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Abstract Image copy detection is an important problem for several applications such as
detecting forgery to enforce copyright protection and intellectual property. One of the
important problems following copy detection, however, is the assessment of the type of
modifications undergone by an original image to form its copies. In this work, we propose
a method for quantifying some of these modifications when multiple copies of the same
image are available. We also propose an algorithm to estimate temporal precedence between
images (i.e., the order of creation of the copies). Using the estimated relations, a tree graph
is then built to visualize the history of evolution of the original image into its copies. Our
work is important for ensuring better interpretation of image copies after their detection. It
also lays a new ground for enhancing image indexing, dissemination analysis and search on
the Web.
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1 Introduction

The growing popularity of Internet and social media has enabled ubiquitous and dis-
tributed sharing of digital photos among Internet users. This has been accompanied by new
possibilities to easily copy, alter and distribute digital content to a large number of recipients
thanks to the availability and accessibility of image processing software [24]. A huge chal-
lenge, therefore, arises for the ability of tracking and monitoring the evolution of original
photos in the Web, in order to enforce intellectual property and copyright protection [5], for
example. Tracking and visualizing copies can also be useful for analyzing and exploring the
dissemination and use of photos in Web communities (e.g. arts, journalism) [9, 20, 22, 56].
Although several methods have been proposed in the past for image copy detection [5, 24,
29] and image collection visualization [35, 50, 51], not much research have been conducted
for the purpose of tracing and/or visualizing the order of multiple image copies.

Early approaches for copy detection are based on watermarking which consists of
embedding signatures (or watermarks) for copyright protection [13]. Thus, detecting copies
amounts to identifying the watermark encoded in the image. However, these methods can be
vulnerable since watermarks can be removed or altered via postprocessing techniques [25,
40]. Recently, content-based copy detection (CBCD) has been proposed as an alternative to
watermarking for detecting (illegal) image copies [16, 29]. The goal of CBCD is to deter-
mine, using only the image content, whether near-replicas of a given image exist in the Web
or through an unauthorized third party [5, 45, 52]. To detect possible copies, CBCD systems
(e.g., TinEye and Piximilar [45]) extract image low-level features, followed by similarity
measurement between images.

Copy detection systems are generally good at finding similarities between images and
identifying identical content. However, they do not tell much about possible transforma-
tions operated on an image. Indeed, there is a large number of image manipulations, ranging
from simple geometric/photometric transforms or resizing to more complex transforms,
such as image editing, cropping, stitching and compression [41]. Moreover, even in the case
of simple geometric transformations, for example, algorithms can fail to recover the exact
transformation parameters when the image is significantly altered [44]. Recently, methods
have been proposed for detecting and localizing specific image forgeries such as image
splicing (IS) [10] and copy-move (CM) [12]. However, they are not able to recover the order
of multiple image copies which may contain different types of modifications. Although
having a unique algorithm to detect all types and order of transformations seems a very
complex pursuit, one can make the problem more tractable by making assumptions about
the generative process of copies. For example, grouping transformations into specific cate-
gories (e.g., photometric, geometric) [16] can facilitate investigation for searching potential
manipulations operated on each copy.

In this paper, we propose a method for constructing an evolution graph for a set of image
copies derived from the same original or a set of reference images determined a priori. Our
method infers the most likely transformations used to produce the remaining image copies.
For simplicity, we focus on mainly three types of image transformations in copy production:
geometric, photometric, and image editing. Geometric transformations refer to changes due
to affine transforms and image distortions [41]. Photometric transformations refer to image
color enhancement, filtering and color-to-gray transforms [21]. Finally, editing refers to
basic operations such as image cropping, copy-move, zooming, seam carving and text/object
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insertion [17]. The identification of relations between images is based on the following
steps:

• In the first step, we detect simple transformations such as image cropping, resizing,
rotation, small illumination changes and color-to-gray. These transformations enable to
build the first (strong) edges in our copy evolution graph.

• In the second step, we infer the remaining relations between images by detecting for
each copy its most likely lineage in the graph. This step is performed by first building
copy groups through agglomerative clustering and then using a combined local-global
similarity measure to analyze image changes.

• Finally, all group subgraphs are linked to the main graph and each formed edge is
annotated with its inferred transformation(s). Experiments conducted to validate to
proposed approach have shown its performance to produce interpretable and meaning-
ful graphs compared to manually constructed ones.

The remainder of this paper is organized as follows. Section 3 describes the proposed
approach for identifying image transformations and evolution graph visualization of copies.
Section 4 presents experimental results validating our approach. We end the paper with a
conclusion and future work perspectives.

2 Related work

Since our work deals with detecting manipulations in image copies as well as copy ordering,
it is important to give an overview of related work dealing with copy/forgery detection.
Watermarking [31] and content-based copy detection (CBCD) [29] are the main methods
used for searching image copies. For forgery detection, several methods have been proposed
for specific image forgeries such as copy-move [12], image splicing/composites [5], image
compression, and basic image processing operations such as illumination changes, rotation
and cropping [16].

2.1 Image copy detection methods

Detecting image copies is important for several applications such as usage tracking and
copyright protection. There are broadly two approaches for copy detection 1) watermark-
ing and 2) content-based copy detection [28, 29]. Watermarking consists of embedding
signatures (or watermarks) in images in the form of identification codes carrying infor-
mation about a copyright owner. Watermarks can be inserted in the spatial, frequency and
wavelet domains [13]. Therefore, detecting copies amounts to identifying the watermark
encoded in images. The main limitation of these methods is their vulnerability to watermark
removal or alteration using image processing techniques [25, 40]. Watermarking poses also
an additional constraint since it must be inserted in the original image before its publication,
sometimes at the time of its recording [16].
Content-based copy detection (CBCD) is a complementary approach to watermarking for
detecting illegal image copies [16, 29]. It is based on the same principles as content-based
image retrieval (CBIR) where systems extract signatures from an original image and each
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image in a large database, which are compared to retrieve near-replicas [45, 52]. Image
features capture visual properties of an image, either globally for the entire image (e.g.,
wavelets, discrete cosine transform (DCT), color, texture) or locally for a small group of
pixels (e.g., shapes, contours, salient points). Global features give the image layout and the
distribution of color/texture patterns. The overall image is thus represented by a vector of
color/texture components such as wavelet distributions [1] and color histograms [2, 32].
Global features also generally fast similarity computation [1]. However, they may fail to
identify important local visual characteristics, which can lead to a large number of false pos-
tives/negatives. Local features can be extracted at salient points [3, 58] or non-overlapping
blocks and stacked into vectors [24, 29, 54]. Thus, depending on the scale of the key content
or pattern, an appropriate representation should be chosen [14]. For example, [58] proposed
a variant of the scale-invariant feature transform (SIFT) for fast copy/object detection in
the presence of flipping transformations. DCT features have been used in [24, 29] to train
classifiers for detecting copies produced by geometric manipulations and compression.

2.2 Image forgery detection methods

Image forgery detection aims at assessing the authenticity of a digital image by detecting
and localizing potential manipulations. Following [16], forgery detection techniques can be
broadly grouped into two main categories: 1) statistical-based techniques: study anoma-
lies introduced at the pixel level via global transformations and lossy compression schemes,
2) physically-based techniques: detect anomalies by using models describing interaction
between physical objects, light, and the camera. Models can also use measurements of
objects in the world and their positions relative to the camera and account for artifacts
introduced by the camera lens.

One of the main studied problems in the literature of image forgery detection is copy-
move (CM) manipulation [59]. CM forgery consists of copying and pasting content within
the same image, and potentially postprocessing it [4, 19]. It is usually done in order to hide
certain details or to duplicate certain aspects of an image [5]. Proposed CM detection meth-
ods use either keypoint-based or or block-based matching techniques [12]. Keypoint-based
methods extract image features at salient points such as SIFT [3, 39], which are then com-
pared to the rest of the image to detect potential CM manipulations. Block-based methods
subdivide an image into rectangular regions on which features such as color/intensity dis-
tribution [33], invariant moments [34], wavelet transform [36] or DCT coefficients [48, 54]
are calculated. Most of these features require preprocessing steps (e.g., noise removal,
converting color to intensity levels) to be used in the matching step.

Like CM forgery, image splicing (IS) is another simple and commonly used image tam-
pering scheme in images [5, 16]. It consists of replacing image fragments using information
from other images. Since CM and IS forgeries are similar, their detection can be addressed
using the same tools. Authors in [37] developed an IS detection model based on the bi-
coherence magnitude and phase of the Fourier transform. In [10], camera response functions
(CRF) are analyzed for efficient detection and localization of CM and IS manipulations. In
[57], planar homography constraint is used to roughly localize tampered regions in images,
followed by graph-cut segmentation for extracting fake objects. Worth mentioning are also
methods proposed for automatic change detection between multi-temporal images of the
same scene [27, 42]. The majority of these methods have been proposed for specific domains
such as video surveillance [8, 38], remote sensing [23, 26] and medical diagnosis [6].
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Most of the presented methods deal specifically with copy and/or forgery detection prob-
lems in single images. However, they can not be used for identifying relationships between
multiple copies. Indeed, having an insight of the type and order of creation of copies can be
useful for several high-level applications such as tracking copies for copyright protection
[13], analyzing information dissemination and diffusion on the Web [20] and forecasting
cascades of photo usage in Web communities [11, 30]. Our method addresses this problem
by proposing an algorithm for estimating the lineage of multiple image copies and their
order of creation. It recovers also the most likely transformations used for their generation.
Finally, a visualization graph is constructed to give a visual insight about the evolution graph
of the original image into its copies.

3 The proposed approach

Suppose that we have a set of n images I = {I1, ..., In} representing different copies of an
original image I0. Our goal is to recover the order of creation of the copies in the form of a
tree graph depicting the history of copy creation from I0 to its descendent(s) and the lineage
of each copy. Since an image can undergo arbitrary transformations, some of which are
irreversible in their nature (e.g., image cropping, editing), it is hard to assess with certainty
all types of transformations between two images in I . However, an approximation of these
transformations is still possible through a reverse-engineering-like approach using similarity
measures between images. This will help understanding the generative process of related
image copies and unravelling the most likely used transformations.

To facilitate problem formulation, and without loss of generality, we suppose that we
have the following groups of transformations: C: image cropping, E: edition, G: color to
gray, L: illumination change, R: rotation, S: scale change. To express that a copy Ij of an
image Ii is generated using one of the transformations T ∈ {C, E, G, R, S, L}, we adopt the
following notation: Ij = T (Ii, φ), where φ is the set of parameters used in transformation
T . In case of an image rotation, for example, we have φ = {θ} where θ is the rotation angle.
Note that when there are multiple transformation candidates for explaining the creation of a
particular copy, we use the principle of least action by selecting the simplest transformation
among the candidates. For example, if we have two possible rotations to produce image IC

from images IA and IB , respectively, such that IC = R(IA, θ1) = R(IB, θ2) and θ1 < θ2,
then we will suppose that IC is produced by the rotation with the smallest angle, that is
IA → IC . Finally, since we can have several types of editions that can be carried out either
at a local or global level, we use a subscript to indicate each type of edition that can be
detected by our method:

• Global editions: refer to transformations affecting globally the visual aspect of the
image, either by photometric (e.g., compression, noise, blurring, etc.) or geometric
manipulations (e.g. image distortion, perspective transformation, etc.). Since it is dif-
ficult to discriminate between these types of editions, we denote them simply by the
symbol EG.

• Local editions: refer to transformations affecting locally the visual aspect of the image
(e.g., text insertion/removal, object insertion/removal, border insertion, face blurring,
etc). Our algorithm can detect three particular types of local editions, which are text, border
and object insertion/removal, denoted by the symbols ET , EB and EO , respectively.
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3.1 Estimating strong relations between images

Our method starts by recovering relations with the strongest evidence among the images,
and then completing the graph by inferring the rest of the relations. One of the strongest
relations that can be estimated with high confidence among images are: cropping (C), color
to gray (G), rotations (R), illumination change (L) and scale changes (S). Indeed, these
transformations do not produce major modifications in the image content which makes them
relatively easy to detect through correlation analysis. More formally, we measure the nor-
malized cross-correlation (NCC) [43] between all pairs of images. Given two gray-scale
images of equal size, IA and IB , the NCC is given by the formula:

NCC(IA, IB) =
∑

x,y IA(x, y)IB(x, y)
√∑

x,y IA(x, y)2
∑

x,y IB(x, y)2
, (1)

where the summations are made over all the image coordinates. Note that NCC(IA, IB) ∈
[0, 1], where NCC(IA, IB) = 1 if IA and IB are perfectly identical, and NCC(IA, IB) �
1, otherwise. Given two arbitrary images IA and IB in our set I , with sizes let HA ×WA and
HB × WB , respectively, the following relations can be asserted through NCC calculation:

• We consider IB as a cropping of IA, denoted by IB = C(IA, φ) with φ =
{x, y, HB,WB}, if there exist a sub-image I ′

A of size HB × WB centered at location
(x, y) ∈ IA where NCC(I ′

A, IB) = 1.
• We consider IA as a rotation of IB if there exist an angle θ where NCC(R(IA, θ), IB) =

1, where R(IA, θ) stands for a rotation of image IA with an angle θ . For simplicity, we
take the following angle values: θ = δπ

4 where δ ∈ {1, ..., 8}.
• A scale change occurs between image IA and IB if there exists a factor s ∈ R

+ with
NCC(S(IA, s), IB) � 1, where S(IA, s) is a scale change of image IA with factor
s > 0.

• We consider IB as a grayscale version of IA if NCC(G(IA), IB) = 1, where G(IA) is
a grayscale transformation of image IA obtained by averaging its RGB color channels.

• We consider IB as a result of illumination change of of IA, denoted by IB = L(IA, γ )

with γ is the parameter of the Gamma transform, if NCC(IA, IB) = 1 and there exist
a parameter γ such that the histograms of L(IA, γ ) and IB are identical. Note that the
negative of an image belongs also to this category of transformation.

To detect the above transformations, our algorithm tests each pair of images. We first test
the occurrence of cropping at each image location using 8 values of rotation angles θ and
5 scales s, making up 40 tests at each location. To ensure fast calculation of the NCC, we
use recursion as proposed in [46]. The NCC allows also to detect color-to-gray transform
if one of the compared gray-scale images is originally in color. Finally, small illumination
changes are detected by testing 5 values of γ . We then take one of the following decisions
between each pair of images (IA, IB):

• A strong relation T is found if NCC(T (IA), IB) ∈ [δ2, 1],
• A weak relation T is found if NCC(T (IA), IB) ∈ [δ1, δ2],
• No relation is found, otherwise,



Multimed Tools Appl (2019) 78:6253–6275 6259

where δ1, δ2 ∈ [0, 1] are two thresholds such that δ1 < δ2 (typically δ2 = 0.99 and δ1 =
0.90). Note that a strong relation implies automatically adding a strong edge to the evolution
graph, but not a weak relation. Fig. 1 shows an example of strong relation detection, where
image (b) results from a cropping of image (a) followed by a scale change. Images (c) and
(d) show, respectively, the NCC map and the cropping location corresponding to the highest
correlation value.

3.2 Image grouping for copy lineage detection

Once the strongest relations are detected in I , we perform an agglomerative clustering on
the images in I . In this phase, two scenarios can be considered. In the first one, no reference
images are available and a fully unsupervised grouping is then performed. In the second

Fig. 1 Cropping detection using NCC. a represents the original image IA, b represents a cropping of image
IA. c represents the value of NCC at different locations in IA and d represents a highlight of the location of
the cropping in image IA
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one, some reference images can be provided by an expert or found in official sites (e.g.,
museums, archives, art galleries). Each reference image is then used as centroid on which a
cluster is built to constitute lineages in the final graph having reference image as a root.

To group images into lineage clusters, we use image similarity based on a combination
of strong relations detection and histogram comparison. Given two images IA and IB , we
use the Bhattacharyya distance to measure the similarity between their histograms. Let H

j
A

and H
j
B be the histograms of images IA and IBat color channel j ∈ {R,G,B}, and Nbins is

the number of bins in the histograms. The histogram similarity between images IA and IB

is given by:

SH (IA, IB) =
∑

j∈{R,G,B}

B(H
j
A, H

j
B)

3
(2)

where B(H
j
A,H

j
B) = ∑Nbins

i=1

√

H
j
A(i) · H

j
B(i). The clustering is performed according to the

following similarity measurement and the single link method to calculate distance between
intermediary groups for cluster fusion [15]. Finally, distance between two images is taken
as follows:

d(IA, IB)

{
0 if ∃ strong relation : IA → IB

1 − SH (IA, IB) otherwise
(3)

where IA → IB means that a strong precedence relation has been already established
between IA and IB as described in the previous section. The first condition in (3) is intended
to prevent clustering errors related to effects of transformations such image cropping, where
the histogram of the cropped image can be significantly different from the original image.

(a) (b)

Fig. 2 Illustration of image grouping by histogram comparison: a copy image set, b obtained copy groups
constituting lineage clusters
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(a) (b) (c) (d) (e)

Fig. 3 Detection of image editions by comparing local image structure: a original image, b edited image,
c change map generated using (4), d binary segmentation of c and e Red/blue rectangles indicate the
presence/absence of text using the method proposed [49] on each detected blob

Fig. 2 shows an example of clustering for images in our third data set using the pro-
posed method. Clearly, images showing similarities of their content have been grouped into
homogenous clusters that will constitute different lineages in the final graph.

3.3 Detecting image editions

Image editing refers to modifying a digital image by removing unwanted elements (e.g.,
scratches, face blurring, etc.), or inserting/removing elements such as objects and text.
Local-level editing affects the image locally (e.g., text/object insertion/removal, scrach/red
eye removal, border insertion, etc.). Global-level editing refers to transformations affect-
ing all the pixels of the image (e.g., image distortion, compression, etc.). To discriminate
between the different types of editions, we use appropriate features extracted from the
image, followed by supervised classification.

Let IA, IB ∈ I , where IB is the result of editing IA. To compare the two images IA and
IB at a local level, we first align them using [44]. Then, a change map B is calculated for IA

by comparing its local structure with IB using a local image similarity metric inspired from
[47]:

B(x) = 1 − max
x′∈N(x)

(
[2μA(x)μB(x′) + c1][2σAB(x, x′) + c2]
[μ2

A(x)μ2
B(x′) + c1][σ 2

A(x)σ 2
B(x′) + c2]

)

(4)

where N(x) stands for the neighbourhood of location x = (x, y). The parameters
(μA(x), σA(x)) and (μB(x′), σB(x′)) represent local mean and standard deviation at loca-
tions x and x′ in images IA and IB , respectively. The constants c1 and c2 are used to stabilize
the division with a weak denominator. Finally, the maximum operator around a location
neighborhood is introduced to make the measure more robust to misalignments and slight
image shifts.
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Fig. 4 Example of graph similarity measurement based on one-level and multi-level parent search: a repre-
sents the ground-truth, b and c represent two examples of constructed graphs. Red (continuous) and green
(dashed) arrows are examples of one-level and multi-level search, respectively

We generate a map using (4) as illustrated in Fig. 3c, which is segmented to a binary
image using [7] (see Fig. 3d). In the case that no blob is found, we consider that the image
is edition-free. Otherwise, we extract the most important blobs from the binary map and
analyze four of their geometric properties: Compactness, relative size, dispersion and pre-
cence/absence of text. Compactness measures the solidity of each detected blob. Local
editions such text and object insertion/removal generally produce blobs with higher com-
pactness than global manipulations such as distortions and compression. Relative size and
dispersion indicate if detected blobs are local or scattered around the whole image. Based
on the these features, we train an SVM classifier to detect wether a generated map stems
from local or global edition. When local edition is detected, a second round of classifica-
tion starts by analyzing first the occurrence of text in each blob using the method in [49].
If not text is detected, another SVM classifier is trained on the geometrical features of
each blob to classify it as either an object EO or border EB insertion/removal. To train our
classifiers, we use object examples from the Caltech dataset [18]. For examples of blobs
occurring in global editions and border insertions, we collected images from the Web and
added manually-generated ones1.

Figure 3 shows two examples of image editions. The first row shows local text insertions
detected on some blobs of the change map using [49]. We can see in column (e) the regions
detected as text insertions (red rectangles) and others detected falsely as non-text editions
(blue rectangles). In the second row, we show an example of image distortion that generated
non-compact and scattered blobs which have been classified as a global edition by our
method.

1http://w3.uqo.ca/allimo01/doc/editions.rar

http://w3.uqo.ca/allimo01/doc/editions.rar
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3.4 Copy ordering and evolution graph construction

In this step, we build an evolution graph G = (E,V) for our image set I with vertices V
representing images in I and oriented edges E representing transformations performed on
images to create copies (graph descendants). Given the resulting clustering groups, a sub-
graph is constructed within each group by incrementally ordering the group images based on
their similarity. Algorithm 1 shows the script for building the sub-graph within each group
of image copies. The algorithm is designed for the case of one available reference image I0,
but it can be run iteratively in case of multiple image references (see Fig. 4 for illustration).

The algorithm is composed of two main steps. In the first step (see lines 6 to 13), strong
relations are detected in each group Gv , v = 1, ..., K , which are used to establish the
first oriented edges in the graph. In the second step (see lines 14 to 28), starting from the
group root rv , vertices and edges are added incrementally to the graph by inferring the
most likely transformations operated on the leaf images already added to the graph. To
establish the next edge, a similarly measurement is used which combines local and global
information of images. Global information consist in measuring distance between image
histograms SH (IA, IB) as formulated using (2). Local information is measured by averaging
the value of (4) in all image locations SL(IA, IB) = 1

|IA|
∑

x∈IA
B(x), where |IA| represents

the number of pixels in IA. Finally, the combined image similarity measure is calculated
using the following formula:

S(IA, IB) = αSH (IA, IB) + (1 − α)SL(IA, IB), (5)

where the parameter α balances the contribution of local and global information (α = 0.5
is used as a default value). It is clear that S(IA, IB) ∈ [0, 1], where 1 designate a perfect
match between the two images IA and IB . The process of graph completion constitutes the
second part of the algorithm (see lines 14 to 28). Let Gc be the set of images in group Gv

that are added to the graph, and its complement Ḡc defined by Ḡc = Gv \ Gc. For each
iteration, we use (5) to select the next link to add to the graph between images Ii1 ∈ Gc and
Ii2 ∈ Ḡc such that:

[Ii2 , Ii2 ] = arg max
Ij ∈Gc,Ik∈Ḡc

S(Ij , Ik). (6)

Then, an edge Ii1 → Ii2 is added to the subgraph of Gc and we remove Ii2 and all its descen-
dants from Ḡc. The edge is annotated by first testing if an edition has occurred between Ii1

and Ii2 using (4), and use our trained SVM classifier to identify the type of edition. We also
test the occurrence of weak relations {L, S,G,R,C} when NCC ∈ [δ1, δ2] as discussed in
Section 3.1. Note that since line 10 of the algorithm builds strong edges between images,
adding a parent image to the set Gc will incur adding all its descendants to Gc (see lines 22
to 25). This process ends for the group when Ḡc = ∅ and Gc is completely ordered, and
we carry out the same procedure for all formed groups. Finally, all resulted subgraphs are
annotated and added to the main graph V .
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Algorithm 1 Algorithm for constructing copy evolution graph

Data: copy clusters

Result: Copy evolution graph

1: 0 ; ;

2: for 1 do

3: Let be the root of group ;

4: 0 ;

5: ; ;

6: if 1 then

7: for 1 do

8: for 1 do

9: if with parameter such that then

10: ; // Strong relation

11: end if

12: end for

13: end for

14: while do

15: Set matrix of size ;

16: for 1 do

17: for 1 do

18: M using (5), where and ;

19: end for

20: end for

21: [ 1 2] argmax M ; // Graph completion

22:
1 2

;

23: descendants of
2
;

24: Test for editions and weak relations between
1
and

2
;

25: ;

26: ;

27: end while

28: end if

29: ;

30: end for

31: Annotate all the edges of the graph;

4 Experiments

To validate the proposed approach, experiments have been conducted on four datasets. The
first two datasets contain 32 image copies each, which are generated manually by carrying
out a series of transformations to the original Mona Lisa painting image. Figure 5a and b
show the images of the datasets. The third dataset contains 31 copies of a van Gogh painting
depicting a landscape scene, which are generated in the same way as the first two datasets.
The fourth dataset has been collected from the Web (see Fig. 10) and contains 53 copies
of a photograph by famous French artist Nadar. The public archive that owns the negative
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(a)

(b)

Fig. 5 Copies of Mona Lisa image constituting our two first datasets a and b

Table 1 Values of our evaluation metric on each reconstructed graph from the four datasets

Number of levels Dataset I Dataset II Dataset III Dataset IV Dataset IV

without references with references

One-level 88% 91% 93% 73% 82%

Multi-level 92% 95% 93% 79% 89%

The first and second rows show values obtained using one-level and multi-level parent search in the graph,
respectively
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Fig. 6 Constructed copy graph of the second dataset in Fig. 5a

Fig. 7 Constructed copy graph of the second dataset in Fig. 5b
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Fig. 8 Copies of a Van Gogh painting constituting the third dataset

has published online several scans of the image. Other institutions that own paper prints
(museums, archives, libraries and auction houses) also published digital copies online, and
other copies were found on blogs, media Web sites and on Wikipedia using Google search.
While the first three datasets have all information about transformations used for copies
generation, the fourth dataset has gaps: some roots and descendants may be missing, which
is normal case when copies are largely collected from the Web.

To evaluate the accuracy of constructed graphs, we compared them to the ground truth
(i.e., a reference graph) when available (datasets I and II) or to a graph created by an expert
(dataset III) based on qualitative analysis of the visual content of the images and the context
of their publication on the Web (e.g., authority of the Web sites, mention of source, presence
of hyperlink, etc.) To measure similarity between graphs, we must take into account the
following specificities. Since we are only interested in the temporal order of the copies,
horizontal order of vertices within the same level is not important. However, the order of
vertices in each vertical path from the root is important since it shows the lineage of each
generated copy from its ancestors. Therefore, we cannot use directly existing methods for
comparing tree graphs since most of them are dedicated to binary ordered trees [53, 55].
Instead, we propose a new measure as follows:

Given an image Ii 	= I0 ∈ I , let P(Ii) and P̂ (Ii) (resp. A(Ii) and Â(Ii)) be its par-
ent vertices (resp. set of ancestor vertices) in the reference and the reconstructed graphs,
respectively. In a one-level search, we consider that the parent of Ii is correctly identi-
fied if P̂ (Ii) = P(Ii) for which we assign a score si = 1, and si = 0 otherwise. In a
multi-level search, a parent of Ii is correctly identified P̂ (Ii) = P(Ii), for which we assign
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Fig. 9 Constructed copy graph of the fourth dataset of Fig. 8 without using reference images

a score si = 1, and partially identified if P(Ii) ∈ Â(Ii) − {I0}, for which we assign a score
si = 1/2. Finally, the total score s of I is given by the following formula:

s =
n∑

Ii∈I
si/n (7)
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Fig. 10 Copies of Nadar photography constituting the third dataset

A perfect match will obviously have a 100% score. To better understand our approach,
Fig. 4 shows an illustrative example for two candidate graph reconstructions, (b) and (c), to
the reference graph (a) containing 9 edges. Clearly the structure of the reference graph (a) is
more similar to (c) than (b). However, the number of identified parents in (c) is lesser than
(b). Indeed, using a one-level search, the score of graph (b) is 5/9 � 0.44, as the number of
identified parents is 5 (I0 → I1, I0 → I6, I1 → I2, I4 → I9, and I5 → I7) and the score of
graph (c) is 1/9 � 0.11, as the number of identified parents is 1 (I0 → I1). Using a multi-
level search, the number of partially identified parents is one for both graphs, making their
total scores 5.5/9 � 0.61 and 1.5/9 � 0.16, respectively.

Table 1 shows values of our evaluation metric on each constructed graph from the four
datasets. We can see that our algorithm has succeeded in identifying most of the transfor-
mations used to create the copies. The algorithm has achieved its best performance in the
first three datasets which have been generated manually. The obtained graphs are shown in
Figs. 6, 7, 8 and 9, respectively. For the fourth dataset, we run our algorithm on two ver-
sions of the dataset. In the first version, we do not provide any reference image (root) to the
algorithm and graph reconstruction is preformed in a fully unsupervised fashion. In the sec-
ond version, reference images identified by an expert were provided to the algorithm (see
Fig. 12). For the first version, we can see that even when references were not provided, the
algorithm has succeeded to identify the majority of image transformations. By including the
reference images in a second version, the accuracy of the algorithm has been increased by
almost 10% (see Fig. 10).

The above examples demonstrate the capability of our method for recovering the order of
image copies and estimate the most likely transformations used for their generation. How-
ever, limitations exist for the algorithm for identifying image modifications where severe
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Fig. 11 Constructed copy graph of the third dataset of Fig. 10 without using reference images

global/local changes are operated on the image. This can be seen in some images of our
datasets where transformations such as editions and illumination changes have drastically
changed the image content. For instance, in images 28 and 31 of Fig. 7, the illumination have
been so altered that an edition has been detected by our algorithm. In the same vein, image
47 of Fig. 11 has been so altered that an edition has been detected, but the reconstructed
lineages are not accurate (see Fig. 12).
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Fig. 12 Constructed copy graph of the third dataset of Fig. 10 using reference images

5 Conclusions

We have proposed a method for building evolution graphs for image copies. The method
relies only on visual content of images where several features are used to infer types of
transformations operated on images to produce the copies. Experiments results have shown
that graph constructed by our algorithm are very close to manually-obtained ones. Future
work will focus on enhancing the algorithm by enriching the set of possible transformations
and exploring the use of metadata (e.g., URL location, file header, etc.) to improve the
precision of the obtained graphs.
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Future perspectives for extending this research include setting up a protocol to identify
potential roots in a non supervised context. This protocol would take into account the fol-
lowing parameters: analysis of web pages URL and matching with categories of authority
(museum, archive, library, auction house, government database), text analysis on the web
page that could show citation of a source website (or hyperlink), presence of a watermark
that signals a reference to a source or copyright owner. The development of new copy-
right protection and copy tracking services relying on the blockchain technologies will also
provide new ways for identifying original images and roots through their inscription in a
distributed directory.
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