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Abstract Wireless Video Sensor Networks (WVSNs7unding environmental information.
Those sensor nodes can locally process the information and then wirelessly transmit it to
the coordinator and to the sink to be further processed. As a consequence, more abundant
video and image data are collected. In such densely deployed networks, the problem of data
redundancy arises when information are gathered from neighboring nodes. To overcome
this problem, one important enabling technology for WVSN is data aggregation, which is
essential to be cost-efficient. In this paper, we propose a new approach for data aggrega-
tion in WVSN based on images and shot similarity functions. It is deployed on two levels:
the video-sensor node level and the coordinator level. At the sensor node level the proposed
algorithms aim at reducing the number of frames sensed by the sensor nodes and sent to
the coordinator. At the coordinator level, after receiving shots from different neighbour-
ing sensor nodes, the similarity between these shots is computed to eliminate redundancies
and to only send the frames which meet a certain condition to the sink. The similarity
between shots is evaluated based on their color, edge and motion information. We evalu-
ate our approach on a live scenario and compare the results with another approach from
the literature in terms of data reduction and energy consumption. The results show that the
two approaches have a significant data reduction to reduce the energy consumption, thus
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our approach tends to overcome the other one in terms of reducing the energy consump-
tion related to the sensing process, and to the transmitting process while guaranteeing the
detection of all the critical events at the node and the coordinator levels.

Keywords Wireless video sensor networks · Shot similarity · Video aggregation ·
Frames similarity · Event detection

1 Introduction

Nowadays, after the development of Wireless Video Sensor Networks (WVSN), the
enhancement of the surveillance in terms of monitoring and detecting criticalities and
anomalies has set big improvements in different fields (e.g. street, forest, traffic, personal,
healthcare, industrial monitoring, etc [1]). Hence, after each anomaly and emergency detec-
tion, decisions must be made at the coordinator level. The coordinator may be a normal
node or a specific node with greater ressources. It manages a zone of interest, analyzes the
data received from several camera sensor nodes and sends the necessary information to the
sink which controls the whole network as shown in Fig. 1. Different types of anomalies
exist depending on the monitored environment and the predefined criteria and parameters
such as quick motion, sound, or scene change, the decisions are made in order to avoid any
action that can affect the monitored environment.

The detection of irregularities in any monitored scene is one of the main targets in
WVSN. Every scene is permanently filmed using multiple video-sensor nodes. At the sen-
sor node level, the sensor-nodes collect frames and send those frames to the coordinator.
The coordinator is responsible for the data aggregation process. The aggregation is limited
to either selecting, fusing or deleting the received frames. As a consequence, a significant
amount of energy is consumed due to the huge amount of captured frames, which reduces
the lifetime of the network. Moreover, the continuous transmission process between all the
components of the network (sensor nodes, coordinators and sink) has a big influence on the
bandwidth capacity of the network which may cause a bottleneck on the network [2].

Video-sensor nodes operate periodically in WVSN. We define some keywords:

Fig. 1 Architecture of WVSN
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A fixed frame rate is defined on every sensor node to film the video accordingly, this
frame rate is the number of captured frames per second (fps).

A period is a fixed time length during which frames are captured with a given frame rate.
A video shot is considered as a video sequence taken within a period.
Energy consumption and bandwidth limitation are two important challenges in WVSN.

The first one is related to the sensing and transmission modules of the sensor node. The
higher the frame rate and the number of frames sent, the more energy is consumed. The
second one is related to the transmission module of the sensor node and the coordinator, the
greater the number of frames sent on the network is the more bandwidth is used. The energy
consumption and bandwidth usage issues on the coordinator’s side can be addressed by
reducing the amount of sent data from the coordinator to the sink node. In our approach, the
data analysis starts at the sensor node level and continues at the coordinator level to match
the greatest reduction possible in terms of energy and bandwidth consumptions on both
levels. Each video-sensor node compares all the frames in a shot to the last frame sent and
computes the similarity between them. Based on the similarity function, only the frames in
which an event occurs are sent. The selected frames are called critical frames and are sent to
the coordinator. The similarity function at the sensor node level is based on color and edge
similarities able to compare frames. This comparison selects the least required number of
captured frames to be sent to the coordinator. By applying the similarity function, we reduce
the energy consumption related to the Communication process by reducing the number of
transmitted data.

Alongside the similarity function, the frame rate of each video-sensor node is adapted. A
method based on signal frequencies presented in [3] is adopted and applied to WVSN in our
approach. This method consists in reducing the number of frames captured by adapting the
frame rate of each video-sensor node based on the number of critical frames detected in sev-
eral consecutive past periods. Consequently, by adapting the frame rate, the Sensing process
is reduced thus decreasing the energy consumption. At the coordinator level an updated ver-
sion of the similarity function is implemented in which the motion similarity is added to the
color and edge similarities. To avoid comparing all received shots at the coordinator level, a
geometric study and a filtering condition are presented. Those conditions consist in reducing
the number of possible comparisons. The remainder of this paper is organized as follows. In
Section 2, we present the related work to our approach. In Section 3, we describe the pro-
posed method at the sensor node level within its two aspects: the local detection system and
the adaptive sampling system, as well as their corresponding algorithms. In Section 4, the
data aggregation scheme is described and the proposed geometric method at the coordinator
level is introduced. The experimental results and the comparison with another method are
given in Section 5. Finally, we conclude in Section 6 with perspectives and future work.

2 Related work

Several research work dealing with data redundancy and energy reduction have been con-
ducted so far [5, 6, 15, 16, 21]. In [16], Akkaya et al. introduced a GPS module into scalar
sensors in order to control the cameras. Thus, the system detects which camera should be
actuated based on the sensor’s position. In [21], Priyadarshini et al. proposed an approach
which eliminates redundancies caused by the overlapping of the FOV’s (Field Of View) of
the video-sensors. To do so, it tends to turn off some cameras and activate the optimal num-
ber of cameras at the same time. In [6], Bahi et al. proposed an in-network data aggregation
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technique at the coordinator level which identifies the nearly duplicate nodes that generate
similar data.

In [25], Akkaya et al. discussed the background subtraction (BS) and compression tech-
niques as common data reduction schemes, which have been used for camera sensors to
reduce energy consumption.

In [9] and [28], almost all of the studies deal with the physical and network layers. In [9]
the authors use a CMOS image sensor where the image is recreated from two outputs, with
the details in stationary objects and the suppressed motion in moving objects. It should be
noticed that a high frame rate is only applied in the region-of-interest where it matters the
most to detect and track any event.

In [18], the authors proposed two new approaches based on the cover set concept to help a
node in finding its redundancy level. They proposed an algorithm to schedule the activity of
sensor nodes according to the overlapping degree between sensors, and to know for certain
if a sensor belongs to the cover set of another sensor.

In [19], the authors proposed a scheduling network solution to minimize power con-
sumption using the multipath theory in wireless video sensor networks. They proposed an
algorithm that transmits packets over multipath according to their importance.

Different strategies has been used to reduce energy consumption and bandwidth usage
by using an adaptive video streaming etc. that can minimize the utilization of network band-
width taking into consideration that bandwidth is the most important ressource in a network
[13, 26, 30, 32]. All these works help to increase the lifetime of the network. Increasing the
lifetime of the network is also studied in [31] specifically for smart camera network.

Several proposed methods in the literature discuss the similarity of images [20, 24, 29].
In [29], the authors used the L1− , L2− and L∞− distance between two cumulative color
histograms to simulate the similarity between two color images. In [20], they are interested
in the segmentation techniques to compute the similarity, all the techniques are mainly edge
based techniques. In [24], the comparison is achieved through an exercise in determining
the lack of spatial correlation between two images.

Many methods have been proposed in the literature concerning the visual information
and motion estimation in wireless video sensor networks [10, 11, 17, 27]. In [10], the authors
studied the correlation in visual information between different cameras with overlapped
field of views (FOVs) where the new spatial correlation model function for visual informa-
tion is implemented. The joint effect of multiple correlated cameras is taken into consid-
eration in this study. An entropy-based analytical framework is developped to measure the
amount of visual information provided by multiple cameras. The authors designed a correlation
based camera selection algorithm which reduces the energy dissipation of the communica-
tion and the computation. This algorithm requires fewer cameras to report to the sink than
a random algorithm.

In [11], Jbeily and al. proposed a new symmetric-object oriented approach for motion
estimation in WVSN called SYMO-ME which reduces the high complexity of motion esti-
mation, the authors main objective is to reduce the redundancy between successive frames.
They adapt a new motion estimation energy consumption model for block matching algo-
rithms (BMAs) inWVSN. This model depends on the energy consumption value of different
executed instructions.

Many previous works focused on the scheduling method [4, 5, 7, 12, 22, 33]. In [5],
the authors used a clustering methodology. They managed to make a scheduling approach
to all overlapping cameras in the same cluster to avoid redundant data. Jiang et al. in [12]
proposed a probability scheduling approach based on the kinematics functions and normal
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law to study the expected positions of the intrusion depending on the kinematics functions
to track its trajectory.

In previous works regarding the similarity process, they do not use a pixel by pixel
technique. They use the color histograms for color images [29] which can mislead the com-
parison if the same color happens to be in another place in the area with the same intensity.
None of the mentioned works have proposed a data aggregation method at the coordina-
tor level while taking into consideration data reduction performed at the sensor node level
for energy consumption. In this paper, both levels are taken into consideration, the sensor
node and the coordinator levels. The reduction in terms of energy and bandwidth consump-
tions is the main purpose of this paper. On the sensor level, a combination of color and
edge techniques is established to do the comparison between several images to send only
the appropriate frames to the coordinator. The coordinator is responsible for sending to the
sink the non similar frames received from different sensor nodes. A geometrical condition
is implemented on the coordinator to select the sensor nodes where the comparison must
take place.

3 Local detection system: sensor node level

The proposed method is divided into two sections. The first one consists of a local detection
function that detects any change in the frames in order to be sent to the coordinator. This
function is introduced in every period of our proposed “Multimedia Adaptive Sampling Rate
Algorithm” (MASRA). The second section presents MASRA algorithm. This algorithm
adapts the sampling frequency of each sensor node based on the monitored area.

3.1 Local detection system

In this section, the frame analysis at the video-sensor node level is introduced. This analysis
helps sending only the different frames to the coordinator in order to prevent sending all the
frames which costs in terms of energy and bandwidth. In somemultimedia applications [34],
only the middle frame of a shot is used to represent the shot content. But this solution could
represent only static shots without taking into consideration the color similarity between
frames in the shot nor the edge similarity or the motion similarity, etc.

Comparing the new approach to the Structural Similarity (SSIM) Index quality assess-
ment index, which is based on the multiplicative combination of the luminance, the contrast
and the structural terms, shows that this new approach conserves the information and is less
complex than SSIM. Thus, SSIM is not used with tiny sensor-nodes because it drains energy
a lot more than two simple low-level similarity metrics (color and edges). To compare
between SSIM and Color-Edge function in Multimedia Adaptive Sampling Rate Algo-
rithm (MASRA), we implement both algorithms on raspberry pi 3 using c++ for openCV.
For the same images input, the results of the execution time needed are shown in Table 1. The
important execution time needed to run SSIM function proves why the SSIM is not used for
tiny sensor nodes applications.

The proposed approach uses color and edge properties to find similarities between
frames, to decide which frame to send. Below a brief explanation is presented to argument
the choice of these two properties together and to prove their complementarity. Those two
properties have been chosen for simple reasons: the edge property detects any change in the
form of the objects in the area of interest or detects a new object that enters the scene. If a
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new object enters the scene, this property will represent new edges in the gray-scale format
as explained later in the paper.

As for the color property, it detects any change in the colors of the scene, an example
of such a case is the change of the luminosity of the monitored scene when a burgler turns
the lights off before acting. To conclude, the edge property cannot detect a change in the
luminosity of the scene, and the color similarity cannot detect a new overlapping object in
the scene if it has the same existing color. Thus, those two properties are complementary and
are considered of equal importance in the rest of the paper. They are also equally weighted
in the similarity function of the approach.

3.1.1 Color similarity

Each frame is compared to the last frame which has been sent to the coordinator. This
comparison includes color similarity between frames. An image is generally a 2D matrix
M(n,m). Each pixel is divided into 3 different colors to be able to add the RGB color criteria.
To do so, the original matrix of the image is transformed from a 2D to a 1D matrix, each
element defining a pixel. Then, each pixel is represented by its 3 colors RGB by column (3
columns are needed). In brief, the RGB colors concentration of every pixel in the image is
represented by a 2D matrix where the rows represent pixels and the columns represent the
RGB colors concentration as shown in the matrix below:

Red Green Blue

M =

pixel0
pixel1
pixel2
...
...

pixeln×m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 4
20 60 40
5 10 20
...

...
...

...
...

...

.... .... ....

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

This color similarity consists in comparing the two frames pixel by pixel. First, it com-
putes the total distance for each color between the two frames as shown in equation 1. Then,
it normalizes each distance by dividing it by n × m × 255, Where n × m is the number
of pixels in the image, 255 is the maximum concentration of a color. Three distances are
computed distancered , distancegreen and distanceblue, each one normalized and ∈ [0;1].
E.g, for an image of 540x360=194400 pixels, each of the 3 main distances is divided by
194400 × 255. The distance for each color (column) is computed as mentioned below:

distancec = 1

n × m × 255
×

n×m∑
i=0

√
[M1(i, c) − M2(i, c)]2 (1)

Where c is the color (R,G or B), i is the pixel in comparison. To compute the total distance
difference between the two in comparison frames, a normalization of the sum of those 3

Table 1 Execution time
comparison for SSIM and
color-edge function

Function Execution time

SSIM 3.7 s

Color-Edge 0.1 s
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distances is a must by dividing this sum by 3 so the total distance ∈ [0;1]. The color
similarity function Col sim is the inverse of the total distance and computed as follows:

Col sim = 1 −
∑

distancec

3
(2)

The distance is computed alone for every column then it is aggregated to be able to compute
Col sim. In the past equations, c refers to any color vector in “RGB” color space while M1
and M2 are two Matrices composed of 3 vectors R,G and B.

3.1.2 Edge similarity

This similarity function is way less expensive in terms of energy consumption compared
with the color similarity function. In this function, the compared frames are converted to
their gray level format. Comparing the edges via their gray scale pixel values in the frame
will not be affected by the absence of color.

The used function takes the grayscale image as an input, and returns a binary image BW
of the same size as an output. The output image contains 1’s where the function finds edges
in the input image and 0’s elsewhere using the canny function. As presented in [8], edges
are found by looking for local maxima of the gradient in the input image. The gradient is
calculated using the derivative of a Gaussian filter. The method uses two thresholds, to detect
strong and weak edges, and includes the weak edges in the output only if they are connected
to strong edges. This method is therefore less likely than the others to be fooled by noise,
and more likely to detect true weak edges. We compute all the edges in each frame using
this function. When an edge is detected the number of edge points is incremented. The edge
points represent the total number of edges in the frame. If both frames represent an edge
in the same area, the number of matched edge points between both frames is incremented.
Then the percentage of matched data which represents the edge similarity between the two
frames is calculated:

T otal points =
∑

edge points (3)

Matched points =
∑

Matched edge points (4)

Edge sim = Matched points

T otal points
(5)

Where T otal points are the number of edge points in a frame, Matched points are the
number of edges in common between the two frames in comparison. The edge similarity
Edge sim is the ratio of the Matched points over the T otal points of the first frame.

Definition 1 (Similarity Function) It is the combination of the two independent similari-
ties (color and edge). This function is the sum of the product between each similarity and
its weighting factor (Col f act and Edge f act). It is represented as follows:

Sim = Col sim × Col f act + Edge sim × Edge f act (6)

Where Col f act + Edge f act = 1.
As mentioned before, the edge property cannot detect a change in the luminosity of the

scene, and the color similarity cannot detect a new overlapping object in the scene if it
has the same existing color. Thus, Color and Edge similarities are complementary and each
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one targets different aspects of the image. For this reason, they are weighted equally in the
reminder of this paper.

3.2 Multimedia Adaptive Sampling Rate Algorithm (MASRA)

In this section, we focus on the reduction of the number of sensed frames on every video-
sensor node. This reduction is based on adapting the frame rate of every sensor node.
Inspired from [3], it consists in reducing the number of sensed frames at the sensor node
level.
The term “frame rate FR” in this approach is used in the reminder of this paper as the
frame rate per period. A period consists of several seconds depending on the needs of the
application.

To add that a condition must be satisfied in order to send a frame to the coordinator.
This condition helps reducing the energy and the bandwidth consumption by decreasing the
number of sent frames from the video-sensor node to the coordinator. Critical frames are
only sent to the coordinator.

The first frame of each period is always sent to the coordinator as described in Algorithm 1.

Definition 2 (Critical frame) A critical frame is defined as a frame that represents a degree
of similarity “sim” smaller than a predefined threshold thsim as presented in the LDS func-
tion of (Algorithm 1). E.g, if the predefined threshold (least similarity needed) is set to 75%,
supposing that f ramen−1 is sent to the coordinator, if f ramen is similar to f ramen−1
lesser than 75%, it is also sent.

Our objective in this method is to detect changes that are associated with the number
of critical frames Nb Cr0 per period, where Nb Cr0 is directly related to the minimum
sampling frame rate FR, denoted as follows:

FR >= 2 × Nb Cr0 (7)

In the proposed MASRA algorithm (Algorithm 1) Nb Cr0 is defined as the number of
critical frames per period. We define FR as follows:

FR = c × Nb Cr0 (8)

Where c is a confidence parameter between 2 and 5 as presented in [3]. In order to detect
the variation in the number of critical frames, a user-defined confidence parameter d that
represents the minimum detectable change (e.g, if d = 0.2 then changes that affect Nb Cr0
for more than 0.2 × Nb Cr0 must be detected). A change is detected in the process when
in the current period the current number of critical frames denoted Nb Cri overcomes one
of the following thresholds for h consecutive periods :

thup = Nb Cr0 × (1 + d) (9)

thdown = Nb Cr0 × (1 − d) (10)

In this case the frame rate FR is modified according to the last value of Nb Cri in order to
adapt the frame rate as shown in the MASRA algorithm (Algorithm 1).
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To sum up, the sensor node starts by sending the first frame to the coordinator and then
compares the second sensed frame to the previously sent frame. The comparison is done
based on the LDS similarity function presented in Algorithm 1. The second frame is sent
to the coordinator based on the output of Algorithm 1. According to the number of sent
frames in each period, Algorithm 1 detects if this number exceeds one of the two predefined
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thresholds thup or thdown. If the previous condition is satisfied for h consecutive periods,
the frame rate FR changes as follows:

FR = 2 × Nb Cri (11)

Where Nb Cri is the number of frames sent (critical frames) in the last period.

4 Data aggregation scheme: the overlapping method

4.1 Video sensing model

A video sensor node S is represented by the FoV of its camera. In our approach, we consider
a 2-D model of a video sensor node where the FoV is defined as a sector denoted by a 4-

tuple S(P,Rs,
−→
V , α). Here P is the position of S, Rs is its sensing range,

−→
V is the vector

representing the line of sight of the camera’s FoV which determines the sensing direction,

and α is the offset angle of the FoV on both sides of
−→
V . Figure 2 illustrates the FoV of a

video sensor node in our model. In [18] the authors presented the FOV with 4 points a,b,c
and the center of gravity g as shown in Fig. 3 to be able to detect the overlapping areas
according to those points.

A point P1 is said to be in the FoV of a video sensor node S if and only if the two
following conditions are satisfied:

1. d(P, P1) ≤ Rs , where d(P, P1) is the Euclidean distance between P and P1.
2. The angle between

−−→
PP1 and

−→
V must be within [−α, +α].

Fig. 2 FOV
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Fig. 3 Video sensing and overlapping model

In other words, these two conditions are met if:

‖−−→PP1‖ ≤ Rs (12)

−−→
PP1.

−→
V ≥ ‖−−→PP1‖ × ‖−→V ‖ × cosα. (13)

In the remainder of this paper, we consider that all video nodes have the same characteris-
tics: same sensing range Rs and same offset angle α.

In this part, the frame analysis at the coordinator level is introduced. This analysis works
when two or more video-sensor nodes are sensing the same area of interest, the algorithm
implemented helps sending only the different shots to the sink node in order to prevent
sending all the shots which is costly in terms of energy and bandwidth.

4.2 Camera’s overlapping filtering

We introduced, in the above sections, the functionalities of our similarity function. This
function, when applied at the coordinator level, selects some video shots to be sent to the
sink. To select a video instead of another one, the similarity function between the two must
exceed a given threshold. A naive solution to find all similar shots is to compare each pair
of shots. This method is obviously prohibitively expensive for video sensor networks, as
the total number of comparisons is extremely high. We apply a geometric condition on the
sensor nodes to select the appropriate comparison to be done and to reduce data latency.
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This geometric condition is a combination of the angle condition between the FOVs of the
nodes and the ratio of the overlapped area between them.

4.2.1 The angle condition

The angle between two neighbouring sensor nodes is defined as the angle between the
vectors of their FOVs. Our idea is that if a wide angle is established between two sensor
nodes FOVs, these two nodes can not take part in the similarity comparison function at
the coordinator level. In this case, they are not sensing the same area of interest. A shot
from two different perspectives can be widely different. To be able to define two sensor
nodes as candidates for the similarity function, the angle between their FOVs must not
surpass a certain angle threshold. In order to determine the angle between the two vectors
(V and V′) of the sensor nodes S and S′ respectively as shown in Fig. 4, the scalar product
method between those sensor nodes has been proposed. Both sensor nodes having the same
dimensions (angle, FOV, energy ressources,...), so both vectors V and V′ in Fig. 4 have the
same length l. The scalar product can be calculated in two formats. The first one according
to their coordinates (x and y) where V = (XV , YV ) and V′ = (XV ′ , YV ′ ) :

V.V′ = XV × XV ′ + YV × YV ′ (14)

The second format is given according to the length of each vector and to the angle between
both, as follows:

V.V′ = l2 × cos(V,V′) (15)

Where l = ‖−→V ′‖ = ‖−→V ‖.

Fig. 4 Two overlapping sensor
nodes S and S′
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Below we define the equation where the angle θ between the two vectors can be
calculated according to both formats of the scalar product :

θ = arccos((XV × XV ′ + YV × YV ′)/ l2) (16)

e.g, if an angle threshold thangle is defined as 30 degrees, the angle between V and V′ must
remain less than 30 degrees so the two sensor nodes S and S′ can proceed to the next step
(the two points strategy), to be able at the end to take part in the similarity function process
at the coordinator level.

4.2.2 The two points condition

Inspired from [18] we present below the two points condition for overlapping filtering. A
node S′ satisfies the two points condition with another node S if g (the center of gravity of
abc) and any other point between a, b and c from S′s FOV, belong together to the FOV of
S as shown in Fig. 3. S1, S2 and S3 satisfy this condition seperately with S. In this scenario
each sensor node can be a candidate alongside S to apply the similarity function between
them.
Our method is used to chose the candidates that can take part in the comparison process at
the coordinator level. Two camera-sensor nodes S1 and S2 are chosen as candidates if S2 and
S1 satisfy together the angle and the two points conditions as shown in Algorithm 2. After
chosing the candidates cameras, two cases are taken into consideration, the low similarity
process and the high similarity process.

Definition 3 (Low Similarity) When the similarity between both compared video shots
does not surpass the predefined similarity threshold percentage βsim between shots, the
coordinator works normally and sends both shots to the sink without any modification after
each period, assuming that the similarity process is computed between both shots (all the
frames sent from both sensor nodes take part in this similarity process) on a complete period
and each period only represents one shot composed of several frames.

Definition 4 (High Similarity) If the similarity between those shots surpasses the thresh-
old, in this case the coordinator must chose one of these two shots to be sent to the sink
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node. The coordinator selects the video shot where there are more variations within the shot,
in other words, where the number of critical frames is greater as shown in Algorithm 3.

Definition 5 (similarity threshold percentage βsim between shots) This similarity between
shots fromoverlapping sensor nodes, is the aggregation of all the similarities between the frames
of these two shots, it can vary according to the application. For example and for military
reasons, βsim can reach 100% to be sure that the system does not miss any information.

4.3 Shot selection algorithm

In this section we discuss the SSA (Shot Selection Algorithm): After choosing the 2 candi-
dates that meet the overlapping condition, this algorithm is implemented at the coordinator
level to compare received frames from different sensor nodes sensing the same area of inter-
est. This comparison is based on a similarity function that consists of edge, color and motion
similarities as follows:

4.3.1 Motion similarity

To evaluate the motion content in a shot, we use a function related to the color similarity
function by generating the mean of the sum of the inverse of the color similarity for each
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frame of a complete shot (period). Inspired from [23] and based on the color similarity
function from MASRA algorithm, this motion content motu of a shot u is computed and
normalized as follows:

motu = 1

b − a

b−1∑
f =a

(1 − Col sim(f, f + 1)) (17)

Where motu ∈ [0, 1], a and b are the first and last frames sent from the sensor node to the
coordinator in a period respectively and f, f + 1 the two frames from Shotu which are sent
by a sensor node.

The motion similarity between two shots mot sim associated to two shots Shotu and
Shotv from two different sensor nodes is defined as follows:

mot sim = 1 − |motu − motv| (18)

In the last equation mot sim ∈ [0, 1], if closer to 1 it marks that the two shots are similar
in motion, an when this value is close to 0, the two shots are motionly different. In our
approach we consider that the cameras in sensor nodes are fixed and not rotatable. Hence,
the motion content value of the shots is much higher when an event is detected. Therefore,
it is important to use this motion content in shots similarity estimation.

4.4 Shots similarity estimation

As explained below, shots sent from neighboring nodes to the same coordinator often have
similar visual (color and edge) and/or action (motion) contents. Usually, in WVSNs, the
motion content of shots depends on the event detection in the zone of interest. Therefore,
when no event is detected the visual correlation between shots from candidates video-sensor
nodes becomes higher. In our paper, we compute the similarities between shots as a function
of their visual and motion content features. The color and edge similarities comparing two
shots at the coordinator level are equal to their means all over the period, to be able to add
them to the motion similarity at the end of each period. A solution for the synchronization
problem is given later in this paper. The similarity between shots from different sensor nodes
after each period is represented as follows:
we consider:

cf = Col f actc;cs = Col simc

ef = Edge f actc;es = Edge simc

mf = Mot f actc;ms = Mot simc

SIM = (cf × cs) + (ef × es) + (mf × ms) (19)

Where Col f actc, Edge f actc and Mot f actc are considered as weights for color, edge
and motion similarities on the coordinator level respectively, such that:
Col f actc + Edge f actc + Mot f actc = 1.

In this approach, if two shots have similar motion contents, theirMot simc function have
a higher value. Note that Col simc, Edge simc and Mot simc are in the range of [0,1].

4.4.1 Different frame rates solution

In this scenario, a synchronization problem is faced when two candidates sensor nodes S1
and S2 have two different frame rates FR1 and FR2 respectively, or when different critical
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scenes are sensed on each sensor node. At this point, the similarity process at the coordinator
level can be broken, e.g, at time t = 1, S2 sends a frame to the coordinator but S1 does
not send a frame, due to a criticality difference or to a frame rate difference between sensor
nodes. To solve this problem, the comparison must take place between the frame received
from S1 and the last frame received from S2 (if S2 did not send a frame at the same time)
and vice versa. E.g, at time t = 1, S1 and S2 send two frames f11 and f21 to the coordinator
respectively. At time t = 2, S2 sends a frame f22 to the coordinator but S1 does not send a
frame. The comparison process continues by comparing Frame f22 with the last frame sent
from S1 which is f11. In other words, this can be a solution because a sensor node does not
send a new frame to the coordinator when there is no new event in the scene. In this case,
we consider the last frame sent by a sensor node as the actual frame of that sensor node.

5 Experiments

In this section, several experiments have been conducted to validate our approach at the
sensor node and the coordinator levels, aiming to minimize the energy consumption and
bandwidth usage by reducing the number of data (sensed and transmitted) all over the
network. We compare our approach with Jiang et al. [12]. We have used a Matlab based
simulator in our experiments. First of all, we introduce a scenario as shown in Fig. 5 where
6 video-sensor nodes S1,S2,S3,S4,S5,S6 are deployed to monitor the same area of interest
from different perspectives. The main purpose in our work is to send to the coordinator the
frames that represent the critical situations. The coordinator reacts accordingly. We have
used 6 Microsoft LifeCam VX-800 cameras to film a short video of 600 seconds, each cam-
era is connected to a laptop to do the processing via a Matlab simulator. In our study an
intrusion has been detected in the sensor-nodes at the following time-intervals:

S1: 40 seconds from 75 to 115.

Fig. 5 The setup of the video sensor nodes
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Table 2 Weights of small
similarities at both levels Level Col f actc Edge f actc Mot f actc

Sensor node 0.5 0.5 0

Coordinator 0.25 0.25 0.5

S2: 40 seconds from 80 to 120.
S3: 200 seconds from 120 to 320
S4: 160 seconds from 300 to 460
S5: 40 seconds from 450 to 490
S6: 0 seconds. We have run our MASRA and SSA algorithms for 600 periods, each

period consists of 1 second, with a frame rate equal to 30 frames per second. The frame
rate in each sensor node changes independantly according to the number of critical
frames related to its sensor node. In each period, every sensor node senses a certain num-
ber of frames according to the assigned frame rate. The minimum frame rate is set to
FR = 1 frame per period. We consider the initial and maximum frame rate FR = 15
frames per period. In this case the sensor node senses 15 frames from the 30 ones in the
period.

As for the parameters at the sensor node level we used a color factor and edge factor
equal to 50%. At the coordinator level : we used a color factor and edge factor equal to
25% each and the motion factor is equal to 50%. As shown in Table 2 the motion factor
Mot f actc has a higher weight at the coordinator level. A frame received from a sensor
node is known to be a critical frame, so an information about the motion is more important
at the coordinator level to be sent to the sink.

Then, we implemented the PPSS approach in [12], and we did run the same video
sequence. This algorithm adopts the normal law of probability and the kinematics rules. Its
role is to schedule the monitoring time of the sensor-node depending on the trajectory of
the intrusion and the time needed to reach its FOV and the sensor-node sends all the sensed
frames to the coordinator while the intrusion is in its FOV, and then it goes back to the sleep
mode. But after several experiments, this approach tends to lose information up to 15% due
to probability errors. This loss of data in PPSS is shown in Figs. 6 and 7 for sensor S1 in
our scenario when the intrusion passes by its FOV.

5.1 The sensor node level

5.1.1 Number of frames

The biggest challenge in WSN is the energy consumption due to the limited resources of the
sensor nodes and to the big number of frames on the network. When no specified or adapted
frame rate is implemented, the amount of sensed frames remains at 30 for each period. In
terms of energy consumption and bandwidth usage, sending all the frames is costly while a
lot of frames are identical and do not represent any criticality. Sending frames with a time
difference inferior to 0.03 seconds in a video surveillance does not represent any additional
information. For this reason, we set the initial and maximal frame rate to FR = 15 frames
sensed per period. The MASRA algorithm is implemented on every video-sensor node to
reduce the number of frames sensed and sent to the coordinator. For every sensor node, the
frame rate is adapted after two periods where P = 1 second. Every sensor node sends the
first frame of each period. For sensor node S1, as seen in Fig. 7, theMASRA algorithm only
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Fig. 6 Difference between MASRA and PPSS on the sensing phase

sends the critical frames to the coordinator according to a predefined threshold of similarity
as explained in the upper sections, this threshold varies from 50% to 70% to 80%. In the
latter stages we chose a threshold equal to 70% as a mean to all other values. The number
of frames sent in each period is the parameter that influences the frame rate. The frame rate
variation seen in Fig. 6 validates our frame rate adaptation method in the active mode of
sensor S1, when an intrusion is detected.

In Fig. 7, we can see the number of critical frames sent to the coordinator via S1, this
variation in the number of critical frames per period is proportional to the adaptation of the
frame rate. Figures 6 and 7 present a slight difference when the threshold changes from 50
to 70 to 80. Thus, the choice of 70% is validated. As seen in Tables 3 and 4 for S1 and
in Tables 5 and 6 for S3, adapting the frame rate reduces the sent data by more than 90%.
Then, applying our similarity function causes the degradation of the number of sent frames

Fig. 7 Difference between MASRA and PPSS on the transmission phase
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Table 3 The difference in terms
of number of frames for S1 over
40s

Nb of periods All frames Sampled frames Critical frames

40 1200 490 360

by 94% from 14700 frames to 818 frames. Reducing the number of sensed frames via the
adaptation of the frame rate, and reducing the number of frames sent to the coordinator by
using our similarity function at the sensor node level prove that our algorithm reduces the
number of frames in terms of sensing and transmitting as detailed in Tables 7, 8 and 9 for
all the network.

By comparing these numbers to the number of frames in Tables 10, 11, 12 and 13,
while applying PPSS algorithm, we can conclude that the efficiency of our algorithm for
the sensing and transmission process surpasses the PPSS algorithm. And this gain grows
furthermore when the time interval of the active mode of the sensor grows, as shown for
sensor-node S3. For probability reasons, the first sequence of frames for every sensor is lost
in PPSS, once the intrusion opts in the FOV of the sensor node. Tables 7, 8 and 9 show
the efficiency of our approach sensor by sensor and on the overall network regarding the
number of sensed and transmitted frames.

5.1.2 Bandwidth consumption

The bottleneck issue is a problem caused by the limited ressources in terms of bandwidth
capacity and by the huge number of frames sent all over the network. For the same algorithm
(MASRA) as we can see in Table 14 for the network, the size of the sent frames varies
and is by far reduced. At the sensor node level, the frame rate adaptation and the similarity
function applied are responsible for this reduction by only sending the critical frames to the
coordinator which reduces the size of the total number of frames sent within a period as
shown in Table 14. The size of the video filmed in total is equal to 300MB, this number
is cut by 90% to reach 19MB when we send all the frames by adapting the frame rate,
and from 300MB to 15MB if we implement our algorithm with all its functionalities as
mentioned in Table 14.

Sending 15MB in 490 seconds is equivalent to having a bit rate equal to 31KB/s which
is a very small bit rate which will avoid causing a bottleneck problem even if we have a big
number of video-sensor nodes in the network. In this case a capacity of 100MB can serve
more than 2,000 sensor-nodes at the same time.

In [12], they reduce the bandwidth usage, but depending on the similarity function pre-
sented in our paper, the bandwidth reduction is better by 5% from 90% in PPSS to 95% in
MASRA algorithm as mentioned in Tables 14 and 15.

5.2 The coordinator level

The SSA algorithm is implemented on the coordinator. As seen in Fig. 5, and based on angle
and position conditions, only video-sensor nodes S1 and S2 satisfy the overlapping method

Table 4 The difference in terms
of number of frames for S1 over
490s

Nb of periods All frames Sampled frames Critical frames

490 14700 938 818
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Table 5 The difference in terms
of number of frames for S3 over
200s

Nb of periods All frames Sampled frames Critical frames

200 6000 2940 2055

Table 6 The difference in terms
of number of frames for S3 over
490s

Nb of periods All frames Sampled frames Critical frames

490 14700 3245 2360

Table 7 Sensor by sensor evaluation in terms of number of frames in active and passive modes for MASRA
algorithm

Passive mode Passive mode Active mode Active mode

Sensor (active time) Sensed Transmitted Sensed Transmitted

S1 (40s) 448 448 490 360

S2 (40s) 448 448 520 380

S3 (200s) 305 305 2940 2055

S4 (160s) 333 333 2340 1710

S5 (40s) 448 448 500 400

S6 (0s) 490 490 0 0

Total 2472 2472 6790 4905

Table 8 Sensor by Sensor evaluation in terms of number of frames in active and passive modes for PPSS
Method

Passive mode Passive mode Active mode Active mode

Sensor (active time) Sensed Transmitted Sensed Transmitted

S1 (40s) 0 0 1080 1080

S2 (40s) 0 0 1102 1102

S3 (200s) 0 0 5134 5134

S4 (160s) 0 0 4120 4120

S5 (40s) 0 0 1065 1065

S6 (0s) 0 0 0 0

Total 0 0 12501 12501

Table 9 Comparison between
MASRA and PPSS in terms of
number of frames on the overall
Network

MASRA MASRA PPSS PPSS

Sensed Transmitted Sensed Transmitted

Total frames 9262 7377 12501 12501

Table 10 The difference in
terms of number of frames for S1
over 40s PPSS

Nb of periods All frames Sampled frames Critical frames

40 1200 1080 1080

Table 11 The difference in
terms of number of frames for S1
over 490s PPSS

Nb of periods All frames Sampled frames Critical frames

490 14700 1080 1080
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Table 12 The difference in
terms of number of frames for S3
over 200s PPSS

Nb of periods All frames Sampled frames Critical frames

200 6000 5134 5134

geometric conditions so their frames can be compared at the coordinator level by the SSA

algorithm. The coordinator will send the frame of the more critical video-sensor node to the
sink with respect to a predefined similarity metric threshold βsim. In our experiments S1
and S2 send 938 and 968 frames to the coordinator respectively, which gives S2 the edge to
be the more critical node. In this case when a comparison takes place between two frames,
if the similarity exceeds the predefined βsim, the frame from S2 is sent to the sink and the
other one from S1 will be rejected. Otherwise both frames are sent to the sink.

In our experiments, the coordinator receives a sum of 1906 frames from S1 and S2 com-
bined. By modifying the threshold βsim from 50% to 80%, the number of frames sent to
the sink changes. The changes are recognised, the number of sent frames and βsim are pro-
portional. Table 16 summerizes the coordinator behavior by showing the percentages of
reduction that degrades from 48% for βsim=50 to reach zero when βsim=80. For βsim=50,
the 48% reduction in terms of number of frames sent from the coordinator to the sink added
to the 90% reduction at the sensor node level increases the lifetime of the network by reduc-
ing the number of frames and the bandwidth usage due to transmission reduction on both
levels. As for PPSS, they do send every frame received by the coordinator to the sink node,
disregarding the correlation of several sensor-nodes and the similarity of their frames.

As shown in Tables 16 and 17, our algorithm on the coordinator level helps to reduce
furthermore the number of frames sent to the sink by more than 32% if βsim < 60% for the
correlated sensor-nodes.

6 Energy consumption study

In this section, our energy consumption comparison study is based on the energy model
proposed in [14]. The consumed energy as in [14] is divided into two parts, the radio energy
for the transmission of the data on the radio and the computational energy for the in-node
processing. as shown in the equation below:

E = Eradio + Ecomp (20)

Table 18 shows the different parameters to compute the energy consumption while consid-
ering:
IT X and IRX the electric power needed for sending and receiving by the radio respectively.
TT X and TRX the corresponding operating time over 1 byte.
V be the constant voltage supply throughout the transmission.

Eradio(k) = k.IT X.V .TT X + k.IRX.V .TRX (21)

Table 13 The difference in
terms of number of frames for S3
over 490s PPSS

Nb of periods All frames Sampled frames Critical frames

490 14700 5134 5134
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Table 14 The ultimate
bandwidth total reduction
MASRA

Nb of periods All frames Sampled frames Critical frames

490 300 MB 19 MB 15 MB

Table 15 The ultimate
bandwidth total reduction PPSS Nb of periods All frames Sampled frames Critical frames

490 300 MB 29 MB 29 MB

Table 16 The coordinator
behavior βsim Received Fr Sent Fr Sent(%) Reduction(%)

50 1906 1000 52% 48%

60 1906 1296 68% 32%

70 1906 1640 86% 14%

80 1906 1906 100% 0%

Table 17 The Coordinator
Behavior PPSS βsim Received Fr Sent Fr Sent(%) Reduction(%)

50 1906 1906 100% 0%

60 1906 1906 100% 0%

70 1906 1906 100% 0%

80 1906 1906 100% 0%

Table 18 Parameters of the
energy model Parameter Value

IT X 17.4 mA

IRX 19.7 mA

TT X 3.2 × 10−5 s

TRX 3.2 × 10−5 s

V 3.3 V

Icpu 31 mA

fcpu 48 MHz

εadd 2.13 nJ

εmul 6.39 nJ

εcmp 2.13 nJ

εsht 4.26 nJ

Table 19 Energy consumption
comparison for MASRA and
PPSS

Energy MASRA PPSS

EComp 49 J 0.1 J

Eradio 28.9 J 276.13 J

Etotal 77.9 J 276.23 J
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Taking into account that k is the number of bytes sent from a specific sender to a specific
receiver. For the computational energy consumption:
εadd , εmul, εcmp, εsht are the basic operations (shift,addition,comparison,multiplication,
etc...), Table 18 shows the required energy for each operation. To compute this energy
consumption, we only needs to count the number of each basic operation in the algorithm:

Ecomp = Nadd × εadd + Nsht × εsht + Nmul × εmul + Ncmp × εcmp (22)

In order to compare both approaches, we calculate the energy consumption of both the
processing and the transmission tasks of a wireless sensor node equipped with a CC2420
radio transceiver and an ARM7TDMI microprocessor. Table 18 displays the parameters that
are used in the calculations and which are found in the data sheets of the node’s components
[14].

6.1 Sensor node level

In our experiments, when running the MASRA algorithm, 9262 frames were sensed and
compared using the similaritiy function. For a 640× 480 frame size, 307200 pixels exist in
each frame. Each similarity takes into account all the pixels in every frame. The MASRA
algorithm consists of 2 additions, 2 multiplications and 1 comparison. We can compute the
computational energy for Ecomp for 9262 similarities as follows:

Ecomp = 9262 × 640 × 480 × (2 × εadd + 2 × εmul) + 9262 × εcmp (23)

In this case, Ecomp,masra=49 J.
If we apply PPSS, Ecomp,ppss = 0.1 J. To move on to the transmission phase, where

our network for the MASRA algorithm transmits 7377 frames = 15 MB, comparing to
the 12501 frames = 29 MB for PPSS. In the MASRA algorithm, the sensors only send
the frames to the coordinator, but in PPSS when a sensor-node detects a frame, the node
sends a message to its neighboors containing several information such as the id of the sen-
sor, the position of the intrusion .... Adding to the 29 MB of frames that has been sent
on the network, the sensor-nodes in PPSS in our experiments send to each other 25600
messages of 4 KB for each message. which means 100 MB to be added in the received
data.

Eradio,masra = 15 × 1024 × 1024 × 17.4 × 10−3 × 3.3 × 3.2 × 10−5 = 28.9J (24)

Fig. 8 Energy consumption comparison for MASRA and PPSS
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Eradio,ppss = 29 × 1024 × 1024 × 17.4 × 10−3 × 3.3 × 3.2 × 10−5

+100 × 1024 × 1024 × 19.7 × 10−3 × 3.3 × 3.2 × 10−5

= 276.13J

To compute the total energy consumption consumed by the network on the sensor node
level, the energy consumptions related to the computation and to the transmission must be
added to each other.

Emasra = Ecomp,masra + Eradio,masra = 49 + 28.9 = 77.9J (25)

Eppss = Ecomp,ppss + Eradio,ppss = 0.1 + 276.13 = 276.23J (26)

As shown in Table 19, while comparing with PPSS, our algorithm consumes more
energy on the computational level, but reduces much more energy on the transmission level.
Figure 8 compares both approaches in terms of energy consumption over time on the overall
network while considering a start energy of 500 J for the network. The gain of our approach
is positive, PPSS and as shown in Fig. 8 consumes more energy than our approach in our
experiments.

7 Conclusion

In this paper, we introduced an adaptive frame rate algorithm with a similarity detection
function for wireless video sensor nodes. Also, a Shot Selection algorithm is implemented
at the coordinator level. The proposed work allows a dynamic frame rate control of each
video-sensor node. The conducted experiments show that the proposed algorithms did not
miss any event in the recorded video sequence. Thus, the algorithms send the minimum
required frames to the sink node by using a similarity detection function at the sensor node
and coordinator levels. The selected frames are transmitted by the sensor nodes to the coor-
dinator and by the coordinator to the sink without missing any required information. The
results show that the size of the transmitted data in each period is reduced and the energy
consumption is decreased, thus, preventing any bottleneck problem regarding the bandwidth
limitation issue.
Comparing our approach with PPSS algorithm in terms of data reduction and energy con-
sumption, helps us to find out that our algorithm outperforms PPSS, and reduces the number
of data for more than 40% than PPSS. Thus, PPSS consumes 4 times more energy than our
approach on the sensor node level. As future works, first of all we need to do some real
experimentations on real sensor-nodes in the near future. Then, and after examinating the
amount of energy needed to do the processing, we aim to extend this work by including a
study which further reduces the computational energy consumption at the sensor node level.
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