model-
based tracking process will then be used to refine the results. By this way, the hand-
object tracking can be initialized automatically and the difficulty for searching the best
solution in high-dimensional space can be reduced. In addition, the performance of the
tracking system is significantly sensitive to the noise of the depth information acquired
by Kinect. To make the system more robust, in the future, multiple depth cameras will be
used to improve the quality of depth images. And as the calculation of the matching error
is the most time-consuming step in the tracking system which is also easy to be
parallelized, future research will apply GPU programming to accelerate the system.
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