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Abstract Using 3D visualization models to exhibit geological structure has become a trend in
geological studies. Compared to 2D geological mapping, 3D geological mapping is dependent
on more geological sampling information. Geophysical methods (e.g., gravity, seismic, and
electric) thus become the major tools in 3D geological mapping. In traditional works, people
must extract the geological information from various data grids acquired through different
geophysical methods and subsequently integrate the information to manually construct a 3D
geological model. This approach usually causes inconvenience and inefficiencies in practice.
Therefore, we propose a methodology of 3D geological mapping. It first constructs visualiza-
tion models from different geophysical data grids and subsequently integrates these models for
interpretation and finally converts to a 3D geological model. Based on this methodology, we
implement the corresponding system which can accomplish the above process automatically.
As an example, we gave a detail description for constructing the 3D lithological model by the
methodology mentioned above with the geological survey data acquired in the western
Jungger, Xinjiang of China. The demonstration show us that the methodology can effectively
solve the matter of 3D geological modeling in case of enriched in geophysical data but in lack
of sufficient geological sampling information.
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1 Introduction

With the rapid development of geophysical techniques, geophysicists have been able to
perform geological exploration studies using tomography [6]. As a result, we can acquire
the relevant geophysical parameters of rocks (such as density, resistivity, and seismic velocity)
and further construct the 3D geophysical visualization model. On the other hand, the tradi-
tional 2D geological mapping can’t fully meet needs of geologists [13]. People are eager to
apply 3D geological mapping in the practical work with more advanced computer graphics
technologies [1]. For these reasons, 3D geological mapping based on geophysical data has
become a very important and meaningful line of study [11]. Especially when the geological
sampling information is scarce, the question is, how can we directly transform the geophysical
visualization model into a 3D geological model?

But there exists an essential difference between the geophysical visualization model and the
3D geological model. The geophysical visualization model is defined by the geophysical
parameters of each point in the grid space with the expression g = f (x, y, z). And the 3D
geological model is concerned with the geometrical relationship among geomaterials classified
by some geological feature (such as lithology, stratum, etc.), which is often recorded in GIS
[4]. In current studies and applications, researchers usually find mapping rules between the
geophysical data and the geological feature from the rock samples’ measurement first, then
carry out the manual interpretation in images of different geophysical visualization models,
and finally construct the 3D geological model artificially [10]. Because the above process is
essentially fragmented, it causes great inconvenience in practice [14]. Furthermore, traditional
methods might be inefficient when be coupled with massive 3D geophysical data sets [7].

Here, we present a 3D geological mapping methodology in following steps shown in Fig. 1:
firstly reconciling 3D visualization models constructed with multi-source geophysical data
grids, then interpreting their geological meaning, and after several repeated feedback opera-
tions and amendments finally transforming the interpreted result into the 3D geological model.
Unlike other 3D geological modeling and mapping methods, the methodology which mainly
generates the boundary of the geological feature according to the geophysical data character-
istics has a high degree of automation. Additionally, it can support functions as dynamic 3D
model update and reconstruction when geophysical data update. Based on the methodology,
the system GGMS (Geophysical data to Geological information Mapping System) was
developed and applied to the actual 3D geological mapping work in the western Junggar,
Xinjiang, China.

This paper elaborates the methodology mentioned above. It is organized as follows: after a
brief introduction, we first give a description of how to build and reconcile the geophysical
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Fig. 1 The process of the method
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visualization model with various data grids. Next, we discuss the implementation of the
geophysical data interpretation. Then techniques of visualization model reconstruction and
feedback are elaborated. Finally, the system implementation of the methodology is described
and conclusions are presented.

2 3D geophysical modeling and reconciliation

As we known, the geophysical 3D visualization model with geophysical methods are built
from a data grid. The regular grid (in which each cell has the same size) or irregular grid (in
which cell sizes are unequal) can be represented as a set of the quad (x, y, z, data), where x, y, z
represent a position in space and data represents a geophysical parameter [2]. In the process of
constructing the visualization model, the continuous parameter value is usually obtained by
interpolating the data value corresponding to the grid points’ positions in space [3]. Using
visualization techniques in scientific computing to create the mapping relationship between
color level and the geophysical parameter value, the 3D geophysical model is easily to be
constructed.

But in practice, 3D geophysical models obtained from different geophysical methods (for
example resistivity and seismic velocity) usually have different specifications for the data grid;
that is to say quads as (x1, y1, z1, ERData) and (x2, y2, z2, SVData) usually have inconsistent
positions in space [12]. So we must reconcile different data grids to form a geophysical
parameter set with the same spatial position, with sets formed as (x, y, z, ERData, SVData ...).

A process of models reconciliation we designed is consisted of three parts: 1) extract the
position information (x, y, z) in the data grid of reconciling models and map the position to the
unified geodetic coordinate system; 2) compare the coordinates of models’ data grids and
select a space region which is covered by all reconciling models; 3) use an uniform grid cell to
resample (interpolate) reconciling models in the selected space region. The most important
step above is to find the region in space which is covered by all data grids (we call it the
resample reference grid). In the ideal case, the resample reference grid itself is one of the
reconciling model’s data grids. Meanwhile the resample grid cell is also identified. As an
instance of model reconciliation implemented in our system, Fig. 2 shows a visualization

Fig. 2 The visualization model of resistivity
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model of resistivity and Fig. 3 shows a visualization model of S-wave velocity; then after the
operation of data grids reconciling by using the resample reference grid of Fig. 3, the original
model shown in Fig. 2 is turned into the reconciled result as Fig. 4. In addition, the coordinate
in the Fig. 2 is mapped to the standard geodetic coordinate in Fig. 4.

3 Models interpretation

As the core of this methodology, the purpose of geophysical models interpretation is to map all
integrated vectors (x, y, z, ERData, SVData, etc.) on the reconciled data grid to a geological
feature. This procedure consists of two parts: the sampling data inversion from geophysical
measurement experiment and the geophysical survey data forward calculation. Because the
forward calculation just uses the inversion result for a simple computation, we focus on the
process of experimental data inversion in this section.

The essence of the data inversion is to use the experimental data of rock samples for
knowledge extraction between the geophysical parameters and the geological feature. Because
the experimental data usually record all properties (geographical, geophysical and geological)

Fig. 3 The visualization model of S-wave velocity

Fig. 4 The visualization model of resistivity after reconciliation
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together, we need to separate all records into the input vector, which is represented as a
combination of geographic information and geophysical parameters (for example, x, y, z,
ERData, and SVData), and the output result, which is represented as a geological feature
(for example, lithology). To facilitate the numerical calculation, we use a quantized value
instead of the real geological feature.

As we all know, it is difficult to use some mathematical functions to express the mapping
knowledge between the input vector and the output result. For this reason, machine learning
methods are often applied to extract the mapping knowledge from the input vector to the
output result [19]. According to this approach, typically we first must choose a machine
learning model, and then continuously optimize its structure and parameters to obtain a
minimum deviation between the output result calculated by the model and the actual output
result [15]. However, with so many existing machine learning models, how does one choose a
model which best meets the specific experimental data interpretation? Here, we use three
indicators to evaluate alternative models: 1) accuracy, which measures the conformance
between the output value calculated by the machine learning model and the actual determined
result of the sample data; 2) convergence capability, which represents whether the model can
easily obtain a stable output from the data training process; and 3) generalizability, which
measures the credibility of results using the machine learning model for calculating data
outside the sample set. Table 1 compares these indicators of some commonly used machine
learning models extracted from the same sample data in the survey project of 3D geological
mapping in the western Junggar, Xinjiang, China (the sample’s size is 3060). After a contrast,
we find that there are two main factors affecting the index calculation result besides the
structure of learning model itself: 1) the size of sample data. Some learning models need a
large collection of training data to achieve a satisfied result (for example SVM), but in most 3D
geological mapping applications the size of sample data are often limited for the cost of
sampling; 2) the distribution of sampling position. As the geographic information is an
important part of the input vector for model learning, the sampling position has an evenly
distribution can cause a good knowledge extraction result. But in many geological applications
the sampling position is often restricted by natural conditions. Above two points have
demonstrated that the machine learning model we chosen need to achieve a relatively good
effect with the no-ideal training data.

Table 1 shows that the Fuzzy Neural Network (FNN) model produces a relatively best
result. The structure of FNN, which we used, is shown in Fig. 5. In fact, it is a combination of
Fuzzy Clustering and the Radial Basis Function (RBF) Neural Network [5]. The complete
model consists of four layers: Input Layer, Clustering Layer, Function Layer and Output Layer.
At the Clustering Layer, the input vector is classified by the FCM (Fuzzy C-Means) algorithm
to generate fuzzy rules. At the Function Layer, the data in the classification is calculated by the
interpretation function, which corresponds to each fuzzy rule. The final result is the weighted

Table 1 Comparison of results of several models

Model name Accuracy (%) Convergence capability Generalizability

Fuzzy Neural Network(FNN) 85.4 Good Very good
Fuzzy Clustering (FCM) 76.6 Very good Good
Hard Clustering (HCM) 68.8 Very good Bad
Back-Propagation Neural Network (BPNN) 81.6 Bad Bad
Support Vector Machine (SVM) 79.5 Bad Very good
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composite of these function values [8]. The interpretation function at the Function Layer has
some alternative types, as shown in Table 2. About some mentioned expressions in the table,
xk = {xk1, xk2, …, xkl} is the input vector; vi = {vi1, vi2,…, vil} represents the ith center value,
which is obtained by the FCM algorithm; and wk = {w1k, w2k, …, wnk} is the fuzzy
membership between the input vector xk and the cluster vi. The final output geological feature
is calculated using the expression (1).

yk ¼ ∑
n

i¼1
wik f i xkð Þ ð1Þ

In addition, we can find in Table 2 that the number of parameters in the function type of
Linear Inference is moderate. In fact, it is the best choice for building the FNN model from our
test results. With this function type, we need to solve the corresponding parameters in the
function to make the objective function as expression (2) obtains the minimum value. Let wi

and xi take expression as (3), (4) respectively, then using the Weighted Least Squares method,
the values of parameters ai = [ai0 ai1… ail] can be determined by the expression (5) [16]. Here,
y represents the quantized value of the geological feature. Of course, we can also use

XK1 XK2 XKl… 

C1 C2 Cn… 

f1(xk) f2(xk) fn(xk) … 

W1k W2k Wnk

Input Layer 

Clustering Layer 

Function Layer 

Output Layer 

Fig. 5 The architecture of the FNN model

Table 2 Interpretation functions for fuzzy rules

Function type Function form

Simplified inference fi(xk, vi) = ai0
Linear inference fi(xk, vi) = ai0 + ai1(xk1 − vi1) + ai2(xk2 − vi2) +… + ail(xkl − vil)
Quadratic inference f i xk ; við Þ ¼ ai0 þ ai1 xk1−vi1ð Þ þ ai2 xk2−vi2ð Þ þ…þ ail xkl−vilð Þþ ai lþ1ð Þ xk1−vi1ð Þ 2

þai lþ2ð Þ xk2−vi2ð Þ 2 þ…þ ai lþ2ð Þ xk2−vi2ð Þ 2þ ai 2lþ1ð Þ xk1−vi1ð Þ xk2−vi2ð Þ þ…þ
ai lþ1ð Þ lþ2ð Þ=2ð Þ xk l−1ð Þ−vi l−1ð Þ

� �
xkl−vilð Þ

Modified quadratic
inference

f i xk ; við Þ ¼ ai0 þ ai1 xk1−vi1ð Þ þ ai2 xk2−vi2ð Þ þ…þ ail xkl−vilð Þþ
ai lþ1ð Þ xk1−vi1ð Þ xk2−vi2ð Þ þ…þ ai l lþ1ð Þ=2ð Þ xk l−1ð Þ−vi l−1ð Þ

� � xkl−vilð Þ
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optimization algorithms as genetics evolution (GE) or particle swarm optimization (PSO) to
determine the appropriate cluster number and optimize the calculation process.

JL ¼ ∑
n

i¼1
∑
l

k¼1
wik yk− f i xk−við Þð Þ2 ð2Þ

wi ¼
wi1 0 … 0
0 wi2 … 0
… … … …
0 0 … win

2
664

3
775 ð3Þ

xi ¼
1 xi1−v11ð Þ … xil−v1lð Þ
1 xi1−v21ð Þ … xil−v2lð Þ
… … … …
1 xi1−vn1ð Þ … xil−vnlð Þ

2
664

3
775 ð4Þ

aTi ¼ xTi wixi
� �−1

xTi wiy ð5Þ

4 Model reconstruction and feedback

Using the machine learning model extracted in the previous section, the geological feature of
each point in the data grid can be determined through a forward calculation process [18]. The
next task is to construct the 3D geological model with this calculation result.

Geologists often use the basic voxel (wedge, tetrahedron, hexahedron, etc.) construction
method for the 3D geological modeling. Each voxel represents a unique geological feature [9].
Taking the cell (cuboid) of the geophysical data grid as the basic voxel, we design the
following decomposition-merge strategy to construct the 3D geological model. To easily
describe, we use the 2D grid as an example (the 3D grid can make an analogy). Suppose that
in the left part of Fig. 6, the geological feature in the four vertices have been calculated (shown
as the quantized values 1-4 in Fig. 6). We divide the cell (the rectangle on the left part of Fig. 6)
into four parts as shown in the right part of Fig. 6. Each part is assigned a geological feature the
same as the vertex (for example, the geological feature of vertex 1 on the left of Fig. 6
determines the geological feature of rectangle 1 on the right of Fig. 6). Certainly, if the
geological feature in four vertices is identical, the cell need not be divided (shown as Fig. 7).

1 2 

3 4 

1 2

3 4

Fig. 6 An example of cell decomposition
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After the decomposition process, the interpreted model is restructured. However, the
construction model is too fragmented, so a merging operation must be performed. For each
geological feature in the calculation result, repeat the following procedure: search in the x,
y, and z directions, checking whether the next cell (cuboid) has the same geological feature
as the current and can be merged into a new cuboid. If so, merge the two cuboids. Using this
strategy (including the octree decomposition for the 3D grid, a cuboid cell is divided into
eight cells), the spatial morphology of each geological feature can automatically be formed
respectively. These discrete 3D models of geological feature are combined to construct the
final 3D geological model. Figure 8 shows the final 3D lithological model, which is
interpreted by the geophysical visualization model shown in Figs. 3 and 4. And it is
produced by combining 3D models which represent one geological feature, as in Fig. 9.
The whole process is as follows: 1) extract the interpreted model from rock samples
measured in a laboratory which focusing properties of S-wave velocity and resistivity; 2)
use the interpreted model to compute the geological feature value; 3) reconstruct the
compute results to the 3D geological model.

For the final 3D geological model constructed by the method described in the paper, a
question is how to evaluate the result and make some corrections? Therefore, we must
increase a feedback mechanism to allow the user to evaluate and correct the interpretation
results with their own geological knowledge or hypothesis. In most similar applications,
people usually adapt two evaluate methods: 1) evaluation based on geological assertion
from other data sources (for example drilling data). It means taking the interpretation result
and the geological knowledge from other data sources to compare and get the coincidence

1 

1 1

1 1

Fig. 7 Another example of cell decomposition

Fig. 8 The 3D geological model of lithology
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degree; 2) evaluation based on users’ own knowledge. It means the user subject determines
whether the model is consistent with his experience or knowledge. In the system imple-
mentation, we design a feedback mechanism to continually correct the interpreted model by
users’ evaluation results. The concrete implementation procedure of the feedback function
are as follows: 1) cut the interpreted 3D model for the section output according to the need
of users; 2) let the user find out the area which assigned a wrong geological feature in the
section based on his experience or other acquisition information, then reassign the area a
correct geological feature; 3) get the grid points in the reassigned area and add them to the
training data set with the new geological feature value; 4) use the new training data set for
knowledge extraction and get the new machine learning model. Then the corrected 3D
model can be constructed by the model interpreted and reconstructed operation.

Fig. 9 The 3D model of specific lithology

Fig. 10 The analysis model of a cut effect in software
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5 System implementation and conclusions

Based on VTK (the Visualization Toolkit, http://www.vtk.org), Eclipse RCP (http://www.
eclipse.org) and other open source projects, we developed the software GGMS, which
implements the proposed methodology on the Windows platform [17]. A video
demonstration about its Chinese version can be found at http://v.youku.com/v_show/id_
XODk0NjI0NTg4.html.

In addition to providing geophysical visualization modeling and interpretation, GGMS has
powerful model analysis capabilities. Figure 10 shows a cut effect produced in GGMS for the
lithological model of Fig. 8. GGMS has played an important role in the case study (the
geological survey work in the area of Karamay, Xinjiang, China). It not only helps users
quickly obtain the distribution of geological features from the geophysical data but also
effectively obtains the 3D geological model from the geophysical data without a complicated
software processing.

From GGMS we can see the methodology of 3D geological mapping described in this
paper is more dependent on the variation in geophysical data. So the methodology can solve
such 3D geological mapping problems which have inadequate geological sampling or for
which the existing geological sample is insufficient to construct a 3D geological model (for
example, the survey area is too large). Although GGMS has a high level of automation and can
save a lot of manual work, there are still some shortcomings, which are mainly reflected in two
aspects:

a) Any geophysical data has its own accuracy and resolution. When interpolating in the data
grid, the results of different geophysical data sets may differ in credibility. In fact, the
geological feature calculated by this methodology contains a certain range of marginal
error.

b) In many 3D geological mapping works, we still need to generate some 2D sectional views
for print. As we construct the 3D model by cuboids, the polygon edge of geological
features in the sectional view is difficult to avoid jagged. In order to achieve a better
mapping effect, we need to repair the feature polygon in other software as ArcGIS. And in
our future work, we will improve the system to automatically repair or polish the feature
polygon for 2D mapping.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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