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Abstract Human action recognition based on 3D skeleton joints is an important yet chal-
lenging task. While many research work are devoted to 3D action recognition, they mainly
suffer from two problems: complex model representation and low implementation effi-
ciency. To tackle these problems, we propose an effective and efficient framework for 3D
action recognition using a global-and-local histogram representation model. Our method
consists of a global-and-local featuring phase, a saturation based histogram representation
phase, and a classification phase. The global-and-local featuring phase captures the global
feature and local feature of each action sequence using the joint displacement between
the current frame and the first frame, and the joint displacement between pairwise fixed-
skip frames, respectively. The saturation based histogram representation phase captures the
histogram representation of each joint considering the motion independence of joints and
saturation of each histogram bin. The classification phase measures the distance of each
joint histogram-to-class. Besides, we produce a novel action dataset called BJUT Kinect
dataset, which consists of multi-period motion clips and intra-class variations. We com-
pare our method with many state-of-the-art methods on BJUT Kinect dataset, UCF Kinect
dataset, Florence 3D action dataset, MSR-Action3D dataset, and NTU RGB+D Dataset.
The results show that our method achieves both higher accuracy and efficiency for 3D action
recognition.
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1 Introduction

Human action recognition has been a significant issue for the past three decades due to
its practical applications in many critical fields, e.g., human-computer interaction, video
surveillance, motion retrieval, and health-care [6, 9, 21, 27, 34, 36]. Much progress related to
the research on intensity image based action recognition has been made [11, 15, 18, 30, 39].
However, intensity image based action recognition methods vastly suffer from lots of dif-
ficult situation, such as the illumination and viewpoint variation, the cluttered background,
the camera movement, and the partial occlusion. Moreover, these methods also encounter
difficulties to extract discriminative features because of the intra-class variability and inter-
class similarity of the action sequences, which are critical for achieving a high recognition
accuracy.

Range information, provided by the Microsoft Kinect liked somatosensory devices, has
been proved to be useful for solving these problems, which can improve the recognition
accuracy of the actions that are hard to be recognized by intensity images due to their
similarity in 2D projections space. Significant improvements [7, 20, 32, 41] have shown
promising applications of depth maps in the field of human action recognition. Furthermore,
the sequences of 3D skeleton joints of an action video clip also can be obtained in real-time
using Microsoft Kinect SDK toolkit [57]. Since human skeleton can be viewed as an artic-
ulated system connected by hinged joints, the human actions are essentially embodied in
skeletal motions in the 3D space. As a result, many skeleton based methods are springing
up [2, 5, 10, 26, 49, 54].

Despite fruitful research work on 3D skeleton based action recognition methods, existing
methods still endure some drawbacks, especially when representing the structure of actions.
Some methods [1, 12, 17, 51] treat the feature of each joint by stacking them together,
which produce a great amount of computing cost and high dimension feature, others [8,
14, 19, 31, 48] are devoted to subtle feature pruning and accompanied by a complicated
classification models, which are usually time consuming and supervised. These two kinds
of methods improve recognition accuracy while reducing computational efficiency, which
is more important in practical usage. Considering the presented problems, in this paper, we
propose a novel joint offsets based histogram representation model for each joint, which is
simple to implement, sufficiently efficient in recognition tasks, and unsupervised at training
process. At the same time, the characteristics of the displacements in the local movement
and the global movement are comprehensively considered, thus improving the recognition
accuracy.

The flowchart of the proposed framework is illustrated in Fig. 1, which includes the train-
ing phase and the testing phase. The main idea of this paper comes from the observation that
the offset determined by the displacement of each skeleton joint corresponding to two differ-
ent frames reflects the movement characteristic of the joint during the time interval of these
two frames. Moreover, the joint offset from the first frame to the current frame, named after
global offset feature, manifest the global movement of the joint, and the joint offset from
a pair of frames with a fixed interval, named after local offset feature, manifest the local
movement of the joint. The strategy to hybrid local feature and global feature together can
promote the action recognition accuracy without increasing the complication of the model.
Then the joint histogram representation is generated by clustering and coding the global
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Fig. 1 The general framework of the proposed method, where purple and green solid points are cluster
centers of global and local offsets, respectively. For clarity, we only illustrate global offsets and local offsets
of five joints

and local offsets of each joint, respectively. Furthermore, because the effect of each bin of
histogram cannot be neglected, saturation based histogram representation is proposed. This
strategy based on histogram representation model is motivated by [26]. While Lu et al. [26]
proposed a histogram model by clustering local offset vectors of all joints together, our
model differs from their work in three aspects: (1) We propose the global offset feature that
captures the global characteristic of an action, and integrate it with the local offset feature
together to construct the motion representation model; (2) We improve the method perfor-
mance by clustering the offset vectors for each joint independently instead of clustering
for all joints together; (3) We use saturation for histogram representation model to enhance
the discrimination ability of the features. Afterwards, we employ two different classifiers
to classify the different actions, respectively, i.e., Naive-Bayes-Nearest-Neighbor(NBNN)
and Sparse Representation-based Classifier(SRC). The experiments are run over five
datasets with different characteristic, including BJUT dataset captured by ourselves with
Kinect, UCF Kinect dataset, Florence 3D action dataset, MSR-Action3D dataset, and NTU
RGB+D Dataset. The results show that our method achieves both higher accuracy and
efficiency.

In summary, the main contributions of our work include four aspects as follows:

(1) A novel action feature that consists of global and local position offsets of joints is used,
which synergistically reflects the spatial and temporal properties of the action video.

(2) The action representation model is generated using a set of joint histograms. The
motion independence of skeleton joints is embedded with the representation by
applying K-means clustering to all offset vectors of each joint separately. Moreover,
saturation of each histogram bin is considered to enhance the discrimination ability.

(3) The effect of two different classifiers on our proposed method, i.e., NBNN and SRC,
are verified separately, which maintain the effectiveness of the spatial independence
of joints by a distance measurement principle of joint histogram-to-class. The former
is a non-parametric classifier, which does not require learning process, and is easy
to implement for practical usage. The latter is a parametric classifier, which requires
learning process.

(4) A novel action dataset is provided which consists of ten classes, in which each video
sequence poses an action multi-period.

The rest of this paper is organized as follows. Section 2 introduces the related work.
Section 3 elaborates on the global-and-local featuring phase and the saturation based
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histogram representation phase. Section 4 describes two classifiers, including Naive-Bayes-
Nearest-Neighbor(NBNN) and Sparse representation-based classifier(SRC). Experimental
results are presented in Section 5. The conclusion is given in Section 6.

2 Related work

Various range information based human action recognition approaches have been proposed
in the past decades. According to the types of the raw data the approaches rely on, these
methods fall into three classes, which are depth map based, skeleton joints based, and
multiple data modalities based methods.

The first class of methods only used depth maps or 3D point clouds converted from
depth maps for action recognition. Li et al. [20] constructed an action graph to represent
the actions, and used a bag of 3D points to characterize the postures, which is obtained by
projection based sampling method. Yang et al. [53] applied HOG to depth motion maps
which were generated by accumulating motion energy of depth maps projected onto three
orthogonal Cartesian planes. Wang et al. [47] proposed random occupancy pattern features
for action recognition, and weighted random sampling to explore an extremely large dense
sampling space. Similarly, Vieira et al. [45] proposed a space-time occupancy patterns, and
divided space and time axes into multiple segments to define a 4D grid. Oreifej et al. [33]
encoded the distribution of surface normal orientation in the 4D space. In the above meth-
ods, they model the action by the discrete points in the depth map and fail to consider every
map as an overall set with inherent structure of human body, which limits the recognition
accuracy.

As for skeleton joints based methods, the features were extracted to capture the essen-
tial structure of actions. Ellis et al. [12] presented a logistic regression learning framework
that automatically determined distinctive pose representation of each action. Xia et al. [50]
used histograms of 3D skeleton joint locations (HOJ3D) as a compact representation of
postures. Posture vocabularies were built by clustering HOJ3D vectors calculated from a
large collection of postures, and discrete hidden Markov model was used for action clas-
sification. Zhou et al. [56] presented a skeleton induced discriminative approximate rigid
part model for human action recognition, which not only captured the human geometrical
structure, but also took rich human body surface cues into consideration. Yang et al. [51]
proposed another action feature descriptor called eigenjoints by calculating the differences
of joints, which includes relative position information, consecutive information, and offset
information. Similarly, Jiang et al. [17] presented a method with consecutive information
and relative position information, and employed weighted graphs to organize these infor-
mation. Li et al. [19] also used a graph-based model to characterize the actions, but only
used relative position feature. The proposed top-K relative variance of joint relative dis-
tances determined which joint pairs should be selected in the resulting graph. In addition,
the temporal pyramid covariance descriptors were adopted to represent joint locations. Qiao
et al. [35] proposed trajectorylet, which captured static and dynamic information in a short
interval of joints, and generated a representation for actions by learning a set of distinctive
trajectorylet detectors. In order to reduce the feature space, Luvizon et al. [29] proposed
extracting sets of spatial and temporal local features from subgroups of joints, used the Vec-
tor of Locally Aggregated Descriptors (VLAD) represent an action, and then proposed a
metric learning method which can efficiently combine the feature vectors. Lu et al. [26]
extracted feature by computing local position offsets of joints. However, this method didn’t
fully exploit temporal relationship of action sequences, which fails to capture the continuous
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information of each action; moreover, it didn’t consider the motion independence of each
joint in the codebook formation phase which mattered in action recognition. Alternatively,
we construct a global offset feature as well as K-means clustering of offsets of each joint
for compensating the deficiency of the method of Lu et al. [26]. Besides, some works have
presented satisfactory results using skeletal features in RNN [42] and Long Short-Term
Memory (LSTM) networks [55]. Due to the relatively small number of training samples,
neural networks methods usually leads to strong overfitting.

As for multiple data modalities based methods, more than one type of data source was
used for action recognition. Ohn-bar et al. [32] proposed two descriptors including joint
angle similarity and modified HOG algorithm. Similarly, Zhu et al. [58] fused the spatio-
temporal interest points extracted from depth sequence and skeleton joint feature with
random forests. Luo et al. [28] proposed a framework fusing pairwise relative position fea-
ture extracted from skeleton joints and center-symmetric motion local ternary pattern feature
extracted from RGB sequences. Besides RGB and skeleton joints, Sung et al. [41] added
depth maps for action recognition. A two-layer maximum entropy Markov model was pre-
sented for classification. Wang et al. [46] combined the pairwise relative position feature and
local occupancy pattern, and employed Fourier temporal pyramid to represent the actions.
In the above methods, they have complex models and require long computing time.

As the extension of human action, human activity can be considered as the composition
of some actions. There has been relatively little work on bridging the gap between actions
and activities, Liu et al. [22, 23] provided temporal pattern mining, which encoded temporal
relatedness among actions, and captured the intrinsic properties of activities. Furthermore,
Liu et al. [24] presented a probabilistic interval-based model where the Chinese restaurant
process model is incorporated to capture the inherent structural varieties of complex activ-
ities. Due to the difficult collection of annotated or labelled training data for sensor-based
supervised human activity recognition, Lu et al. [27] proposed an unsupervised method for
recognizing physical activities using smartphone sensors. Since action recognition is the
basis of activity recognition, in this paper, we focus on discussing action recognition.

From this related work, we can conclude three important facts. First, most methods con-
centrating on high efficiency are skeleton-based method. Second, both spatial and temporal
information are important for action recognition. It is not trivial to fuse global and local tem-
poral information. Third, the trajectory feature of each joint is independent and important
for action recognition, and the importance of each joint feature is not equal. In our work, we
only use skeletal joints as input data, and our method characterizes both the global and local
movements. The combination of the joints can improve the recognition accuracy, but this
requires class label information. However, the training process in this paper is unsupervised,
so the labels-related combination of joints cannot be realized. Therefore, we propose the
following compromise: We separately represent the trajectory of each joint using saturation
based histogram representation, allowing further classification by measuring the distance of
joint feature to class.

3 Feature extraction and action representation

In this section, the proposed representation model based on global and local offsets of skele-
ton joints is described. The main idea is first to extract the low-level feature of an action
by computing the position offset of corresponding joint in two assigned frames, and then to
construct the histogram representation of the action by clustering and coding the global and
local offsets of each joint, respectively.
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3.1 Joint-based spatial-temporal feature extraction

Let � denote a set including N video sequences:

� ≡ {Fr |Fr = [fr(1), fr (2), . . . , fr (nr )], r = 1, 2, . . . , N}, (1)

where Fr represents the rth video with nr frames. Suppose that J joints are acquired in each
frame, the t th frame fr(t) can be denoted by the 3D coordinates of joints as follows:

fr(t) = {θ1,r (t), θ2,r (t), . . . , θJ,r (t)}, t = 1, 2, . . . , nr , (2)

where θj,r (t) = (xj,r (t), yj,r (t), zj,r (t)) denotes the 3D position of the j th joint in fr(t),
j = 1, 2, . . . , J .

Obviously, the joint coordinates reveal the spatial feature of the action, while the joint
displacements characterize the temporal feature of the action. Therefore, we calculate the
corresponding joint offset between the t th frame and the (t − �t)th frame to present the
spatial-temporal feature of the action.

φL
j,r (t) = θj,r (t) − θj,r (t − �t), (3)

where �t is the time difference which can balance the precision of the offset and the abil-
ity of robustness to noise. If �t becomes greater, noise fluctuations are more robust, but
computation precision becomes lower, and vice versa. Upper label L is used to indicate that
the feature describes the local movement of the joint during the time interval[(t − �t), t].
However, (3) only characterizes the local spatial-temporal property, and fails to express
the global movement of the joint related to the original pose in the first frame. Therefore,
in order to enhance the spatial-temporal property, we introduce the global offset, which is
computed as the displacement from the joint position in the first frame to the position of the
corresponding joint in the t th frame.

φG
j,r (t) = θj,r (t) − θj,r (1). (4)

Thus, fr(t) can be represented as follows:

�G
r (t) = [φG

1,r (t), φ
G
2,r (t), . . . , φ

G
J,r (t)],

�L
r (t) = [φL

1,r (t), φ
L
2,r (t), . . . , φ

L
J,r (t)]. (5)

In other words, the combination of two features forms the preliminary feature representation
of each frame as follows:

�r(t) = [�G
r (t),�L

r (t)], t = �t + 1,�t + 2, . . . , nr . (6)

Therefore, an action can be described as follow:

F ′
r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φG
1,r (�t + 1) φG

2,r (�t + 1) · · · φG
J,r (�t + 1)

φG
1,r (�t + 2) φG

2,r (�t + 2) · · · φG
J,r (�t + 2)

...
...

. . .
...

φG
1,r (nr ) φG

2,r (nr ) · · · φG
J,r (nr )

φL
1,r (�t + 1) φL

2,r (�t + 1) · · · φL
J,r (�t + 1)

φL
1,r (�t + 2) φL

2,r (�t + 2) · · · φL
J,r (�t + 2)

...
...

. . .
...

φL
1,r (nr ) φL

2,r (nr ) · · · φL
J,r (nr )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

For the method of Lu et al. [26], only the local offset is extracted to represent an action,
while our proposed method improves its representation method by introducing the global



Multimed Tools Appl (2019) 78:6329–6353 6335

offset as above. Figure 2 shows that the difference between the global offset of the t th frame
and the local offset of the t th frame equals the global offset of the (t − �t)th frame, i.e.,

φG
j,r (t − �t) = φG

j,r (t) − φL
j,r (t), (8)

which means the partial feature of the current frame is embraced by the feature of the
subsequent frame.

3.2 Joint-based histogram representation model

After each training action has been represented by a set of low-level features from all body
joints according to (7), histogramofoccupation frequency(HOF) representationmethodbased
on offset vectors clustering is used to generate the action representation model. Inspired by
Luo et al. [28] which indicated that each joint plays a different role for different actions, we
maintain the motion independence of joints using K-means clustering for the offset vectors
of each joint respectively as illustrated in Fig. 3 rather than for all joints together.

Firstly, we group together the global offset vectors of each joint of training action
sequences, and denote it by �G

j = {φG
j,r (t)}j=1,2,...,J,r=1,2,...,N,t=1,2,...,nr , where N is the

number of video sequences, and nr is the frame number of the rth sequence. Here �G
j cor-

responds to the global feature set of the j th body joint of all frames in all training action
sequences. In the same way, �L

j = {φL
j,r (t)}j=1,2,...,J,r=1,2,...,N,t=1,2,...,nr denotes the local

feature set of each body joint. Then we use K-means clustering algorithm for �G
j and �L

j

to form cluster centers CG
j,k and CL

j,k, k = 1, 2, . . . , K , where K is the number of clus-
ters, which is very important to balance the discrimination and robustness of representation
model. The Euclidean distance is used as the clustering metric.

Then, a given video sequence F ′
r with nr frames described as (7) can be further exp-

ressed by a set of histograms, which represent occupation frequencies of assigned clusters.

αG
j,r (k

′) = #{φG
j,r (t)|k′ = argmink ‖φG

j,r (t) − CG
j,k‖}

nr − �t
, k′ = 1, 2, . . . , K,

αL
j,r (k

′) = #{φL
j,r (t)|k′ = argmink ‖φL

j,r (t) − CL
j,k‖}

nr − �t
, k′ = 1, 2, . . . , K, (9)

where αG
j,r (k

′) and αL
j,r (k

′) represent the histograms of global and local offsets of the j th
joint, respectively, and #{} denotes the cardinality of a set, k = 1, 2, . . . , K , t = �t +
1,�t + 2, . . . , nr . Thus, the movement of the j th joint can be represented by a histogram,
i.e., αj,r = [αG

j,r , α
L
j,r ] ∈ IR2K .

ttG
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Fig. 2 Illustration of temporal sequence property
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Furthermore, we notice the existence of nonuniform distribution of occupation frequen-
cies among the histograms. For instance, the majority of clusters in a histogram have a few
occupation frequencies. In the situation, if we don’t consider saturation, and directly use
the histogram feature, the effect of clusters that have low frequencies would be diminished
in the classification. Their frequencies are very low relative to the other clusters with high
frequencies, nevertheless these clusters with low frequencies are usually very relevant for
action recognition. Therefore, saturation based histogram of occupation frequency(SHOF)
is proposed. we set a parameter ε to truncate the high occupation frequencies, then the
histogram can be represented as follows:

α′G
j,r (k) = min{αG

j,r (k), ε}
∑K

k′=1 min{αG
j,r (k

′), ε} , k = 1, 2, . . . , K,

α′L
j,r (k) = min{αL

j,r (k), ε}
∑K

k′=1 min{αL
j,r (k

′), ε} , k = 1, 2, . . . , K, (10)

where ε is empirically selected to maximize recognition accuracy. Thus, the movement of
the j th joint can be represented by a histogram, i.e., α′

j,r = [α′G
j,r , α

′L
j,r ] ∈ IR2K . Finally,

an action sequence can be represented by SHOF based on the joint movement, i.e., F ′′
r =

[α′
1,r , α

′
2,r , . . . , α

′
J,r ] ∈ IR2K×J . Our proposed framework is presented in Algorithm 1.

Algorithm 1 Process of proposed histogram representation method

Require: Training set 1; parameters

1: while do

2: Extract global and local feature via (3 – 4);

3: Cluster for global and local feature sets, respectively;

4: Extract HOF via (9);

5: Extract SHOF via (10);

6: end while

7: return SHOF
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4 Classification

Suppose an action sequence is represented by a set of histograms of all joints, i.e., V =
[h1, h2, . . . , hJ ]. To remain the movement independence of each joint, which often provides
additional clues for action discrimination, we classify an action video by measuring the dis-
tance of joint histogram-to-class rather than the distance of video-to-video or video-to-class.
The action recognition based on the distance of histogram-to-class is performed according
to the following equation:

c∗ = argmin
c

J∑
j=1

‖hj − Uc
j (hj )‖2, (11)

where c∗ reflects the class that the testing video sequence V belongs to, hj is the histogram
of the j th joint of V , Uc

j (hj ) is the nearest histogram with hj in the class c. We apply
two different classifiers, i.e., NBNN and SRC, to classify the actions based on the above
distance measurement principle, respectively. The difference is that the former is employed
to classify proposed histogram representation, and the latter is employed to classify the
sparse representation transformed from histogram representation.

4.1 Naive-bayes-nearest-neighbor classifier

Naive-Bayes-Nearest-Neighbor (NBNN) [4] is employed by measuring the distance of
histogram-to-class defined as above. NBNN is a non-parametric classifier and equips with
the following four advantages compared with other learning-based classifiers. (1) NBNN
doesn’t require learning process; (2) NBNN can avoid the over-fitting problem; (3) NBNN
can deal with a large number of classes; (4) NBNN is easy to implement for practical usage.

The action video is classified according to (11) with Uc
j (hj ) represented as follows:

Uc
j (hj ) = NNc

j (hj ) = argmin
h′ |hj − h′

j (c)|, (12)

where h′
j (c) denotes the histogram of j th joint of an action in the class c.

4.2 Sparse representation-based classifier

Assume that there areC classes in the training set. For the j th joint in the cth class, gathering
all histograms of sample videos, we can learn a dictionary to represent the histogram feature
of the j th joint. In this way, we learn C × J dictionaries. The j th joint histograms in the
training videos of the cth class are arranged as columns of matrix Ac

j = {hp
j }p=1,2,...,P ,

where P is the number of training videos in the cth class. We wish to learn a dictionary
Dc

j ∈ IR2K×P over which Ac
j has a sparse representation Xc

j = {x1, x2, . . . , xP }. It is
modeled as the following optimization problem:

min
D,X

{‖Ac
j − Dc

jX
c
j‖2F } s.t.‖x‖0 ≤ q1. (13)

For a testing video sequence, V = [h1, h2, . . . , hJ ]. One way to classify V is to
find approximations of {hj }j=1,2,...,J , given by each of the learned dictionaries and their
corresponding reconstruction errors. The following (14) defines the item of Uc

j (hj ).

Uc
j (hj ) = Dc

j x̂
c
j = min

Dc
j x̃c

j

‖hj − Dc
j x̃

c
j‖22 s.t.‖x̃c

j‖0 ≤ q2, (14)
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where x̂c
j is the sparse representation of V over Dc

j , j = 1, 2, . . . , J . The Uc
j (hj ) is then

substituted into (11) to execute the classification.

5 Experimental results

In this paper, we evaluate our method on five datasets, including a new dataset cap-
tured by ourselves called BJUT Kinect dataset and four publicly available datasets: UCF
Kinect dataset [12], Florence 3D action dataset [37], MSR-Action3D dataset [20], and NTU
RGB+D Dataset [38] . The experiments are run on a Core (TM) i7-4790 3.6GHz machine
with 8GB RAM using Matlab R2016a.

5.1 Databases

5.1.1 BJUT Kinect dataset

Weintroduce a newaction dataset byKinect sensor calledBJUTKinect dataset,whichwecol-
lected in order to emphasize two points: First, each video sequence of the dataset is multi-
period, and each actor performed a requested action different times in each sequence. This
dataset is useful to evaluate howwell the feature descriptors formulti-period actions. Second,
each individual performed actions freely without standard action demo so that this dataset
has a certain diversity, which brings difficulty for recognition. This dataset has 159 video
sequences in total and 10 classes listed in Table 1. In each frame, the 3D coordinates of 25
joints are available. The dataset is captured from 12 individuals including 9 males and 3
females whose ages range from 24 to 35. The actions of this dataset are illustrated in Fig. 4.

5.1.2 UCF Kinect dataset

UCF Kinect dataset [12] is a publicly available dataset including 16 classes: balance,
climb ladder, climb up, duck, hop, kick, leap, punch, run, step back,
step forward, step left, step right, twist left, twist right, vault.
This dataset is captured byKinect sensor and theOpenNI platform, gathered from 16 individ-
uals (13males and 3 females whose ages range from 25 to 35), and has 1280 video sequences
in total. In each frame, the 3D coordinates of 15 joints are available. Every one performed
16 actions five times. The dataset is used to measure the latency possible, and how quickly
a method can overcome the ambiguity in initial poses when performing an action.

5.1.3 Florence 3D action dataset

Florence 3D action dataset [37] is captured by Kinect camera including 215 action
sequences. It includes 9 action classes: wave, drink from a bottle, answer
phone, clap, tight lace, sit down, stand up, read watch, bow. 10 subjects

Table 1 The list of actions on
the BJUT Kinect dataset 1. Open arms 2. Shooting

3. Goalkeeping 4. Kick

5. Wave 6. Twist

7. Step forward-back 8. Warm-up

9. Head snaking 10. Step left-right
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pen arms Shooting Goalkeeping Kick Wave

Twist Step forward-back Warm-up Head snaking Step left-right

Fig. 4 Several poses associated with different actions on the BJUT Kinect dataset

were asked to perform the above actions twice or three times. The 3D positions of 15 joints
are provided in each frame. Moreover, the dataset has high intra-class variations, and most
activities involve human-object interactions, which is challenging for recognition only by
3D joints.

5.1.4 MSR-Action3D dataset

MSR-Action3D dataset [20] is a publicly available dataset including 567 action
sequences, and is performed by 10 individuals. It includes 20 action classes: high
wave, horizontal arm wave, hammer, hand catch, forward punch, high
throw, draw X, draw tick, draw circle, hand clap, hand wave, side
boxing, bend, forward kick, side kick, jogging, tennis swing, tennis
serve, golf swing, pickup throw. The data was recorded with a depth sensor sim-
ilar to Kinect. Each individual performed each action 2 or 3 times. The dataset provides 3D
skeleton joints and depth maps. We use 3D skeleton joints only, and the 3D coordinates of
20 joints are available in each frame.

5.1.5 NTU RGB+D dataset

NTU RGB+DDataset [38] is a large human action dataset, which provides more than 56000
sequences and 4 million frames. There are 60 action classes performed by 40 distinct sub-
jects, including 40 daily actions(e.g., drinking, reading, writing), 9 health-related
actions (e.g., sneezing, staggering, falling down) and 11 mutual actions (e.g.,
handshaking, hugging, punching). The dataset used three cameras to capture these
actions, which were placed at different locations and viewpoints. In each frame, the 3D
coordinates of 25 joints are available. Due to the large number of viewpoints, intra-class and
sequence length variations, the dataset is very challenging.

5.2 Parameters evaluation

For action representation, we need tune three parameters. Time difference �t balances the
precision and robustness to noise, the number of clusters K balances the discrimination of
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Table 2 Parameters setting of
each dataset, where �t is time
difference, K is clusters number,
and ε is saturation parameter

Dataset �t K ε

BJUT Kinect dataset 2:2:10 10:10:40 0.1:0.1:1

UCF Kinect dataset 2:2:10 10:10:40 0.1:0.1:1

Florence 3D action dataset 2:2:8 10:10:40 0.1:0.1:1

MSR-Action3D dataset 2:2:10 10:10:40 0.1:0.1:1

NTU RGB+D dataset 2:2:10 80:10:150 0.1:0.1:1

our method, and saturation parameter ε balances the effect of each bin of the histogram. We
empirically determine the intervals and the step size of each parameter. Table 2 shows the
parameters setting of each dataset. Due to different protocols of each dataset, we describe
the tuning process for three of the evaluated datasets. We tune �t and K jointly, and eval-
uate all combinations of the two parameter values to find the optimal values according
to the accuracy. Figure 5 shows the performance with different values of �t and K for
three dataset, where BJUT1 represents original BJUT dataset, and BJUT2 represents BJUT
dataset with the video segmented to contain only one motion in a clip. There is an optimum
spot in each dataset for �t and K , which gives the best performance. We tune ε on two
datasets as shown in Fig. 6. It is clear that, when ε is 0.5 and 0.6, we achieve the best per-
formance on UCF Kinect dataset and Florence 3D action dataset, respectively. For sparse
representation-based classifier (SRC), we need tune q2 to investigate the impact of the spar-
sity of joint histogram feature. The experiments are performed on the UCF Kinect dataset
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with different values of q2 as shown in Fig. 7. From the figure, we can see that q2 = 4
achieves the best performance.

5.3 Experimental results on BJUT Kinect dataset

For this dataset, an action is performed more times in a video sequence. Therefore, the
evaluation is performed with two protocols. We first test on the dataset without video seg-
mentation(BJUT1), and then test on the dataset with the video segmented to contain only
one motion in a clip(BJUT2). The ratio of training video and testing video is both 3:1, and
the repeat count is 10 and 20, respectively. Table 3 shows the comparable results. Here
we use “LF”, “GF”, “AT”, and “ER” to denote “local feature”, “global feature”, “clus-
tering offsets of all joints together”, and “clustering offsets of each joint respectively”,
for convenience. For SRC-based method, q1 = 2, q2 = 4. The results verify that the
modeling strategy of clustering offset vectors of each joint respectively is effective and out-
performs the strategy of clustering offset vectors of all joints together. We also can reach
the conclusion that our model improves recognition accuracy without excessive increase
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Fig. 7 The recognition accuracies with different values of q2
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Table 3 Performance
comparison on the BJUT Kinect
dataset. we use “LF”, “GF”,
“AT”, and “ER” to denote “local
feature”, “global feature”,
“clustering offsets of all joints
together”, and “clustering offsets
of each joint respectively”,
respectively. (8,40) represents
�t = 8 and K = 40

Method BJUT1 BJUT2

LF+AT+NBNN [26] Parameter (8,40) (8,30)

Accuracy 92.09% 93.78%

Dimensionality 1000 750

LF+GF+AT+NBNN Parameter (8,30) (6,10)

Accuracy 96.05% 95.44%

Dimensionality 1500 500

LF+GF+ER+NBNN Parameter (4,20) (8,30)

Accuracy 98.14% 97.89%

Dimensionality 1000 1500

LF+GF+ER+SRC Parameter (4,20) (8,30)

Accuracy 99.07% 96.94%

Dimensionality 1000 1500

dimensionality. The effectiveness comes from employing the global offset feature to inten-
sify the temporal property of the model. Furthermore, the accuracy of BJUT1 is better than
BJUT2 employing the global feature, which further illustrate that global feature intensifies
the temporal property. The recognition accuracy of the SRC-based method is slightly better
than NBNN-based method. Our method based on SRC outperforms 0.93% and 0.08% than
our method based on NBNN classifier on the BJUT1 and the UCF, respectively. However,
our method based on NBNN outperforms 0.95% than SRC on the BJUT2.

5.4 Experimental results on UCF Kinect dataset

For this dataset, We use 5-fold cross validation estimation method to evaluate our method.
We obtain the best performance when �t is 4, K is 10, and ε is 0.5. Table 4 shows the
accuracy comparison with the state-of-the-art methods. In the case of UCF Kinect dataset,
the average accuracy of the proposed method is 99.14%. Our method is comparable to the
method of Jiang et al. [17], and better than other methods. Figure 8 shows the confusion

Table 4 Performance
comparison on the UCF kinect
dataset

Method Accuracy(%)

LTSS [25] 91.70

BoW [12] 94.06

CRF [12] 94.29

LAL [12] 95.94

EigenJoint [51] 97.10

JAS [32] 97.37

Local offset [26] 97.58

Grassmann Manifold [40] 97.91

MvMF+HMM [3] 98.90

Ours(SHOF+SRC) 98.91

Ours(SHOF+NBNN) 99.14

Weighted graphs [17] 99.30
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Fig. 8 Confusion matrix of proposed method(SHOF+NBNN) for the UCF kinect dataset

matrix of action recognition corresponding to the best accuracy of our method. The result
shows that the recognition accuracies of most actions are 100%, such as climb ladder,
duck, hop, step back, step forward and twist right. As for balance,
kick, leap, step left, step right and twist left, their recognition accura-
cies are no less than 99%, even the poor recognition accuracies for climb up, punch
and vault are as high as 95%. Table 5 shows the average testing runtime of each phase of
our method. The average frame number of each video is 66 for the UCF. Our method based
on NBNN only costs approximate 0.018s for one video sequence, and our method based
on SRC costs approximate 0.088s for one video sequence. Both two methods are highly
efficient, and NBNN is faster than SRC.

5.5 Experimental results on Florence 3D action dataset

For this dataset, we follow the standard leave-one-out-cross-validation protocol as described
in [37] to evaluate our method. We obtain the best performance when �t is 2, K is 10,
and ε is 0.6. Table 6 shows the accuracy comparison with the state-of-the-art methods. We
can see that our proposed method, comparable to the method of Yang et al. [54] which is
supervised-based method, achieves better performance than other methods. We can obtain
a recognition accuracy of 92.19%, which is very good performance. Figure 9 illustrates the
confusion matrix on the Florence 3D action dataset. We can see that the proposed method
performs very well on most of the actions, except some actions, such as drink from a
bottle and answer phone, which are often misclassified each other. The reason is that
for these human-object interactions, object information is not available from the skeleton
joints data making these interactions look almost the same.

Table 5 The average testing
runtime for each phase of our
method per action sequence on
the UCF dataset

Phase Video representation NBNN SRC

Time(ms) 8.147 9.781 79.36
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Table 6 Performance
comparison on the florence 3D
action dataset

Method Accuracy(%)

Multi-part bag-of-poses [37] 82.15

Riemannian manifold [10] 87.04

RF-PCA [2] 89.67

Lie Group [43] 90.88

Wang et al. [49] 91.63

Ours(SHOF+NBNN) 92.19

Skelets [54] 93.42

5.6 Experimental results on MSR-Action3D dataset

For this whole dataset, we follow the cross-subject evaluation as described in [33], where
the samples of half of the subjects are utilized for training, and the others are employed as
testing data. We obtain the best performance when �t is 6, K is 30, and ε is 0.3. Table 7
shows the comparison results with the state-of-the-art unsupervised methods. Our proposed
method achieves acceptable performance. For this dataset, the accuracy of supervised meth-
ods [28, 48] can reach 93.8%, which are outperform ours, but this result should be viewed
in the context of the accuracy/latency trade-off. These methods require that the entire action
be viewed before recognition can occur. Insight into the performance of our method can be
gained by examining the accuracies for specific action classes. Figure 10 shows the com-
parisons of recognition accuracies of our method and the method of Luvizon et al. [29],
which is a state-of-the-art unsupervised method. From the figure, we can see that the two
unsupervised methods can all exactly distinguish the actions with different body poses, but
get into trouble when distinguishing the actions with similar poses, such as draw x and
draw tick. The immediate reason is that our representation model is based on the pri-
mary skeleton joints related with torso and limbs like “big” part, and ignore the detailed
joints related with fingers like “little” part. As a result, the actions distinguished by subtle
detail are difficult to recognize. Therefore, using more detailed joints to represent action is
our future research plan.
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Table 7 Performance
comparison on the
MSR-Action3D dataset

Method Accuracy(%)

LAL [12] 65.7

Bag of 3D points [20] 74.7

HOJ3D [50] 79

STOP [44] 81.43

EigenJoint [51] 82.3

Local feature+VLAD [29] 83.2

Ours(SHOF+NBNN) 83.6

HON4D [33] 85.8

5.7 Experimental results on NTU RGB+D dataset

For this dataset, the evaluation is performed with two standard protocols as described in
[38], i.e., cross-subject evaluation and cross-view evaluation. For cross-subject evaluation,
the samples of 20 subjects are used for training and the samples from 20 other subjects
are used for testing. For cross-view evaluation, the samples captured by two cameras are
used for training and the others are used for testing. We obtain the best performance when
�t is 2, K is 100, and ε is 1. The comparison results with the state-of-the-art handcrafted
methods on this dataset are reported in Table 8. We can find out that our proposed method
achieves acceptable performance when features are calculated only using skeleton joints
without using multi-modal fusion such as [16]. The method [16] also employed supervised
learning for their features, whose performance improvement coincided with an increase in
computational cost particularly in the training phase.

5.8 Efficiency analysis

Because fair execution under the same condition are almost impossible, we cannot compare
the actual computation time of other methods. Therefore, the efficiency analysis is discussed
from two aspects, i.e., the computational complexity analysis and the latency analysis.
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Ours Local feature+VLAD

Fig. 10 Recognition accuracy (per action) for the MSR-Action3D dataset obtained by local feature+VLAD
and our method
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Table 8 Performance
comparison on the NTU RGB+D
dataset

Method Accuracy(%)

Cross subject Cross view

HON4D [33] 30.56 7.26

Super normal vector [52] 31.82 13.61

JAS [32] 32.24 22.27

Skeletal Quads [13] 38.62 41.36

Lie Group [43] 50.08 52.76

Ours(SHOF+NBNN) 51.43 56.16

FTP Dynamic skeletons [16] 60.23 65.22

For the computational complexity analysis, we compare our method with the methods
of [12] and [26], which are also concentrate on computational efficiency while keeping a
satisfactory recognition accuracy. Table 9 shows the comparison of computational complex-
ity. From the table, we can see that our method has a comparable computational complexity
with the compared methods. Our feature has lower dimension and our method has higher
recognition accuracy. Therefore, our method is more effective with high computational effi-
ciency while keeping a better recognition accuracy than the compared methods. In a word,
our proposed method has low computational complexity, which can be implemented in
real-time.

For the latency analysis, the goal here is to investigate how many frames are sufficient
to enable accurate action recognition. We evaluate our method on sequences of varying
frame lengths. From the original dataset, new datasets are created by varying a parame-
ter termed maxFrames. The sub-sequences are extracted from the first maxFrames frames
of the video. If the video is shorter than maxFrames, the entire video is used. The com-
parison of recognition accuracies using different number of first maxFrames frames are
illustrated in Fig. 11, where LAL, CRF and BOW are the methods of Ellis et al. [12], and
Local offset is the method of Lu et al. [26]. From Fig. 11 we can see that our method
clearly outperforms other methods. All of the methods perform poorly given a small num-
ber of frames, and well given a large number of frames. However, in the middle range, i.e.,
from 20 frames to 40 frames, our approach achieves a much higher accuracy than all other
methods. In a word, our method can recognize actions at the desired accuracy with a lower
latency.

5.9 Discussion

Unlike many methods [14, 29] using supervised methods, our method is an unsupervised
method. When using unsupervised techniques to extract features, there is no need to rely

Table 9 Computational
complexity of different methods,
where feature dimension and
accuracy are on the UCF Kinect
dataset, and n is frame number

Method Computational Feature Accuracy(%)

complexity dimension

LAL [12] O(n) 2776 95.94

Local offset [26] O(n) 300 97.58

Ours O(n) 300 99.14
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on prior knowledge, and no data inadaptability problem, since the features are learned from
the data. Based on our experiments, time difference �t has the effect on the precision and
robustness to noise, the number of clusters K has the effect on the discrimination, and sat-
uration parameter ε has the effect on balancing the effect of each bin of the histogram.
We find that the three parameters of action representation have different values for differ-
ent datasets. Tuning the three parameters is an important task, which has significant effect
on the recognition accuracy of our method(see Figs. 5, 6 and 7). We also come to a con-
clusion that each component of our proposed method improves the recognition accuracy.
Compared with Lu et al. [26], which is very close to ours, our method not only characterize
both the global and local movements of the joints in an action sequence, but also improve
temporal sequence property (see Table 3). Furthermore, our method, comparable to some
methods which employ supervised techniques and complex learning model, achieves bet-
ter performance than many other methods on five different types of datasets. For BJUT
Kinect dataset, each video sequence is multi-period. For UCF Kinect dataset, it is a rela-
tively large and clean dataset, and general measure the efficiency of methods. For Florence
3D action dataset, it has many human-object interactions and high intra-class variations.
For MSR-Action3D dataset, it has a great amount of noise and high intra-class variations.
For NTU RGB+D Dataset, it is perhaps the largest human action dataset, and has a large
number of viewpoints and intra-class variations. The evaluations in terms of efficiency
have clearly revealed our method can recognize actions in real-time. It is possible to rec-
ognize actions up to 92% using only 30 frames which is a good performance comparing
to state-of-the-art methods (see Fig. 11). Thus, our approach can be used for interactive
systems.

However, our method has some limitations. Our proposed method is a 3D joint-based
framework for human action recognition from skeletal joints sequences. Therefore, for
actions involving human-object interactions, our method does not provide any relevant
information about objects and thus, action with different objects are confused. In future,
this limitation can be improved by leveraging complementary information, which can be
extracted from depth or color images associated with 3D joint locations. Besides, if a dataset
has both a great amount of noise and high intra-class variations, such as MSR-Action3D
dataset, our method cannot accurate recognition. Further study is needed to determine
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precisely how important low latency is in these types of abstract actions. More detailed joint
information is also an extension of future research.

6 Conclusion

This paper presents a novel framework for action recognition focusing on the compu-
tational efficiency. In the framework, an action feature is designed based on offsets of
skeleton joints including global offset feature and local offset feature that can intensify
the temporal sequence property. A novel histogram representation model based on global
and local offsets of joints is introduced to represent actions considering the spatial inde-
pendence of joints. K-means clustering algorithm is used for the global or local offset
vectors of each joint, respectively. This method can get higher accuracy than the method
of K-means based on offset vectors of all joints together. Histogram of occupation fre-
quency based high-level representation model is constructed to represent a video sequence.
The saturation scheme is presented to modify the model, in case that the majority of
the clusters with low occupation frequencies would be overlooked. Two classifiers based
on measuring the histogram-to-class distance are designed, including NBNN and SRC.
Two classifiers achieve approximate recognition accuracies, and NBNN is much faster
than SRC. A novel dataset for the purpose of our experiments called BJUT dataset by
Kinect and four publicly available datasets including UCF Kinect dataset, Florence 3D
action dataset, MSR-Action3D dataset, and NTU RGB+D Dataset are introduced to tes-
tify our framework. The experiments on five datasets show that our method is effective,
and achieves a comparable or a better performance compared with the state-of-the-art
methods.

In conclusion, the motion feature proposed in this paper is concise and intuitive, and the
action representation model is facile and discriminative. However, the actions with similar
body poses or human-object interactions cannot be recognized precisely using our method.
To improve our framework, exploring more discriminative features with low dimensionality
is the coming work.
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1. Agahian S, Negin F, Köse C (2018) Improving bag-of-poses with semi-temporal pose descriptors for
skeleton-based action recognition. Vis Comput. https://doi.org/10.1007/s00371-018-1489-7

2. Anirudh R, Turaga P, Su J, Srivastava A (2017) Elastic functional coding of Riemannian trajectories.
IEEE Trans Pattern Anal Mach Intell 39(5):922–936

3. Beh J, Han D, Durasiwami R, Ko H (2014) Hidden markov model on a unit hypersphere space for gesture
trajectory recognition. Pattern Recogn Lett 36:144–153

4. Boiman O, Shechtman E, Irani M (2008) In defense of nearest-neighbor based image classification. In:
IEEE conference on computer vision and pattern recognition, pp 1–8

5. Chaaraoui A, Padilla-Lopez J, Climent-Perez P, Florez-Revuelta F (2014) Evolutionary joint selection
to improve human action recognition with RGB-d devices. Expert Syst Appl 41:786–794

https://doi.org/10.1007/s00371-018-1489-7


Multimed Tools Appl (2019) 78:6329–6353 6349

6. Chen H, Hwang J (2011) Integrated video object tracking with applications in trajectory-based event
detection. J Vis Commun Image Represent 22:673–685

7. Chen W, Guo G (2015) Triviews: a general framework to use 3D depth data effectively for action
recognition. J Vis Commun Image Represent 26:182–191

8. Chen H, Wang G, Xue J-H, He L (2016) A novel hierarchical framework for human action recognition.
Pattern Recogn 55:148–159

9. Cui J, Liu Y, Xu Y, Zhao H, Zha H (2013) Tracking generic human motion via fusion of low-and
high-dimensional approaches. IEEE Trans Syst Man Cybern Syst 43:996–1002

10. Devanne M, Wannous H, Berretti S, Pala P, Daoudi M, Del Bimbo A (2015) 3-D human action
recognition by shape analysis of motion trajectories on Riemannian manifold. IEEE Trans Cybern
45(7):1340–1352

11. Dong J, Sun C, Yang W (2015) A supervised dictionary learning and discriminative weighting model for
action recognition. Neurocomputing 158:246–256

12. Ellis C, Masood S, Tappen M, Laviola J, Sukthankar R (2013) Exploring the trade-off between accuracy
and observational latency in action recognition. Int J Comput Vis 101:420–436

13. Evangelidis G, Singh G, Horaud R (2014) Skeletal quads: human action recognition using joint
quadruples. In: International conference on pattern recognition, pp 4513–4518

14. Eweiwi A, Cheema MS, Bauckhage C, Gall J (2014) Efficient pose-based action recognition. In: Asian
conference on computer vision, pp 428–443

15. Fathi A, Mori G (2008) Action recognition by learning mid-level motion features. In: IEEE conference
on computer vision and pattern recognition

16. Hu J-F, Zheng W-S, Lai J, Zhang J (2015) Jointly learning heterogeneous features for RGB-D activity
recognition. In: IEEE conference on computer vision and pattern recognition, pp 5344–5352

17. Jiang X, Zhong F, Peng Q, Qin X (2016) Action recognition based on global optimal similarity
measuring. Multimedia Tools and Applications 75:11019–11036

18. Laptev I, Marszalek M, Schmid C, Rozenfeld B (2008) Learning realistic human actions from movies.
In: IEEE conference on computer vision and pattern recognition, pp 1–8

19. Li M, Leung H (2017) Graph-based approach for 3D human skeletal action recognition. Pattern Recogn
Lett 87:195–202

20. Li W, Zhang Z, Liu Z (2010) Action recognition based on a bag of 3D points. In: IEEE computer society
conference on computer vision and pattern recognition workshops, pp 9–14

21. Liu Y, Cui J, Zhao H, Zha H (2012) Fusion of low-and high-dimensional approaches by trackers
sampling for generic human motion tracking. In: International conference on pattern recognition, pp
898–901

22. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2activity: recognizing complex activities
from sensor data. In: International joint conferences on artificial intelligence, pp 1617–1623

23. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition.
Neurocomputing 181:108–115

24. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic
interval-based model. In: AAAI conference on artificial intelligence, pp 1266–1272

25. Lu G, Zhou Y (2013) Extraction of action patterns using local temporal self-similarities of skeletal
body-joints. In: International congress on image and signal processing, pp 96–100

26. Lu G, Zhou Y, Li X, Kudo M (2016) Efficient action recognition via local position offset of 3D skeletal
body joints. Multimed Tools Appl 75:3479–3494

27. Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2017) Towards unsupervised physical activity recognition
using smartphone accelerometers. Multimed Tools Appl 76(8):10701–10719

28. Luo J, Wang W, Qi H (2014) Spatio-temporal feature extraction and representation for RGB-d human
action recognition. Pattern Recogn Lett 50:139–148

29. Luvizon DC, Tabia H, Picard D (2017) Learning features combination for human action recognition
from skeleton sequences. Pattern Recogn Lett 99:13–20

30. Matikainen P, Hebert M, Sukthankar R (2009) Trajectons: Action recognition through the motion anal-
ysis of tracked features. In: IEEE 12th international conference on computer vision workshops, pp
514–521
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