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Abstract Currently, the image denoising methods using Gaussian mixture model to learn
image prior have received much attention. Among these methods, expected patch log likeli-
hood based image denoising approach has been shown to be surprisingly competitive in image
restoration. However, recent related works generally utilize global regularization parameter
that influences the performance of denoising algorithm. In this paper, with the consideration
that the Gaussian mixture model has the capability of clustering, we propose an adaptive
estimation method of regularization parameter for expected patch log likelihood based image
denoising. Our method jointly employs the Lagrange multiplier technique and entropy concept
to select regularization parameter for each underlying cluster. Experimental results illustrate the
relatively good performance of our image denoising method in terms of visual improvement
and peak signal to noise ratio.
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1 Introduction

Digital image has extensive application foreground in our daily life. However, during image
acquisition and transmission process, images are inevitably corrupted by the degraded factors,
such as noise interference, motion blur and frequency aliasing. In order to obtain high quality
images, image denoising is one of the most important research issues in digital image
processing.

Image denoising is the problem of reducing undesired noise while preserving image details.
Normally, noisy image degradation can be modeled as:u0 = u + n, where u and u0 denotes the
original and noisy images, respectively, and n is the additive white Gaussian noise. Generally,
estimating image u from the linear measurement is often an ill-posed inverse problem [7, 20],
which can be addressed by means of nonlinear regularization technique that is closely related
to the image statistic modelling. Using image prior as driving force for image restoration have
always been a hot issue.

In the past several decades, many popular image priors [1, 23] have been presented, such as
the gradient based [7, 20], the non-local self-similarity based [12, 25], the sparsity based [4, 10,
18, 24], and so on. Classical image restoration methods as the maximum-a-posteriori (MAP)
estimation [7] and the total variation (TV) regularization [20], utilize priors on certain
distributions of image gradients to locally regularize image, which are capable of obtaining
good results on piecewise-smooth images like cartoon images. With the observation that
similar structures are usually distributed over the whole image, the non-local self-similarity
prior [1] has been usefully employed by the non-local regularization methods for texture image
processing problems [12, 25]. The sparsity prior [4] is based on the fact that image patches can
be sparsely represented over a redundant dictionary adaptively learned, and has proven its
effectiveness in recovering a wide variety of images [10], including natural images, medical
images, aerial images and satellite images.

Because of the independence assumption on the dictionary atoms, the traditional sparse
representation with dictionary learning [4] has limited performance. In practice, the active
atoms in the learned dictionary often exhibit strong connections. Naturally, one of promising
directions for sparse representation lies in imposing more constraints on the sparse dictionary
[18, 24]. Consequently, various structured sparse representation methods [11, 15, 17, 29, 36]
have been developed through exploring and exploiting the structural dependences among the
dictionary atoms, mainly including the group or block-sparsity based [15, 17, 29], the nonlocal
self-similarity based [11, 36], and the mixture models based [13, 33]. Among these ap-
proaches, the mixture model based [13, 33] has been shown to be surprisingly competitive
in handling the image restoration.

By considering that image structure within a small local window appears to be easier to
model [26], the mixture model based approaches [34] employ a small number of mixture
components to learn priors over image patches for image statistical modelling, which offers
two advantages: relatively low computational complexity, and the well-understood mathemat-
ical behavior. Presently, compared with other mixture model [13], the Gaussian mixture model
(GMM) has been popular in sparse representation based image restoration [33], for the reason
that it is easy to implement and requires a small amount of parameters to estimate. Recently,
the current GMM based denoising method mainly focuses on the learning strategy, such as the
Expected log patch likelihood (EPLL) based method and its variants [14, 16, 21, 34].
However, how to select regularization parameter is still an open problem for the GMM based
image denoising method [31].
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It is well-known that regularization parameter has a great influence on the performance of
denoising method. When the value of regularization parameter is too large, there will be residual
noise in the restored image. When the value of regularization parameter is too small, the denoised
images will probably lose important details such as the edge and textures. To date numerous
methods for regularization parameter selection have been presented, including Lagrange multi-
plier based method [2, 6, 8, 28], the L-curve based method [19, 27], and the discrepancy principle
based method [22], the structure tensor based method [32, 35] and the Scale space based method
[3, 5, 30]. This work focuses on the regularization parameter selection using Lagrange multiplier
for EPLL based image denoising. The above-mentioned methods can be roughly classified into
two categories: global method and locally adaptive method. In general, Lagrange multiplier based
methods, the discrepancy principle based method and L-curve based methods often select a single
regularization parameter in a global way for image processing. Although these approaches are
comparatively easy to implement, theirs performances on image denoising are unsatisfying.
Structure tensor based methods attempt to employ the local image analysis tool to adaptively
estimate regularization parameters. In other words, each pixel is assigned a different parameter.
However parameter estimation using structure tensor fails to obtain good result for weak-edge
images. The scale space based methods can be further divided into direct method and indirect
method. These methods locally compute regularization parameters through scale space statistics.
However regularization parameter estimation using space scale technique is time-consuming.

The traditional EPLL based method utilizes constant regularization to smooth image.
However, images often contain different image contents such as flat region, edge, textures
and many tiny details. Therefore, global regularization parameter limits the performance of
image denoising method. To improve the denoised results of the original EPLL based image
denoising method, it is natural to explore adaptive regularization parameter estimation that can
be able to set different parameter value to different image structure. Considering that the GMM
can represent various data distributions, we will use its components to propose adaptive
regularization parameter selection method. In fact, with the help of GMM, we can gain image
clusters information. With the observation that in cluster every pixel shares the same content, it
is natural to assign each cluster a parameter rather than each pixel. Therefore, in this paper we
attempt to use the simple and effective lagrange multiplier to select regularization parameter
for every cluster. In addition, to overcome the inherent drawback of lagrange multiplier we
also introduce the local entropy into our estimation. It should be mentioned that our regular-
ization parameter varies with cluster rather than local region.

This paper is organized as follows. In Section 2, we briefly review the Expected Patch Log
Likelihood based image denoising method. Our proposed method with adaptive regularization
parameters is presented in detail in Section 3. In Section 4, we demonstrate the experimental
results. Section 5 concludes this paper.

2 Expected patch log likelihood method

Image u with N pixels can be divided into N overlapped image patches. Let ui∈RL be the

vectorized version of an image patch of size
ffiffiffiffi
D

p � ffiffiffiffi
D

p
, obtained by ui = Piu, where Pi denotes

an operator for extracting image patch ui from image u at position i. Given that there exist K
mixture components and images patches are independent of each other, the density function of
the GMM on ui is written as:
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p uð Þ ¼ ∑
K

j¼1
π jN uijμ j;Σ j

� � ð1Þ

Where πj is the mixing coefficient, μj and Σj are the mean and covariance matrix
respectively, and N(ui| μj,Σj) is the Gaussian distribution defined as follows [9]:

N uijμ j;Σ j

� � ¼ 1

2πð ÞD=2 Σ j

�� ��1=2 exp −
1

2
ui−μ j

� �T
Σ−1

j ui−μ j

� �� �
ð2Þ

Then, a prior called the EPLL for image u can be written as:

EPLL uð Þ ¼ logp uð Þ ð3Þ

p uð Þ ¼ ∏
N

i¼1
∑
K

j¼1
π jN uijμ j;Σ j

� � ð4Þ

The EPLL based image denoising model is written as:

min
u

λ
2

u−u0
�� ���� ��2− ∑

N

i¼1
logp Piuð Þ

� 	
ð5Þ

where u0 is the original clean image, λ is the regularization parameter. Commonly, λ can be
calculated by λ =D/σ2 where σ2 denotes the noise level. However, the σ2 is unknown in fact.
Equation (5) can be solved by the Half Quadratic Splitting algorithm [31, 33].

3 Proposed method with adaptive parameters

Let {O1,…, OK} denote a partition of image using the GMM, and λ1, …, λK denote the
regularization parameters of the above-mentioned clusters. We assume that the regularization
parameters satisfy local constraints as follows:

1

O j
�� �� ∑i∈O j

ui−u0i
� �2 ¼ σ2;∀i ¼ 1; 2;…;K ð6Þ

K denotes the number of clusters and |Oj| is the number of image paches in j − th class. With
Eq. (6), the EPLL method can be written in a cluster-constraint way as follows:

max
u

∑
i
logp Piuð Þ s:t:∑i∈O j

ui−u0i
� �2 ¼ σ2 Oij j ð7Þ

Then Eq. (7) can be solved by the following unconstrained problem:

min
u

λ xð Þ
2

u−u0j jj j2−∑
i
logp Piuð Þ

� 	
ð8Þ

where λ xð Þ ¼ ∑
K

j¼1
λ jχOj, χOj is the membership function of Oj.
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λ j ¼ 1−exp −
E j

τ


 �
ð9Þ

where τ adjusts the decay of the exponential expression and Ej is a cluster-extended entropy,
that is the entropy of cluster, which is calculated by

E j ¼ − ∑
S j−1

m¼1
pj
mlogp

j
m ð10Þ

where pj
m ¼ Wm= O j

�� �� denotes the probability of the m-th gray level, Sj is the maximum gray

level in Oj, and Wm is the number of pixels with the i-th gray level in cluster Oj. In this paper
we proposed is an extension of GMM model, where the regularization parameters (λ1,…, λK)
takes different values for different image contents that is the clusters. By using the Half
Quadratic Splitting technique, the Eq. (10) can be equivalently transformed into the following
function as:

min
u; zif g

λ xð Þ
2

u−u0j jj j2 þ ∑
i

β
2

Piu−zij jj j2
� 

−logP zið Þ
� 	� 	

ð11Þ

For solving (11), at first, we choose the most likely Gaussian mixing weight jmax for each
patch Piu.

jmax ¼ max
j

p jjPiuð Þ ¼ max
j

p Piuj jð Þp Piuð Þ ¼ max
j

logp Piuj jð Þ þ logp Piuð Þf g ð12Þ

Then Eq. (11) is minimized by alternatively updating zi and u.
For a fixed un, updating zi is equivalent to solve the local MAP-estimation problem as

follows:

min
zi

β
2

Piu−zik k2−∑
i
logp zið Þ

� 	
ð13Þ

In fact the Wiener filter is:

znþ1
i ¼ Σ jmax þ

1

β
I


 �−1

⋅ PiunΣ jmax þ
1

β
μ jmax

I

 �

ð14Þ

Where I is the identity matrix. For a fixed zi , an Euler-Lagrange formula can be obtained as
follows:

λ xð Þ u−u0ð Þ þ ∑
i
βPT

i Piu−zið Þ ¼ 0 ð15Þ

Then we have:
∂u
∂t

¼ λ xð Þ u−u0ð Þ−∑
i
βPT

i Piu−zið Þ ¼ 0 ð16Þ

Equation (16) can be further solved by the gradient descent algorithm and updating u as
follows:

unþ1 ¼ un þΔt λ xð Þ u0−unð Þ−∑
i
βPT

i Piun−zni
� �� �

ð17Þ

where Δt is the time step.
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In summary, the algorithm of our proposed denoising method is implemented as follows:

Step1. Input corrupted image u0, parameters β, Δt and iterations stopping tolerance ε ;
Step2. Choose the most likely Gaussian mixing weights for each patch;
Step3. Initially, set the values of λj ≥ 0 to be small enough so that

Qoi u
λ

� � ¼ 1

jOij uλ−u0
�� ��2 > δ2;∀i ¼ 1;…K ð18Þ

Step4. For each λj, we alternatively update (14) and (17), until reach the asymptotic state uλ.
Step5. For each i ∈ {1,…, r}, recomputed λi =max(λi + ρ(Qoi(u

λ − δ2), 0)) (with ρ > 0 small
enough)

Step6. Iterate steps 4-5 until the satisfying stopping criterion.

4 Experimental results

In experiments, we compare our proposedmethod with current popular mixture model based image
denoising methods, including the original EPLL method [36], the Student’s-t Mixture Model based
image denoising methods (SMM-EPLL) [33] and the EPLL based image denoising method using
adaptive regularization parameters (EPLL-ARP) [31]. The GMMwith 200 mixture components is
learned from 2× 106images patches which are sampled from the Berkeley Segmentation Database
Benchmark (BSDS300) with their DC removed. Accordingly, in all experiments, the noisy images
is generated by adding Gaussian noise with zero mean and standard variance σ2 = 25 into the test
image with size of 481×321. That is the noise level of noisy image is 25. The parameters in our
numerical experiments are as follows: the weighted coefficients β = 1/σ2 ∗ [1 4 8 16], the size of
local entropy 3 × 3 and the image patch size D= 64.

Figure 1 shows the results of the four mixture model based image denoising methods. Figure 1a
is the original clean Warcraft image in BSDS300 with No. 37073. Fig. 1b is the noisy image
corrupted by Gaussian noise with noise level σ2 = 25. Figure 1c-d is the denoised images of
traditional EPLL method, SMM-EPLL method, EPLL-ARP method and our proposed method.
From the comparison of the denoised images, we can see that SMM-EPLL, EPLL-ARP and our
method can yield better results than original EPLL method. By carefully comparing the above-
mentionedmethod, we can see that the edges in images Fig. 1d and f aremore clear. Thismeans that
SMM-EPLL and the herein proposed method can achieve a better tradeoff between noise removal
and image detail preservation. The quantitative comparison of the four denoisingmethod in terms of
PSNR (Peak Signal to Noise Ratio) is displayed in Table 1.

Figure 2 compares the performance of the EPLL, the SMM-EPLL, the EPPL-ARP and our
method on the Booby image with No. 103070 in Berkeley Database (BSDS300). We can see
from the results that in the flat region SMM-EPLL and our method can generate visually
satisfying denoised image. From Table 1, we can also observe that the PSNR values of SMM-
EPLL and our method are higher that of EPLL and EPPL-ARP. Since the Student’s-t Mixture
Model (SMM) is more robust than the Gaussian mixture mode, SMM based image denoising
could obtain better result than EPLL. Moreover, SMM-EPLL also employ multi-scale
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technique to learn image prior, which can collect more priors on original image and further
improve the performance of EPLL method. However, as shown in Table 2, SMM-EPLL is

Fig. 1 Denoising results of the BWarcraft^ image. aOriginal Warcraft image. bNoisy image with zero mean and
variance σ2 = 25. c EPLL. d SMM-EPLL. e EPLL-ARP. f Our method

Table 1 The PSNR results of different denoising methods (dB)

Image Noisy image EPLL SMM-EPLL EPLL-ARP Our method

Warcraft 24.68 30.37 31.86 31.14 31.57
Booby 25.81 29.89 30.41 30.07 30.25
Human-face 26.87 31.48 32.21 31.64 31.94
Tiger 25.08 28.12 28.62 28.19 28.42
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time consuming. By comparison, the time consumptions of the EPLL-ARP method and our
method are comparatively low.

Figure 3 demonstrates the denoising results of the four EPLL method on the human-face
image with No.302008 in Berkeley Database (BSDS300). Figure 3a is the original image.
Figure 3b is the degraded image corrupted by Gaussian noise. Figure 3c–f displays the
denoised image yielded by EPLL, SMM-EPLL, EPLL-ARP and our method. Through
observing the results, our method can preserve fine texture details in image denoising. By
magnifying the man’s eyes region and locating it in the lower right corner of the result image,
we can see that small-scale textures of the men’s eyes can be preserved well.

Fig. 2 Denoising results of the BBooby^ image. a Original image. b Noisy image with zero mean and variance
σ2 = 25. c EPLL. d SMM-EPLL. e EPLL-ARP. f Our method
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Tables 1 and 2 respectively show the PSNR values and computation times of the four
denoising method on the test image. As displayed in Table 1, SMM-EPLL performs the best
in PSNR evaluation, for the reason that it jointly uses the SMM and multi-scale technique,
which can learn more image priors and is robust to noise. Compared to EPLL-ARP method,

Table 2 Computation times of image denoising methods (s)

Image Size EPLL SMM-EPLL EPLL-ARP Our method

Warcraft 481×321 87.47 100.2 92.32 92.48
Booby 481×321 88.40 108.6 93.48 93.52
Human-face 481×321 88.09 107.1 93.11 93.27
Tiger 481×321 87.93 101.7 91.29 93.09

Fig. 3 Denoising results of the BHuman-face^ image. a Original image in BSDS300. b Noisy image with zero
mean and variance σ2 = 25. c EPLL. d SMM-EPLL. e EPLL-ARP. f Our method
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our method obtain higher PSNR values. This is probably because that EPLL-ARP utilizes
image gradient to select regularization. It is well-known that image gradient is sensitive to

Fig. 4 Denoising results of the BTiger^ image. a Original image in BSDS300. b Noisy image with zero mean
and variance σ2 = 25. c EPLL. d SMM-EPLL. e EPLL-ARP. f Our method

Table 3 Performance of our method on test images with different noise level (dB)

Noise Level Warcraft Booby Human-face Tiger

15 34.01 33.57 35.34 32.31
25 31.57 30.25 31.94 28.42
50 27.92 27.84 27.53 16.50
100 24.27 24.16 20.79 21.85
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noise, therefore limiting the performance of EPLL-ARP. Although the PSNR value of
SMM-EPLL is slightly higher than that of our method, it’s time consumption is obviously
higher than ours.

Figure 4 demonstrates the denoising performance of EPLL, SMM-EPLL, EPLL-ARP and
our method on Tiger image with No. 160068 in BSDS300. Tiger image is rich in details.
Therefore it can be used to evaluate the performance of denoising method in texture-preser-
vation. From the results, we can see our method can achieve satisfying denoised image. Fine
details in Fig. 4f are preserved well. The Performance of our method on test images with
different noise level is shown in Table 3.

5 Conclusions

Image prior plays an important role in image restoration task. The GMM is a powerful tool for
learning image prior and has drawn much attention in image processing. In this paper, we
present a new regularization parameter estimation method using Lagrange multiplier tech-
nique, which employs local entropy to adaptively determine the regularization parameter. Each
component of GMM corresponds to one regularization parameter. In other words, the regu-
larization parameters are adaptive to the clusters. Each cluster is assigned to a regularization
parameter, which means that our method can adjust the smoothing extent according to the
image content in image denoising.

The herein proposed method is compared to three current popular mixture model based
image denoising methods such as the original EPLL [36], SMM-EPLL [33] and EPLL-ARP
[31], on different kinds of images including piecewise smooth image, human face image and
texture image. Experiment results show that our method performances well both in visual
effect and quantitative evaluation. SMM-EPLL method and our method yield good result for
piecewise smooth image. However, the time consumption of SMM-EPLL is the highest
because of its sophisticated multi-scale technique. On human face image and texture images,
our method can preserve small-scale texture comparatively well compared to the other EPLL
method using adaptive regularization parameters, that is the EPLL-ARP. The usage of gradient
information to estimate regularization parameter influences the robustness of EPLL-ARP
method. By contrast, our method is cost-effective.
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