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Abstract Content-based image retrieval (CBIR) has been an active research topic in the
last decade. Multiple feature extraction and representation is one of the most important
issues in the CBIR. In this paper, we propose a new CBIR method based on an efficient
integration of texture and shape features. The texture features are extracted on the
decomposed images processed by the optimal non-subsampled shearlet transform
(NSST), and are represented by the high-frequency sub-band coefficients, which can
be modeled by Bessel K Form (BKF) distribution; the shape features are represented by
low-order quaternion polar harmonic transforms (QPHTs). The two kinds of features are
then integrated by a weighted distance measurement, where Kullback-Leibler distance
(KLD) and Euclidean distance (ED) are used for texture and shape features respectively.
The integration of shape and texture information provides a robust feature set for image
retrieval. Experimental results on standard benchmarks show significant improvements
on retrieval performance using the proposed method compared with previous state-of-
the-art methods.
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1 Introduction

Digital images are one of the most important media materials, which provide a large amount of
information for communication. With advances in information and Internet technology, there is
an explosive growth of digital image databases (DBs), which require effective and efficient
methods that allow users to search through such large image collections [17]. Depending on
the query formats, there are usually three different types of image retrieval methods: text-,
content-, and cross-model based methods. Text-based image retrieval (TBIR) is a traditional
searching approach which finds the matching between query keywords and image annotations
in DBs. Such methods require manual tagging of a large number of images and always fail to
retrieve visually similar images. To alleviate the difficulties of text-based methods, an alter-
native approach called content-based image retrieval (CBIR) [29, 40] has been proposed and
has attracted extensive research attention in the last decade. In a typical CBIR system, low-
level features related to visual contents such as color, shape, and texture are first extracted from
a query image, the similarity between the set of features of the query image and that of each
target image in a DB is then computed, and target images are next ranked based on their
similarities to the query image. In recent years, Cross-model retrieval (CMR) [55, 60] has
gained a lot of attentions for retrieval of real world database images (such as images with
informative tags or textual descriptions). These methods can effectively solve the problem of
dimension disaster and semantic gap by combining text annotation with visual content.
However, these methods still require manual annotation of the semantic information of images.
In this paper, we focus on CBIR systems, especially on how to improve the performance of
image retrieval by extracting of compact and representative visual features [14, 47].

In the early stage of the development of CBIR, most researches only used one kind of
features among different low-level visual features. However, it is hard to attain satisfactory
retrieval results effectively by using just one feature because, in general, an image contains
various visual characteristics. Recently, active researches in image retrieval using a combina-
tion of different features have been performed [36, 47, 54, 60]. But it is shown that such a
combination of features does not always guarantee better retrieval accuracy [43, 47, 54].
Accordingly, for an advanced CBIR, it is necessary to choose efficient visual features that are
complementary to each other so as to yield an improved retrieval performance and to combine
chosen features effectively without increase of feature vector dimension.

In this paper, we propose a novel CBIR method based on an efficient combination of shape
and texture features, in which QPHTs is used to extract shape feature and BKF modeling for
NSST domain is used to extract texture feature. NSST and QPHTs are two extremely
significant technologies that have great advantages in extracting image content. They have
been successfully applied in image description and feature extraction. Therefore, they are very
useful for CBIR in this paper. The novelty of the proposed method includes: 1) shape
information is represented by quaternion polar harmonic transforms (QPHTs) coefficients,
which has many desirable properties such as expression efficiency, robustness to noise, and
geometric invariance, etc.; 2) image texture is represented by BKF parameters of NSST sub-
bands, which are robust to illumination and image blurring, and also reduce computational
complexity in the texture retrieval phase; 3) QPHTs coefficients and BKF parameters of NSST
are combined effectively for image retrieval.

The rest of this paper is organized as follows. A review of previous related work is
presented in Section 2. Some preliminaries on the NSST and BKF are given in Section 3.
Section 4 recalls the decomposition about QPHTs. Section 5 describes the proposed CBIR
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method by integrating shape and texture features. In Section 6, the effectiveness and efficiency
of the proposed method is evaluated. Finally, we conclude this paper in Section 7.

2 Related work

Over the past decades, CBIR has been actively investigated by researchers in many applica-
tions. Comprehensive surveys exist on the different techniques used in this area [29, 46]. Also,
there are some literatures that survey the important CBIR systems. Early systems mostly
adopted simple low-level visual features for image retrieval, while more effective features such
as SIFT [30, 32], HOG [9] and CNN [1, 34] have been applied recently. Since the work in this
paper is related to search using color, texture, and shape features, this section mainly reviews
existing works based on these features.

Color is one of the most common and determinant low-level visual feature, which is stable
against direction variations and background complexity. As conventional color features used in
CBIR, there are color histogram, color moments, and MPEG-7 color descriptor [43]. Li et al.
[22] presented a novel algorithm based on running sub-blocks with different similarity weights
for object-based image retrieval. By splitting the entire image into certain sub-blocks, the color
region information and similarity matrix analysis are used to retrieval images under the query
of special object. Chen et al. [8] proposed an adaptive color feature extraction method. Based
on the binary quaternion-moment-preserving thresholding technique, the proposed extraction
methods, fixed cardinality (FC) and variable cardinality (VC), are able to extract color features
by preserving the color distribution of an image up to the third moment and to substantially
reduce the distortion incurred in the extraction process. Wang et al. [53] proposed a CBIR
system based on the color histogram of the local feature regions. In their scheme, an RGB
color image is converted into YCbCr color space and multi-scale Harris-Laplace detector was
applied for extracting feature points. The local feature region construction and local feature
regions (LFRs) quantization process were applied. Finally the histogram of the quantized
LFRs was used in the retrieval process. Liu et al. [28] presented a novel image feature
representation method, namely color difference histogram (CDH) for image retrieval. The
features can be considered as a novel visual attribute descriptor combining edge orientation,
color and perceptually uniform color difference. Talib et al. [41] came up with a new semantic
feature extracted from dominant colors. The newly proposed technique helps reduce the effect
of image background on image matching decision where an object’s colors receive much more
focus. Imran et al. [16] decomposed a color image into sub-images and converted each sub-
image into a HSV sub-image. They formed a feature color vector by combining the computed
mean, variance and skewness of equalized histograms of each HSV sub image. In general the
color histogram matching based CBIR systems is relatively simple and fast but only color
information is not sufficient to retrieve the objects having different color features.

Texture is an important visual attribute both for human perception and image analysis
systems [61], its role in domain-specific image retrieval is particularly vital due to their close
relation to the underlying semantics in these cases. As conventional texture features used in
CBIR, there are gray-level co-occurrence matrix (GLCM), Markov random field (MRF)
model, Gabor filters, and edge histogram descriptor (EHD) etc. He et al. [13] presented a
novel method, which uses non-separable wavelet filter banks, to extract the features of texture
images for texture image retrieval. Compared to traditional tensor product wavelets (such as
DB wavelets), the new method can capture more direction and edge information of texture
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images. Lasmar et al. [21] introduced two new multivariate models using, respectively,
generalized Gaussian and Weibull densities. These models can capture both the sub-band
marginal distributions and the correlation between wavelet coefficients. Aptoula [3] presented
the results of applying global morphological texture descriptors to the problem of content-
based remote sensing image retrieval. Specifically, they explored the potential of recently
developed multiscale texture descriptors, namely, the circular covariance histogram and the
rotation-invariant point triplets. Atto et al. [6] derived a 2-D spectrum estimator from some
recent results on the statistical properties of wavelet packet coefficients of random processes,
and discussed the performance of this wavelet-based estimator, in comparison with the
conventional 2-D Fourier-based spectrum estimator on texture analysis and content-based
image retrieval. Rakvongthai et al. [35] presented a novel CBIR scheme based on statistical
texture features using the complex wavelets. Based on a statistical framework, the feature
vector is formed by modeling an image in the complex wavelet domain and estimating
parameters from the image.

Shape features also play an important role in human recognition and perception. Many
shape descriptors have been proposed for different applications. They are generally categorized
into two groups, namely, contour-based descriptors and region-based descriptors [20].
Contour-based methods utilize boundary information which is crucial to human perception
in judging shape similarity. It is difficult to extract boundary points from natural images which
are rich in texture contents. Region-based methods exploit shape interior information, there-
fore, they can be applied to more general shapes. Among the region based techniques, rotation
invariants [15], gradient features, and curvature scale space are the popular region-based
descriptors [45]. By using a mathematical form of analysis, Li et al. [23] compared the amount
of visual information captured by Zernike moments (ZMs) phase and the amount captured by
ZM magnitude, and then proposed combining both the magnitude and phase coefficients to
form a new shape descriptor for CBIR. Shu et al. [38] suggested a novel shape contour
descriptor for shape matching and retrieval. The new descriptor is called contour points
distribution histogram (CPDH) which is based on the distribution of points on object contour
under polar coordinates. CPDH not only conforms to the human visual perception but also the
computational complexity of it is low. Jian et al. [19] proposed an efficient method based on
singular values and potential-field representation for face-image retrieval, in which the
rotation-shift-scale invariant properties of the singular values are exploited to devise a com-
pact, global feature for face-image representation. Liu et al. [26] considered the family of total
Bregman divergences (tBDs) as an efficient and robust Bdistance^ measure to quantify the
dissimilarity between shapes, and used the tBD-based l1-norm center as the representative of a
set of shapes. Anuar et al. [2] proposed a novel technique for trademark retrieval that
demonstrates improved performance due to the integration of two shape descriptors. The
technique employs the Zernike moments as the global descriptor and the edge-gradient co-
occurrence matrix as the local descriptor.

Most of the early studies on CBIR have used only a single feature among various low-level
visual features. However, it is hard to attain satisfactory retrieval results by using a single feature
because, in general, an image contains various visual characteristics. Recently, active researches
in image retrieval using a combination of some low-level visual features have been performed.
Yap et al. [57] proposed a content-based image retrieval using Legendre chromaticity distribu-
tion moments (LCDM), which can provide a compact, fixed-length and computation effective
representation of the color contents of an image. Yu et al. [58] considered multiple features from
different views, i.e., color histogram, Hausdorff edge feature, and skeleton feature, to represent
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cartoon characters with different colors, shapes, and gestures. Each visual feature reflects a
unique characteristic of a cartoon character, and they are complementary to each other for
retrieval and synthesis. Wang et al. [54] proposed an effective color image retrieval scheme for
combining all the three i.e. color, texture and shape information, which achieved higher retrieval
efficiency. Farsi et al. [12] presented a novel CBIRmethod based on combination of Hadamard
matrix and discrete wavelet transform in hue-min-max-difference color space. An average
normalized rank and combination of precision and recall are considered as metrics to evaluate
and compare the proposed method against different methods. Seetharaman et al. [36] proposed
a unified scheme for automatic image retrieval based on the multivariate parametric tests. In the
proposed technique, mean and covariance are used as representatives of both query and target
images, and statistical features such as coefficient of variation, skewness, kurtosis, variance-
covariance, and spectrum of energy are used. Zhao et al. [59] discussed a novel approach of
CBIR, which combines color, texture and shape descriptors to represent the features of the
image. This scheme is based on three noticeable algorithms: (1) color distribution entropy takes
the correlation of the color spatial distribution in an image into consideration, (2) color level
co-occurrence is served as the texture feature, which is a new descriptor that is grounded on
co-occurrence matrix to seize the alteration of the texture, and (3) Hu invariant moments are
frequently used owing to its invariance under translation, changes in scale, and also rotation.
Varish et al. [44] proposed a hierarchical approach for designing a CIBR scheme based on the
color and texture features of an image. Singha et al. [39] proposed a CBIR approach based on
the combination of Haar wavelet transformation using lifting scheme and the color histogram.
The color feature is described by the color histogram, which is translation and rotation invariant.
The Haar wavelet transformation is used to extract the texture features and the local character-
istics of an image. The lifting scheme reduces the processing time to retrieve images. Khokher
et al. [20] proposed a CBIR scheme for retrieval images via color, texture, and shape features.
Using three specialized histograms (i.e. color, wavelet, and edge histograms), the authors
showed that a more accurate representation of the underlying distribution of the image features
improves the retrieval quality. Wang et al. [47] proposed a new CBIR method based on an
efficient combination of shape and texture features. As its shape features, exponent moments
descriptor, which has many desirable properties, is adopted in RGB color space. As its texture
feature, localized angular phase histogram of the intensity component is used in hue saturation
intensity. This paper combines local binary pattern (LBP) with Legendre moments at multiple
resolutions of wavelet decomposition of image. In these methods, some different low-level
visual features are extracted and combined, but it is shown that such a combination of features
does not always guarantee better retrieval accuracy [46, 47]. It is a challenging work to choose
visual features that are complementary to each other and to combine chosen features effectively
so as to yield an improved retrieval performance.

3 Texture feature extraction

In recent years, the shearlet transform has been introduced, which can yield nearly optimal
approximation properties [37, 48]. The shearlet transform has the following main properties:
parabolic scaling, high directional sensitivity, spatially localizing, and optimally sparse. The
NSST, which combined the non-subsampled Laplacian pyramid transform with several dif-
ferent combinations of the shearing filters, is the shift-invariant version of the shearlet
transform. The NSST differs from the shearlet transform in that the NSST eliminates the
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down-samplers and up-samplers. It not only can exactly compute the shearlet coefficients, but
can also provide nearly optimal approximation for 2D images. Consequently, introduction of
NSST into image retrieval could make use of the good characters of NSST in effectively
extracting texture feature from original images.

3.1 Non-subsampled shearlet transform (NSST)

Consider the two-dimensional affine system for a continuous wavelet ψ ∈ L2(R2),

ψast xð Þ ¼ detMasj j12ψ M−1
as x−t

� �
: t∈R2;Mas∈Γ

n o
ð1Þ

where Γ is the 2 parameter dilation group,

Γ ¼ Mas ¼ a
ffiffiffi
a

p
s

0
ffiffiffi
a

p
� �

: a; sð Þ∈Rþ � R
� �

ð2Þ

For any row vector ξ = (ξ1, ξ2) ∈ R2, a ∈ R+, s ∈ R and a ∈ R2 according to the Eq. (2). The
continuous shearlet transform of f ∈ L2(R) is defined as:

SH a; s; tð Þ ¼ f ;ψasth i ð3Þ
The discrete shearlet transform ψ̂jlk j≥0;−2 j≤ l≤2 j−1ð Þ, which can deal with distributed

discontinuities, is obtained by sampling continuous shearlet transform SH(a, s, t) [49]. Each

element of ψ̂jlk is supported on a pair of trapezoids of approximate size 22j × 2j.

A primary advantage of the shearlet transform is that there are no constraints on the size of
the supports for the shearing and no restrictions on the number of directions: unlike the
construction of the directional filter banks in [49]. Hence, the NSST consists of two phases,
which are the non-subsampled Laplacian pyramid and several different combinations of the
shearing filters [24]. NSLP can be analyzed through iterative processing as follows:

NSLPjþ1 ¼ Aj f ¼ Ah1j ∏
j−1

k¼1
Ah0k

� �
f ð4Þ

where f is an image, NSLPj + 1 is the detail coefficients at scale j + 1, and Ah
0
k and Ah1j are low

pass and high pass filters of NSLP at scale j and k respectively. Given N ×N image f 0a and the
number of direction Dj, the process of the NSST analysis described above at fixed resolution
scale j can be summarized below.

Step 1: Apply the NSLP to decompose f j−1
a into a low-frequency image f j

a of size N ×N and

a high-frequency image f j
d ;

Step 2: Compute f̂
j
d in pseudo polar grid, then getPf j

d;

Step 3: Apply a Band-Pass filtering to Pf j
d to obtain f̂

j
d;k

n oD j

k¼1
;

Step 4: Apply inverse FFT to obtain NSST coefficients f j
d;k

n oD j

k¼1
in pseudo polar grid.

An example of frequency partition of the NSST is shown in Fig. 1. This type of frequency
partition leads to the sparsity of the NSST coefficients, i.e., only the coefficients with both
direction and location on the original image edges has significant values. This can be clearly
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seen in Fig. 2, where the 2-level NSST is applied on the luminance channel of Barbara image.
Here, the numbers of shearing directions are chosen to be 8 and 4 from finer to coarser scale.

Fig. 1 An example of frequency partition by the NSST

Fig. 2 The NSSTon the luminance channel of color image Barbara: a Original image, b The approximate NSST
coefficients, c The detail NSST coefficients at scale 2, d The detail NSST coefficients at scale 1
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3.2 Marginal statistics of NSST coefficients

In the subsection, we will discuss the marginal statistics of the NSST coefficients of
images. A standard grayscale dataset image database, namely USC-SIPI image dataset
[42], is used to study the marginal statistics, and Fig. 3 plots the histograms of the second
scale sub-bands of the images. We apply two-level NSST decomposition, with direction-
al sub-bands being 4 and 8, respectively from coarse to fine, as shown in Fig. 2. Figure 3
demonstrates that these distributions exhibit a sharp peak at zero around and heavy tails
on both sides of the peak. This implies that the NSST is sparse, because the majority of
coefficients are close to zero. The kurtoses of the four shown distributions shown are
22.74, 22.01, 27.29, and 26.47, which are much higher than the kurtosis of 3 for
Gaussian distributions. Therefore, we need to model the NSST coefficients by a non-
Gaussian distribution.

3.3 BKF Modeling of NSST sub-band coefficients

Using a physical model for image formation, a family of two-parameter probability densities,
called Bessel K form (BKF), have been proposed in [11, 52] to model the distribution of
arbitrary images that have been filtered by a variety of band-pass filters (e.g., derivative,
Gabor, interpolation, steerable filters, etc). It is obvious that NSST decompositions of an image
are members of such class of filters. Therefore, the BKF is a suitable model to capture the
heavy tail behavior of NSST coefficients densities.

Fig. 3 Marginal statistics of four second scale sub-bands of the image Barbara: The kurtosis of the distributions
is measured at a 22.74, b 22.01 c 27.29, and d 26.47
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Let gF be a filtered version of an image g by through the bandpass filter F. The Bessel K
form PDF of gF has been shown to be [11] for p>0, c>0

f x; p; cð Þ ¼
c
2

� �−p
2−

1
4 x

2

		 		p−1
2Kp−1

2

ffiffiffi
2

c

r
xj j

 !
ffiffiffi
π

p
Γ pð Þ ð5Þ

where Kv indicates the modified Bessel function defined as

Kv zxð Þ ¼
Γ vþ 1

2

� �
2xð Þvffiffiffi

π
p

zv
∫

þ∞

0

cos ztð Þdt
t2 þ x2ð Þvþ1=2

;

Re vð Þ > −
1

2
; z > 0; argxj j < π

2

� � ð6Þ

where p and c are the shape and scale parameters respectively.
We restrict ourselves to only two-parameter BKF throughout this paper. For p=1, f simply

reduces to the double exponential PDF. If p>1, we get closer to the Gaussian case (especially
when p> > 1, which is intuitively acceptable using a central limit theorem argument). If p<1,
the PDF becomes more sharply peaked and the tails are heavier.

BKF distribution has proved useful in the modeling of heavy-tailed data, especially NSST
coefficients. To justify the selection of the BKF statistical model, we use the Kolmogorov-
Smirnov (KS) metric to compare the empirical PDFs [49] (including Weibull distribution,
General Gaussian distribution, Rayleigh distribution, Exponential distribution, Laplacian
distributions, Cauchy distributions, and BKF distribution) with the prior PDF (i.e., the
histogram) of the NSST coefficients. The KS metric is

dks ¼ max
w∈R

Fh wð Þ−Fe wð Þj j ð7Þ

where Fh(w) and Fe(w) denote the cumulative density function (CDF) of the prior PDF and the
empirical CDF, respectively, and a smaller dks value indicates a better performance.

Experiments are conducted using four widely used test images Lena, Barbara, and Couple,
each of size 512 × 512. Each test image is applied by a two-level NSST, where the number of
shearing directions is chosen to be 8 and 4 from finer to coarser scale. Then, the distributions
of NSST coefficients of the second-level detail sub-bands are fitted with the seven statistical
models, where the parameters involved are estimated using moment based estimation tech-
nique. The fitted models are further compared with the histogram of the NSST coefficients in
the sense of KS metric. Table 1 shows the results concerning the KS metric for various
empirical PDFs of the image NSST coefficients in the second finest scale.

It is evident from Table 1 that the BKF distribution fits the empirical data much more
accurately than do other distributions.

4 Shape feature extraction

Shape is known to play an important role in human recognition and perception [20]. Object
shape features provide a powerful clue to object identity. Humans can recognize objects solely
from their shapes. The significance of shape as a feature for CBIR can be seen from the fact
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that every major CBIR system incorporates some shape features in one form or another. As the
most commonly used approaches for shape descriptors, moments and moment invariants have
been utilized as pattern features in a number of applications [2, 23, 47]. The theory of moments
provides useful series expansions for the representation of object shapes. In this section, we
introduce a robust and effective shape feature based on quaternion polar harmonic transform
(QPHT).

4.1 Polar harmonic transforms

In 2010, Yap et al. [56] introduced a set of 2D transforms named PHT based on a set of
orthogonal projection bases. Compared with other orthogonal moment, PHT has a better
image reconstruction, lower noise sensitivity, and lower computational complexity. Besides,
the PHT is free of numerical instability issues so that high order moments can be obtained
accurately.

The PHT coefficients Mn, m of order n with repetition m, ∣n ∣ = ∣m ∣ = 0, 1, …, ∞, is
defined as

Mn;m ¼ 1

π
∫2π0 ∫10 f r; θð Þ Hn;m r; θð Þ
 �*rdrdθ ð8Þ

where [⋅]∗ denotes the complex conjugate and the basis Hn, m can be decomposed into radial
and circular components

Hn;m r; θð Þ ¼ Rn rð Þeimθ ð9Þ
with the radial kernel being a complex exponential in the radial direction

Rn rð Þ ¼ ei2πnr
2 ð10Þ

And satisfying orthogonality condition

∫10Rn rð Þ Rn0 rð Þ
 �*rdr ¼ 1

2
δn;n0 ð11Þ

And also

∫2π0 ∫10Hn;m r; θð Þ Hn0 ;m0 r; θð Þ
h i*

rdrdθ ¼ πδn;n0 δm;m0 ð12Þ

where π is the normalization factor, δn;n0 and δm;m0 are the Kronecker symbols, and

Hn0 ;m0 r; θð Þ
h i

* is the conjugate of Hn0 ;m0 r; θð Þ.
Following the principle of orthogonal function [37, 51], the image function f(r, θ) can be

reconstructed approximately by limited orders of PHT coefficients (n ≤ nmax, m ≤mmax). The
more orders used, the more accurate the image description

f
0
r; θð Þ ¼ ∑

þ∞

n¼−∞
∑
þ∞

m¼−∞
Mn;mRn rð Þexp imθð Þ≈ ∑

n¼−nmax

nmax

∑
m¼−mmax

mmax

Mn;mRn rð Þexp imθð Þ ð13Þ

where f′(r, θ) is the reconstructed image. The basis functions Rn(r) exp(imθ) of the PHT are
orthogonal over the interior of the unit circle, and each order of the PHT coefficients makes an
independent contribution to the reconstruction of the image.
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4.2 Quaternion polar harmonic transform (QPHT)

A quaternion consists of one real part and three imaginary parts [50] as follows

q ¼ aþ biþ cjþ dk ð14Þ
where a, b, c, and d are real numbers, and i, j, and k are three imaginary units obeying the
following rules. i2 þ j2 þ k2 ¼ −1 ij ¼ −ji ¼ k; jk ¼ −kj ¼ i; ki ¼ −ik ¼ j

The conjugate and modulus of a quaternion are respectively defined by

q* ¼ a−bi−cj−dk; qj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2 þ d2

p
ð15Þ

Let f(r, θ) is the reconstructed color image defined in polar coordinates, we define the right-
side QPHT of order n with repetition m as

MR
n;m ¼ 1

π
∫2π0 ∫10 f r; θð Þ Hn;m r; θð Þ
 �*rdrdθ

¼ 1

π
∫2π0 ∫10 f r; θð Þexp −μ2πnr2

� �
exp −μmθð Þrdrdθ ð16Þ

where μ is an unit pure quaternion chosen as μ ¼ iþ jþ kð Þ = ffiffiffi
3

p
.

Since the polar complex exponential transform basis functions are orthogonal, the color
image f(r, θ) can be reconstructed approximately from limited orders of QPHT coefficients
(n ≤ nmax, m ≤mmax). The more orders used, the more accurate the color image description

f
0
r; θð Þ ¼ ∑

þ∞

n¼−∞
∑
þ∞

m¼−∞
MR

n;mRn rð Þexp μmθð Þ

≈ ∑
þnmax

n¼−nmax

∑
þmmax

m¼−mmax

MR
n;mexp μ2πnr2

� �
exp μmθð Þ

ð17Þ

where f′(r, θ) is the reconstructed color image. The basis function Rn(r) exp(μmθ) of the QPHT
is orthogonal over the interior of the unit circle, and each order of the QPHTcoefficients makes
an independent contribution to the reconstruction of the color image.

Figure 4 gives some examples of image reconstruction using QPHT for standard color
image BLena^ and BBarbara^ (moment orders N = 3, 5, 10, 15, 20, 30, 40, 50, 70, and 100). As
more QPHT coefficients are added to the reconstruction process, the reconstructed images get
closer to the original images. As can be observed from the reconstructed images, QPHT
capture the color image information, especially the edges. Also, it can be observed that the
reconstructed color images using QPHT show visual resemblance to the original image in the

Fig. 4 Some example of reconstructed images of 128 × 128 (moments orders = 3, 5, 10, 15, 20, 30, 40, 50, 70,
and 100): a QPHT for image BLena^, b QPHT for image BBarbara^
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early orders, and the QPHT is free of numerical instability issues. Figure 5 shows the modulus
distribution of QPHT coefficients for image Lena under various attacks. It can be seen that the
QPHT modulus coefficients have good robustness against various noises, geometric trans-
forms, and color variations. So, QPHT modulus coefficients are suitable for invariant color
image description.

From the foregoing, we can obtain rotation, scaling, and translation invariant QPHT
modulus coefficients. However, we do not need all the QPHT modulus coefficients in color
image retrieval. The number of QPHT modulus coefficients required, however, does not need
to be large, since shape features can normally be captured by just a few low-frequency

modulus coefficients. Further, the QPHT modulus coefficients MR
n;−m

			 			 ¼ MR
n;m

			 			, so only

MR
n;m n≥0;m≥0ð Þ is selected as the shape feature in this paper. Table 2 lists the selected

QPHT features for different max orders. From the reconstruction results (see Fig. 4), we can
see that QPHT, with the max order up to fifteen, could have a sufficiently good color image
representation power.

5 The proposed content-based color image retrieval scheme

For content-based color image retrieval (CBIR), image features in color image database are
extracted and stored in an index file that is linked to the original color images. The descriptor

Fig. 5 The modulus distribution of QPHT coefficients for image BLena^ under various attacks: a No attack, b
Gaussian filtering, c salt and pepper noise, d JPEG compression 50, e light increasing, f contrast lowering, g
translation, h rotation, i scaling
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of the query color image is represented in vector form and the similarity is calculated between
the descriptor vectors of database color images and of the query color image. This section
presents a content-based color image retrieval scheme based on an efficient combination of
shape and texture features. Figure 6 describes our image retrieval system framework.

5.1 Shape and texture features

According to Section 4.2, we can compute rapidly the QPHT coefficients. However, we don’t
need too much QPHT coefficients in color image retrieval, since color image features can
normally be captured by just a few low-order QPHT coefficients. The shape feature vector

based on QPHT is represented as F ¼ ~M 00; ~M 01; ~M10;…; ~Mnm

 �

. Normalize the QPHT

coefficients:

Mij ¼
~Mij−μF

σF
ð18Þ

Table 2 List of the selected QPHT features for different max orders

Order QPHT modulus coefficients No. of
moments

Accumulative
No.

0 MR
0;0

			 			 1 1

1 MR
1;1

			 			; MR
1;0

			 			 2 3

2 MR
2;2

			 			; MR
2;1

			 			; MR
2;0

			 			 3 6

3 MR
3;3

			 			; MR
3;2

			 			; MR
3;1

			 			; MR
3;0

			 			 4 10

4 MR
4;4

			 			; MR
4;3

			 			; MR
4;2

			 			; MR
4;1

			 			; MR
4;0

			 			 5 15

……
8 MR

8;8

			 			; MR
8;7

			 			; MR
8;6

			 			; MR
8;5

			 			; MR
8;4

			 			; MR
8;3

			 			; MR
8;2

			 			; MR
8;1

			 			; MR
8;0

			 			 9 45

9 MR
9;9

			 			; MR
9;8

			 			; MR
9;7

			 			; MR
9;6

			 			; MR
9;5

			 			; MR
9;4

			 			; MR
9;3

			 			; MR
9;2

			 			; MR
9;1

			 			;
MR

9;0

			 			;
10 55

……

Retrieved 
 Images 

Query Image 

Feature Database Multiple Feature Extraction Image Database 

User 

NSST 
BKF 

Modeling 

Multiple Feature Extraction 

QPHT coefficients computing Euclidean distance 

Kullback-Leibler distance 

Similarity Measurement 

Fig. 6 Block diagram of the proposed content-based image retrieval system. The green and red lines indicate the
path of query image and database image, respectively
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where μF and σF are mean and standard deviation of F respectively. Then the normalized
shape feature vector is written as:

V shape ¼ M00;M 01;M 10;…;Mnm½ � ð19Þ
Effective parameter estimation is necessary for accurate modeling NSST coefficients

accurately. Many studies in the literatures [11, 49], describe methods parameter estimation
using the statistical model, such as the maximum likelihood (ML) estimator, the moment/
Newton-step (MN) estimator, and the moment based method (MM). The MM method is a
feasible and effective parameter estimation approach; we will use this method in this paper to
estimate the parameters of BKF, as follows [49],

p̂̂¼ 3 n−2ð Þ n−3ð Þm2
2

n−1ð Þ nþ 1ð Þm4−3 n−1ð Þm2
2


 � ð20Þ

ĉ̂¼ nm2

n−1ð Þp̂̂ ð21Þ

where n indicates the number of samples used in the estimate, and m2 and m4 are the second
and fourth order sample central moments, respectively.

In the proposed method, a three-level non-subsampled shearlet transform (NSST) is
applied to each color image, and then 20 directions sub-bands can be obtained. The
probability density function is utilized to model the 20 high-pass sub-bands, and the
scale parameter and shape parameter of each sub-band are estimated. Forty parameters
can be obtained to form the BKF statistical model features (BSMFs), which can
efficiently represent the texture of remote sensing images. The BSMFs vector is
described as follows:

V texture ¼ p1; c1; p2; c2;…; p20; c20½ � ð22Þ

5.2 Similarity measurement

The texture feature similarity between two NSST sub-bands can be figured out effec-
tively by the BKF parameters. Meanwhile, the NSST coefficients in different sub-bands
are independent. Therefore, the overall distance between two images is the sum of all the
Kullback-Leibler distance (KLD) across the corresponding high-frequency NSST sub-
bands. The texture feature distance between the query image and the database image is
represented as follows:

D1 VIQ
texture;V

IT
texture

� 
¼ ∑

J

j¼1
∑
d¼1

D j

f j;dð Þ
Q log

f j;dð Þ
Q

f j;dð Þ
T

 !
ð23Þ

where f j;dð Þ
Q and f j;dð Þ

T represent the BKF statistical model in the two images IQ and IT,
respectively, for the high-frequency sub-band of the jth scale and the dth direction.
There is no need for normalization on texture feature vectors in this method of
similarity measurement.
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The similarity measurement between the shape feature vectors is selected to be Euclidean
distance, which is the most common distance measurement and is defined as follows:

D2 VIQ
shape;V

IT
shape

� 
¼ ∑

K

i¼1
VIQ
shape−V

IT
shape

� 2
ð24Þ

where VIQ
shape is the shape feature vector of the query image, VIT

shape is the shape feature vector of

image in the database, and K is the number of vector elements.
The final distance between the image IQ and IT is defined by the weighted distance formula

as follows:

D IQ; IT
� � ¼ ω1D1 VIQ

texture;V
IT
texture

� 
þ ω2D2 VIQ

shape;V
IT
shape

� 
ð25Þ

where ω1 and ω2 are the weights of the shape and texture features respectively and ω1 + ω2 = 1.
We use a minimum distance criterion and sort the database images for each query.

6 Simulation results

In this paper, we propose a new and effective CBIR method for combining texture and shape
feature, which achieve higher retrieval efficiency. To evaluate the performance of the proposed
algorithm, we conduct an extensive set of experiments by comparing the proposed scheme to
the several state-of-the-art pipelines including traditional handcraft feature-based methods [5,
10, 18, 20, 25, 27, 44, 47] and CNN-based methods [1, 4, 7, 31, 33, 34]. First, we conduct the
parameter selection experiment, and then compare the proposed algorithm with the recent
multi-feature fusion retrieval method, and finally compare the proposed algorithm with other
excellent methods (including Local-based algorithms and CNN-based algorithms).

6.1 Image database and evaluation criteria

The proposed color image retrieval system has been implemented by using MATLAB R2011b
on the platform Intel core i5–7500 @ 3.4GHz, 16G RAM, 64 bit, Microsoft Windows 10 OS.

To check the retrieval efficiency of proposed method, we perform experiments on several
well-known image benchmark datasets. The first image dataset used in this work is that of
Wang et al. [47]. It is a subset of the COREL photo collection and is composed of 10,000 color
images from 150 semantic categories, in which each category contains 100 images. Every
database image is stored in JPEG format with size 384 × 256 or 256 × 384. This dataset covers
a variety of topics, such as ‘Flowers’, ‘Buildings’, ‘Elephants’, ‘Buses’, ‘Planes’, and ‘Foods’,
etc., with corresponding category ID’s denoted by integers from 1 to 100, respectively. This
category information availability is an advantage of this dataset since it makes evaluation of
retrieval results easier. Ideally, the goal is to retrieve images belonging to the same category as
the query image.

We also perform experiments on other 3 public datasets: UK-bench [47], Holidays [47], and
Oxford [47]. UK-bench dataset consists of 10,200 images of 2250 different objects. Each
object image is taken under four different viewpoints to get four visually similar images. The
standard accuracy measure used for the UK-bench is computing the precision at top 4 images
then the results averages over all queries. The best accuracy can be achieved is 4, e.g. 1
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indicates only one relevant image to the query is retrieved at top 4 images, and 4 indicates all
relevant images are successfully retrieved and ranked. Holidays dataset contains 500 images
groups and in all 1491 personal Holidays photos undergoing various transformations. The
number of photos in an image group is variable. The dataset contains a large variety of scene
types such as nature, water, and fire effects, etc. The resolution of the images is very high
(2448 × 3204) and for our experiments we scale them to the size 128 × 128 using bicubic
interpolation of MATLAB. Oxford dataset contains 5062 high-resolution images (1024 ×
768) showing either one of Oxford landmarks (the dataset contains 11 landmarks), or other
places in Oxford. The database includes 5 queries for each landmark (55 queries in total), each
of them including a bounding box that locates the object of interest.

The performance of an image retrieval system is normally measured using precision P(N)
and recall R(N) for retrieving top N images defined by

P Nð Þ ¼ IN
N

ð26Þ

R Nð Þ ¼ IN
M

ð27Þ

where IN is the number of relevant retrieved from top N positions andM is the total number of
images in the dataset that are similar to the query image. The precision and recall measure the
accuracy of image retrieval with relevancy to the query and database image. While the
precision provides the accuracy of retrieval out of the top N retrieved images, the recall
provides the accuracy with respect to the total number of relevant images in the database
which are similar to the query image. Thus, only recall cannot measure the effectiveness of a
retrieval system, precision must also be computed. The average normal precision of a single
query is the mean of all the precision scores for each of the top NR retrieval:

P qð Þ ¼ 1

NR
∑
N−1

NR

P Nð Þ ð28Þ

The mean average precision (mAP) is the mean of the average precision scores over all
queries Q:

mAP ¼ 1

Q
∑
Q

q¼1
P qð Þ ð29Þ

The mAP measure contains both the precision and recall information and represents the
entire ranking.

6.2 The performance of parameters selection

In our image retrieval, shape feature is represented by quaternion polar harmonic transforms
(QPHTs) coefficients and texture feature is represented by BKF parameters of NSST sub-
bands. To evaluate the overall performance of the proposed image feature in retrieval, a
number of experiments were performed on our image retrieval.

To find the optimal maximum order of QPHTs and the number of NSSTsub-bands, we randomly
selected 500 different images as query images from the COREL dataset to test the performance of the
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proposed algorithm. Figure 7a shows the average retrieval precision and average feature extraction
time for different maximum orders of QPHTs. Figure 7b plots the average retrieval precision and
average feature extraction time for different scales and directions of NSST decomposition.Withmore
shape features and texture features, the performance of image retrieval tends to become better because
more information can be represented by the indexing feature space. However, the number of features
will increase accordingly, which will inevitably reduce the computational efficiency of image
retrieval. In order to achieve better trade-off between the average retrieval precision and average
feature extraction time, we choose the maximum order of QPHTs is nmax=9 and NSST decompo-
sition [29, 40] in the rest of experiments. Figure 8 shows the average retrieval precisions of 500 times
query results for different feature weight values ω1 and ω2, which reflects the image retrieval
efficiency. In Figs. 9 and 10, we demonstrate our retrieval results with shape feature only, texture
feature only, and both shape feature and texture feature, respectively. It clearly shows that integrating
the results of shape- and texture-based queries provides better retrieval effectiveness than either of the
individual feature based queries.

6.3 Comparative performance evaluation

We report experimental results that show the feasibility and utility of the proposed algorithm
and compare its performance with three state-of-the-art image retrieval approaches [20, 44,
47], which retrieval using a combination of several low-level visual features. To simulate the
practical situation of online users, we randomly selected 1000 images as query images from
the COREL dataset (The tested 10 semantic class includes people, beaches, buildings, buses,

Fig. 7 The mean of retrieval precisions and average feature extraction time of 500 times query results for a
different maximum QPHTs order values, b different NSST decomposition
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dinosaurs, elephants, flowers, horses, mountains, and foods). Each kind is extracted 20 images,
and each time returns the first 20 most similar images as retrieval results. To each kind of
image, the average normal precision and average normal recall of 20 times query results are

Fig. 8 The average retrieval precision for different feature weight values

Fig. 9 Our image retrieval results (Bus): a By taking only the shape feature, b By taking only the texture feature,
c By taking both shape feature and texture feature
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calculated. These values are taken as the retrieval performance standard of the algorithm, as
shown in Fig. 11. According to the Fig. 11, we see that the image retrieval accuracy by the
proposed method is competitive with the other methods.

As stated earlier, retrieval efficiency is another parameter to measure the performance of the
CBIR system. Efficiency is closely related with the storage requirements and the responsive-
ness of the system. We examine retrieval efficiency by measuring the indexing time (time
taken to extract and store feature vectors from all images in the database) and the response time
(time taken by the retrieval system to response to user’s query) of above four algorithms. We
see from Table 3 that when compared with algorithms [20, 44, 47], our proposed algorithms
can achieve a much quicker retrieval in term of both indexing time and response time.

We also compared the proposed methods with current state-of-the-art retrieval pipelines
including traditional Local-based methods [5, 10, 18, 25, 27] and CNN-based methods [1, 4, 7,
31, 33, 34] on another three publicly available retrieval datasets, Holidays, Oxford, and
UK-bench. For a fair comparison, we only report mAP on representation with relevant
dimensions and exclude post-processing methods such as spatial re-ranking or query expan-
sion. The results of retrieval accuracy (mAP) of retrieval accuracy (mAP) of Holidays, Oxford,
and UK-bench are shown in Table 4, in which the bold indicate the best results in the

Fig. 10 Our image retrieval results (Plane): a By taking only the shape feature, b By taking only the texture
feature, c By taking both shape feature and texture feature
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Fig. 11 The average retrieval performance of four algorithms: a The average normal precision, b The average
normal recall

Table 3 Retrieval efficiency comparisons with three multiple feature fushion-based algorithms

Wang et al. [47] Khokher and Talwar [20] Varish et al. [44] Proposed algorithm

Average indexing time
(in seconds)

0.313 0.361 0.293 0.289

Average response time
(in seconds)

0.245 0.307 0.222 0.209

Multimed Tools Appl (2019) 78:2525–2550 2545

comparison experiments. It is interesting find that our algorithm performs better than all
local-based approaches by a large margin but perform worse than the CNN-based approaches
by little margin. However, the retrieval efficiency mainly relies on the feature vector length. It
is worth noting that the dimension of the feature vector used in or method is significantly lower
than that of the CNN-based algorithms. That is to say, although accuracy has decreased
slightly, but the retrieval efficiency has been improved under the same experimental condi-
tions, which belongs to a more effective compromise retrieval scheme.

According to the Fig. 11, Tables 2, and 3, we see that the image retrieval accuracy by the
proposed method is competitive with the other methods. The effectiveness of the proposed



image retrieval results from: (1) Quaternion polar harmonic transforms (QPHTs) coefficients
are adopted to depict the image shape, which has many desirable properties such as expression
efficiency, robustness to noise, geometric invariance, fast computation, etc.; (2) image texture is
represented by BKF parameters of NSSTsub-bands, which are robust to illumination and image
blurring, and also reduce computational complexity in the texture retrieval phase; (3) QPHTs
coefficients and BKF parameters of NSST are combined effectively for image retrieval.

7 Conclusion

CBIR has drawn substantial research attention in the last decade. CBIR usually indexes images
by low-level visual features which, though they cannot completely characterize semantic
content, are easier to integrate into mathematical formulations. In this paper, we have proposed
a content-based image retrieval approach using QPHTs coefficients and BKF parameters in
NSST domain. Experimental results showed that the proposed method yielded higher retrieval
accuracy than the other conventional methods with no greater feature vector dimension. In
addition, the proposed method almost always showed performance gain in of average normal
precision and average normal recall over the other methods. As further studies, the proposed
retrieval method is to be evaluated for more various DBs and to be applied to video retrieval.
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