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Abstract Robot motion estimation is fundamental in most robot applications such as
robot navigation, which is an indispensable part of future internet of things. Indoor
robot motion estimation is difficult to be resolved because GPS (Global Positioning
System) is unavailable. Vision sensors can provide larger amount of image sequences
information compared with other traditional sensors, but it is subject to the changes of
light. In order to improve the robustness of indoor robot motion estimation, an
enhanced particle filter framework is constructed: firstly, motion estimation was
implemented based on the distinguished indoor feature points; secondly, particle filter
method was utilized and the least square curve fitting was inserted into the particle
resampling process to solve the problem of particle depletion. The various experi-
ments based on real robots show that the proposed method can reduce the estimation
errors greatly and provide an effective resolution for the indoor robot localization and
motion estimation.

Keywords Internet of things .Visual odometry. Indoor robot . Localization .Motion estimation

1 Introduction

Mobile robots’ self-localization and position tracking is one of the most important
tasks in various applications such as visual navigation and visual servo, which are the
indispensable terminal applications for the future Internet of Things. A common way
to implement this task is to estimate robots’ pose according to inertial sensors. This
method is difficult to resolve the problem of robot’s wheel slipping, so the
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accumulated errors impact the estimating accuracy greatly [4, 19, 21, 22]. GPS is
another commonly used technique to solve this problem. However, GPS can’t be used
in some conditions such as indoor environments [25, 28]. Magazine [17] proposed
The Non-Cooperative Feature Points for the motion estimation, which are implement-
ed by extracting special satellite feature points that are Non-Cooperative for the
implementation of navigation. The problem of this method is that it is limited in
special environment. The graph-based methods [10] have been utilized for the robot
localization and navigation, but this method is difficult to obtain the high accuracy.
The technical, using Visual sensors to estimate camera’s ego-motion, is called visual
odometry. it is a promising technique for improving the capability of a mobile robot
to estimate its motion in indoor environment [8, 11, 18, 24]. Extensive research has
been done to make use of visual odometry in practice, several methods have been
proposed based on monocular image sequences or stereo image sequences; however,
there are still many difficulties in estimating the robots motion effectively because of
the inaccurate feature matching and outliers [3, 14, 23]. One object of this paper is to
develop a method integrating distinguished features of indoor environment and wire-
less sensor network to improve the effect of visual odometry. Considering that it is
mainly applied to the indoor environment, the robot is assumed to travel in flat floor.
The second problem needs to be solved is the robustness. Vision sensors are easy to
be affected by many factors: the degree of image distortion correction, the tracking
error of the feature points, and so on [1, 2, 26]. A series of filter algorithms are
commonly used to improve the robustness of vision sensors, where particle filter has
been a successful algorithm to solve this problem compared with other algorithms [6,
7, 12, 15]. However, A problem is difficult to be solved in particle filter algorithm
that the particles would degenerate over time in terms of accuracy, which happens
when the diversity of particles disappear over time. The main factors contributing to
the disappearing of particles’ diversity is in the resampling process: where the low
weight particles would be thrown away and only can the particles with high weight
survive. In recent years, many algorithms [5, 20] have been proposed to solve the
problem of particle depletion. Several kinds of particle filter algorithms utilizing
compensation techniques to deal with the depletion problem. Similarly, A new resam-
pling technique is proposed to restrain the particle depletion using geometric relation
between particles. Swarm intelligence is also integrated into the process of motion
estimation, but the problem is that the unified framework is difficult to be constructed
[9, 13, 16, 27]. These methods have shown better performance than original particle
filter, However, they haven’t taken particles’ set as a whole and merely tried to
maintain diversity. We propose an improved particle filter method to solve the particle
depletion problem, which utilizes curve fitting to predict the trend of particle weights
in resampling phase. The specific steps can be described as follows: Firstly, the
discrete particles with different weights can be taken as a whole, and curve fitting
is used to obtain the pattern of weight distribution; Then the resampling process can
be carried out in this weight curve.

This paper is organized as follows: Section 2 described the main methods including the
robot motion estimation and enhanced particle filter to improve estimation robustness; In
Section 3, various experiments were implemented to verify the proposed method. Some
difficult problems targeting at indoor environment were discussed in Section 4. Section 4
gives conclusions.
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2 Methods

2.1 Motion estimation based on feature points of vision sensor

2.1.1 The design of robot motion estimation based on feature points

How to gain the accurate visual features are the most fundamental problem in robot
localization and motion control. The artificial features are often used for the robust feature
extraction, but they are difficult for the flexible robot application because they need
Complex manual arrangement beforehand. The natural features are easy to be obtained,
but the robustness of the natural features is difficult to be solved. So, the distinguished
features combining the real environment like points and lines are the primary idea to
describe the environments through vision sensors. Considering that a better result can be
obtained if a priori knowledge of the environment is utilized in the feature extraction
algorithm, a thorough comparison is implemented among various feature detection algo-
rithms. In the real indoor environment, the straight lines in images are all parallel or
vertical, and their parameter ranges can be determined based on the results in the previous
frame; Therefore, the extraction of line features is of great significance to the environment
understanding. In order to improve the feature robustness, the point features obtained by
the cross of lines are appropriate for robot positioning. Finally, the standard Canny
algorithm is selected for edge detection, and Hough transform is selected for line feature
detection. The detailed process can be described as follow:

& The edge points are extracted in the whole indoor environment through canny algorithm
when the robot is the first time to run.

& The lines are detected and the line parameter are obtained utilizing Hough Transform
according to the results of edge contour.

& Based on the fact that the straight lines in images of indoor environment are all parallel or
vertical, the parameter optimization is implemented through least square method.

& Finally, the point features through the cross of lines are chosen as the best features for robot
positioning.

Hough transform has the advantage that it is not easily affected by illumination change, so
the point features can be obtained in spite of the strong interference of light. In order to
improve the robustness of features further, the homography matrix H is utilized to eliminate the
outliers, which is calculated through the correspondent features from the last frame to the
current frame. The complete process of homography matrix calculation is described as follows.

Two steps are applied to reject outliers. Firstly, an initial estimation of the homography
matrix H is obtained through the RANSAC algorithm. Secondly, the unmatched features were
eliminated according to the homography matrix H. The concrete homography matrix H
calculation can be represented in following equations. Assuming that the correspondent feature
points are Pi(xi,yi),Vi(ui,vi) and Pi and Vi should satisfy Eq. 1:
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Equation 2 can be obtained through Eliminating k from Eq. 1:

K �M ¼ m9 � U ð2Þ
Where K, M and U are defined as follows:

K ¼
xi yi 1 0 0 0 −xiui −yiui
0 0 0 xi yi 1 −xivi −yivi

…
…

2
664

3
775 ð3Þ

M ¼ KTK
� �−1

KTU ð4Þ
The relative motion will be very small when the two images are consecutive, therefore, we

can obtain the motion speed according to the correspondences of the features in images. Based
on the assumption of the planar ground, the world coordinate of points can be calculated
according to the point coordinate projected in the image.

Point P is assumed as one point in the ceiling, and its coordinates are assumed as p(u,v) on
the image plane. The point coordinates can be converted to homogeneous coordinates,
according to the linear camera model. The relations of points can be represented as Eq. 5:
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Where M is a 3 * 4 projection matrix, which can be obtained through camera calibration.
Because the point is on the ceiling, the Z axis coordinate of the point are set to 0. The equation
can be rewritten as follows:
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Among them, m is the remaining invertible 3 × 3 matrix after that the third column of
matrix M is deleted. The upper formula shows that there is a one-to-one correspondence
between point P and point p under the condition that the ceiling is flat, which means that the
world coordinates can be derived from the Eq. 7 if the image point coordinates are given.
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Therefore, as long as the coordinates of the corresponding feature points are obtained in two
adjacent frames, it can be easy to estimate the robot motion, which can be represented as the
motion of camera photocenter.

29750 Multimed Tools Appl (2019) 78:29747–29763



The process can be concluded as follows:

& To Capture the current frame of the video and rectify the image to remove the distortion.
& To Find the correspondent features in the current frame according to the features in the last

frame
& To Compute the correspondent world coordinates of the feature points in the two frames
& To Infer the motion parameter according to distance the world coordinates of the corre-

spondent feature points in the two frames.
& To Capture the next frame and repeat this process

2.1.2 The calculation of motion parameter

Based on the spatial analytic geometry theory, it needs at least 3 pairs of non-collinear
matching points to determine the three-dimensional motion of the rigid body. Due to the
special constraints of the indoor environment, the robot motion is in the two-dimensional
plane. It only needs two points to determine the robot motion. In practical applications, in order
to reduce the measurement error, the number of feature points selected is far greater than 2. A
simple method for calculating the motion parameters is presented below.

{mi = (xi, yi)
T|i = 1,…, n} is assumed to be n (n > =2) feature points, where Zi is zero and is

deleted. R is assumed to be 2 × 2 rotation matrix; T is assumed to be 2 × 1translation vector;
{mi

′ = (xi
′, yi

′)T|i = 1,…, n} is assumed to be {mi} the matched points after motion,If the data
does not contain noise, the Eq. 8 can be obtained:

mi
0 ¼ Rmi þ T; i ¼ 1;…n ð8Þ

m0, m are assumed as the gravity center of the two point sets respectively.

m0 ¼
∑
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i¼1
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Substitute m0, m to Eq. 9:

m0 ¼ Rmþ T ð10Þ
Let Formula 9 subtract Formula 10,The following function can be referred:

mi
0
−m0 ¼ R mi−m

� �
i ¼ 1;…n ð11Þ

R is the rotation matrix and it can be solved by the least square method, and the translation
vector can be obtained by the following equation.

T ¼ m0−Rm ð12Þ
This method is simple, but it has a serious problem: The matrix obtained is not a rotation

matrix, because the constraints on the rotation matrix are not taken into account. The result is
not satisfactory when the data contains noise.
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Considering the constraint conditions of the rotation matrix R, we use the Euler angle to
represent the rotation matrix.

R ¼ cosθ −sinθ
sinθ cosθ

� �
; 0≤θ < 2π ð13Þ

In order to calculate Euler angle θ, the minimum value of the following function should be
calculated based on Eq. 13:

f θð Þ ¼ ∑
n

i¼1
mi

0
−m0−R mi−m

� ���� ���2 ð14Þ

It can be calculated to make the first derivative if the function is zero:

tanθ ¼
∑
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� �� �
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n
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� �
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� �
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� �� � ð15Þ

Translation vector can be obtained based on Formula 13. After the motion parameter (R, T)
is obtained,it can be used to get rid of the outliers. Considering the measurement error, Eq. 9
should be rewritten as:

mi
0 ¼ Rmi þ T þ ηi ð16Þ

Where ηi represents the errors between the real position and the calculated position of feature
points. The n + 1 feature points are substituted to the upper formula in turn, and if the ηi
modulus is larger than a certain value, the point can be considered as an outlier. After removing
the outliers, the above formula can be reused to get more accurate motion parameters.

2.2 Particle filter for robust estimation

2.2.1 Particle filter with enhanced resampling

The general description of robot motion description is that we can estimate the state of feature
point at a specific time using a set of camera sequence images, and then transform it into a
posterior probability distribution function for target state. It is assumed that the change of the
target state p(xk| xk − 1) is Markoff process and the observed values {Z1, Z2…Zk} are indepen-
dent of each other. Given the state transition prior probability p(Xk|Xk − 1),where k denotes the
time step. The observed likelihood function p(Xk|Z1 : k), the posterior probability distribution
can be obtained based on Bayesian theory:

p X k jZ1:kð Þ ¼ p Zk jX kð Þ∫p X k jX k−1ð Þp X k−1jZ1:k−1ð ÞdX k−1

p Zk jX kð Þ∫p X k jX k−1ð Þp X k−1jZ1:k−1ð ÞdX k−1dX k
ð17Þ

Because the calculation of state posterior probability contains complex and intractable
integral operation, it is difficult to obtain its analytical solution. Monte Carlo technology is
used to approximate the posterior state distribution with a set of weighted samples.

In recent years, in order to deal with the state estimation problem of nonlinear system and
non-Gauss dynamic system, Particle Filter is also known as Bayesian Bootstrap Filter or
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Monte Carlo Filter. The particle filter is the Bayesian framework under the theory of sequential
importance sampling by Monte Carlo method, which is based on Monte Carlo stochastic
simulation theory. The system posterior p(Xk|Z1 : k),where k denotes the time step, is repre-

sented by a set of weighted random sampling xik ;w
i
k

	 
N
i¼1 with probability distribution, and the

new distribution produced by Bayesian iterative evolution from these random samples. It is
impossible to get sampled particles directly from posteriori distribution in practice, so we often
use the proposed distribution q(Xk|Xk − 1, Z1 : k) to approximate the posterior distribution and to
get a group of particles from it. From the moment k-1 to the moment k, the i-th particle weight
up can be updated based on formula 18:

wi
k ¼ wi

k−1
pðZk jX

i

kÞpðX i
k jX

i

k−1Þ
qðX i

k jX
i

k−1; Z1:kÞ
ð18Þ

The posteriori distribution p(Xk|Z1 : k) can be approximated as:

p X k Z1:kjð Þ≈∑N
i¼1w

i
kδ X k−X i

k

� � ð19Þ

The state function f(Xk) can be approximated as:

E f X kð Þ½ �≈∑N
i¼1w

i
k f X i

k

� � ð20Þ
In the original particle filter algorithm, the resampling process is just to replicate the high

weight particles. it is easy to meet the problem of particle depletion, and the particles would
degenerate over time in terms of accuracy. we designed a new method in the resampling
process of particle filter, where least square curve fitting is used to increase the particle
diversity. The process of curve fitting used in resampling is described as follows:

(xi, fi),(i = 1, 2,⋯,m) is assumed as the given particles’ state and their responding weights
before resampling, The function needs to be found in set Φ = Span{φ0,φ1,⋯,φn} to satisfy
the following Eq. 21.

S* xð Þ ¼ ∑
n

k¼0
a*kφ

*
k xð Þ n < mð Þ ð21Þ

The errors can be represented as Eq. 22:

δi ¼ S* xið Þ− f i i ¼ 1; 2;⋯;mð Þ ð22Þ
S∗(x) can be obtained to satisfy Eq. 23:

∑
m

i¼1
δ2i ¼ ∑

m

i¼1
ω xið Þ S* xið Þ− f i

� �2
¼min

S xð Þ∈ Φ ∑
m

i¼1
ω xið Þ S xið Þ− f i½ �2

ð23Þ

Where ω(x) ≥ 0 is the given weight function in set [a, b]. The above method of finding the
approximation function S∗(x) is the least square method of curve fitting. The function S∗(x) that
satisfies the relational expression 23 is the least square solution. For the given (xi, fi), the only

function S* xð Þ ¼ ∑
n

k¼0
a*kφ

*
k xð Þ exists in function set Φ = Span{φ0,φ1⋯,φn} to satisfy Eq. 23.

The coefficients a*0; a
*
1;⋯; a*n of the least squares solution can be solved by the Eq. 24.
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∑
n

k¼0
φk ;φ j

� �
ak ¼ f ;φð Þ j ¼ 0; 1; 2;⋯; nð Þ ð24Þ

In our designed solution, the algebraic polynomial fitting is selected as the basic functions,
which is {φ0,φ1,⋯,φn} = {1, x, x

2⋯, xn}. So, the corresponding solution function 24 can be
rewritten as:

∑ωi ∑ωixi ⋯ ∑ωixni
∑ωixi ∑ωix2i ⋯ ∑ωixnþ1
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⋮ ⋮ ⋱ ⋮
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⋮
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3
775 ¼

∑ωi f i
∑ωixi f i

⋮
∑ωixni f i

2
664

3
775 ð25Þ

where ∑
m

i¼1
is simplified as ∑, as well as ωi = ω(xi). S* xð Þ ¼ ∑

n

k¼0
a*kx

k is the required polynomial.

The concrete description is as follows: firstly, based on the distinguished particles, curve
fitting was utilized to fit the trend of the particles with different weights. Secondly, the fixed
number of particles was resampled based on the fitted curve. The illustrative diagram is shown
in Fig. 1. Our method has two advantages: the first one is that the curve can reflect the trend of
particle weight; the second one is that new particles can be easily resampled from the fitted
curve, solving the problem of particle depletion. The whole process can be concluded as
follows:

& Particles are used to simulate robot real state, which are assumed to be distributed
uniformly in state space

& Each particle gets a predicted state according to the state transfer equation
& The predicted states of particles are evaluated and updated according to the observation
& The least square curve fitting is carried out according to the state and weight of the

particles. The new resampling particles gets the weight from the fitted curve.

Fig. 1 The Illustrative diagram for particle resampling: the blue circle points denote the original particles and the
red points denotes the new resampling particles
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2.2.2 Observation model of feature points

Many factors affect the visual motion estimation errors, such as the light changes,
running distance. For the robust motion estimation, The errors modeling methods are
indispensable, which are usually set up vision imaging model according to computer
vision theory, but it is difficult to adapt to the specific circumstances of indoor
environment.

The Robot observation model is shown as Fig. 2, where the pentagram denotes the
real robot position, while the observation results have some errors shown as asteroids.
Considering the efficiency, A direct method is used to set up the vision errors model
through the analysis of the experimental data. Our vision error model is built as Eq. 26:

zi ¼ xi þ vi ð26Þ

The observation noise vi is also assumed to be Gaussian noise with the mean value of zero,
and the covariance matrix Ri is a diagonal, where the diagonal elements are as follows:

R11¼σrx;
R22¼σry;
R33¼σθ

ð27Þ

According to the measurement results, the variance of the position distribution σx
were obtained using curve fitting, where r is the distance from the current point to the
feature point. Curve fitting is used because the variance will turn very great in the
blind area without feature points. The change of angle variance σθ is not obvious with
the change of distance.

Fig. 2 The illustrative graph for robot observation error: the pentagram denotes the real robot position and the
asteroid denotes the robot observation position. The unit is cm
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3 Results

The Institute of automation of Chinese Academy of Sciences has independently developed a
versatile autonomous mobile robot platform called AIM based on its existing technology. The
various theories and algorithms described in this paper are tested on the platform. The vision
sensor is placed on the top of the mobile robot.

In order to obtain the observation model of vision sensors, A set of measurement values and
errors are obtained through actual experiments, where the real position of the feature point is
obtained by manual measurement. The measured points are distributed equally in three sets of

Fig. 3 Result of UKF algorithm: The axis X and axis Y denote the room length and room width respectively,
and the unit is 5 cm

Fig. 4 Result of original particle filter experiment: The axis X and axis Y denote the room length and room
width respectively, and the unit is 5 cm
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concentric circles, and the feature points to be observed are located at the center of the circle.
The measurement error varies with different distances to feature points. Farther away from the
feature points, the more measurement errors, which is caused by image distortion. Though the
camera calibration and image correction have been implemented, the absolutely accurate
camera calibration is difficult to achieve. Based on this phenomenon, our observation model
is set up considering more on the actual environment. The experiment environment is an
indoor room with area 5 m by 5 m, which is shown in Fig. 3. The pentagram represents the
feature points using the cross of vertical lines extracted by Hough transform. The center of red
eclipses represents the feature points detected, and the area of a certain eclipse represents the
error variance corresponding to a certain feature point. The more the area, the more the error
variance. The robot path is scheduled as follows: The robot, which is represented by the purple
triangle, starts from the corner and runs around the rectangular wall. When the robot detects a
feature point, it estimates the feature position and the corresponding error variance. Simulta-
neously, it estimates its own position according to the detected feature points. The motion
speed will be determined based on its position in different time. Because the errors in the
estimation of the feature points, the estimation of robot’s own position would have errors too.
The estimation position of the robot is represented by the red triangle.

The UKF [13] is selected for the comparison of experiment results, which is the abbreviation
of the Unscented Kalman Filter. In order to explain the results in more detail, the original particle
filter [16] is also selected. Because our proposed algorithm combines the original particle filter
and cure fitting, it is represented by PFCF (Particle Filter with Curve Fitting). UKF and original

Fig. 5 Experiment result of proposed algorithm called PFCF: The axis X and axis Y denote the room length and
room width respectively, and the unit is 5 cm

Table 1 Standard deviation of particle position

Type Position(m) Feature(m)

UKF 0.083 0.079
Particle filter 0.074 0.068
PFCF 0.060 0.057
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particle filter are shown in Figs. 3 and 4 respectively. Figure 5 shows the result of PFCF.
Apparently, the error of landmark estimation becomes smaller in our proposed algorithm than
that in original particle filter and UKF. The standard deviations of estimation errors for different
algorithms are summarized in Table 1. it is worth noting that each value in this table averages the
whole results for different numbers of particles. The standard deviations of original particle filter
are smaller thanUKF, and the standard deviations of PFCF are smaller than original particle filter.

Different numbers of particles have important impacts on the estimation of feature error and
position error for different algorithms. For better comparison, we analyze the results of
different algorithms from different angles. The average values of feature error for different
algorithms are shown in Fig. 6. The average feature error turns smaller with the number of
particles increases. Among the Three algorithms, the worst algorithm is UKF, which has the

Fig. 6 The average values of feature error with different numbers of particles: The axis X denotes the numbers of
particles, and the axis Y denotes average values of feature error (m)

Fig. 7 The average values of position error with different numbers of particles: The axis X denotes the numbers
of particles, and the axis Y denotes average values of position error (m)
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largest feature estimation errors; while the best algorithm is the proposed PFCF, which has the
smallest feature estimation errors. The comparison is carried out in the same particle number.
The average position error values for different algorithms and different numbers of particles
are shown in Fig. 7. It is shown that the average position errors of the three algorithms become
reduced as the number of particles increases. The worst algorithm is UKF, which has the
largest average position error, and the best algorithm is still the proposed PFCF, which has the
smallest position estimation error for the same particle number.

Figure 8 shows the impact of different numbers of particles in maximum estimation of
feature position, and Fig. 9 shows that of position. In these conditions, PFCF has the best results
for each same number of particles, and particle filter is better than the UKF. The experiment

Fig. 8 The maximum values of feature error with different numbers of particles: The axis X denotes the numbers
of particles, and the axis Y denotes maximum values of feature error (m)

Fig. 9 The maximum values of position error with different numbers of particles: The axis X denotes the
numbers of particles, and the axis Y denotes maximum values of position error (m)
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results show that conventional particle filter degenerates over time in terms of accuracy due to
the particle depletion in resampling process. The curve fit method is utilized in PFCF, which can
represent the trend of the particle weights, to solve the particle depletion problem. The results
show that it can improve the performance of particle filter, contributing to the better estimation
results. Besides, there are many factors that will affect the algorithm, such as the degree of image
distortion correction, the jitter of the camera in the robot’s running process, the tracking error of
the feature point, and the pitching of the robot during the emergency stop and acceleration.
Some of these factors have a great impact on the results of the algorithm, such as the jitter of the
camera during the operation and the pitching of the robot. The future work will focus on these
problems, and the depth information acquisition and matching for the real indoor environment
will be taken into account to get more robust estimation results.

4 Conclusions

Future internet of things relies on the various robot services, while robot localization and
motion estimation are key factors to implement different robot applications. The method
utilizing traditional inertial sensor is easy to be impacted by the wheel slipping, and the
accumulated error is a serious problem to be resolved when the robot moves a long time.
Vision sensors with huge amount information have been one of the most important sensors
in the various applications of the mobile robot. The indoor environment is semi-structured
environment, So the algorithm combining the characteristics of indoor environment can
bring a lot of convenience, which can also help to improve the accuracy, real-time and
reliability of robot localization and motion estimation. An effective robot motion estima-
tion method is proposed assuming that the mobile robot runs on the flat ground. Because
the visual features are easily affected by the changes of light, an enhanced particle filter
method integrated with least square curve fitting is designed to improve the robustness.
The experiments on the wheeled robot verified that the algorithm can be carried out
reliably for robot motion and positioning estimation in the indoor environment. The results
also show that our proposed enhanced particle filter can perform better than the original
particle filter. Future work will integrate the depth information with the real indoor
environment to implement the more robust motion estimation.
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