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Abstract Activity recognition has a vital role in smart home operations. One of the major
challenges in object-sensor-based activity recognition is to learn the complete activity model
derived from a generic activity model for sequential and parallel activities. Such challenge
exists due to erratic degrees of dissimilar activities in which inhabitants perform activities in
sequential and interleaved fashion while interacting with different objects. The proposed work
focuses on recognizing a complete set of actions (of activity) by exploiting different knowl-
edge engineering techniques, ontology-based temporal formalisms and data driven techniques.
Semantic Segmentation has been employed to establish the generic activity model. The
spurious semantic segmentation produced by sensor noise or erratic behaviour is removed
by Allen’s temporal formalism. Moreover, Tversky’s feature-based similarity has been used to
remove the highly similar spurious activities produced as a result of mistaken interactions with
wrong home objects. The duration to perform activities varies among inhabitants; such
duration intervals are identified dynamically using the proposed model in order to have a
complete activity model. A comprehensive set of experiments has been carried out for
evaluating the proposed model where the results based upon different metrics assert its
effectiveness especially when compared with other contemporary techniques.
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1 Introduction

The internet of Things (IoT) has been a success since its inception [18]; the intention is
to make human life comfortable in different ways such as smart homes [7, 18] and smart
cities [5]. BActivity Recognition^ is an important aspect to build such facilities especially
in smart homes. It transforms a home into a smart home for the inhabitants (focus of our
work). Activity Recognition (AR) process, as illustrated in Fig. 1, can be comprehended
from three perspectives (i) Activity Monitoring (ii) Activity Modeling and (iii) Activity
Complexity. Each of the perspectives is elaborated as given in the following.

Activity monitoring describes the process of capturing actions performed in pervasive
environments. Some of the prevalent AR techniques are: Vision-based AR: An image-
based approach that involves monitoring of inhabitant’s actions, activities and their
complete behaviour using surveillance cameras. Based on the major features of a
vision-based approach, it identifies the events by discovering areas of interest, observing
motion patterns and features like walking, hand waving or running [15, 17, 37]. On the
other hand, these techniques compromise the inhabitant’s privacy, use higher bandwidth
and add a cost of computational resources [41]. Sensor-based AR: In order to identify the
events taking place among inhabitants, sensor streams are received from sensors [8]. The
sensor-based AR techniques have two sub-categories: Wearable-sensor-based AR: Wear-
able sensors are attached to the parts of inhabitant’s body for capturing kinesis. Activities
are identified by data mining or machine learning techniques using the data captured
through sensors. The major challenge of these techniques is the identification of complex
and similar tasks [40]; for example, Bmaking coffee^ and Bmaking tea^. The usage of
wearable sensors is limited due to constraints of sensor size, battery life, and reluctance
of inhabitants in wearing sensors [8]. Object-sensors-based AR: Sensors generate diverse
signals as a result of interaction with home objects such as Bcups^, Bjars^, Bcutlery^ etc.
[4, 8], and this collection of sensor values (or signals) is used for the recognition of
activities [8]. Object-based activity recognition can be a potential success due to its
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Fig. 1 Activity recognition perspectives
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affordability, low power consumption, real-time response and perfect measurement [7].
In this work, the aspect of object-sensor-based AR is employed due to its viability and
effectiveness in smart homes [40].

A second perspective of activity recognition is the modelling of sensor data streams
that can be carried out by three techniques: Data-driven Techniques are based upon
machine learning and data mining approaches [4], which are widely used in AR
processes; these techniques are signified by their ability to handle noise, uncertainty,
and incompleteness in sensor data streams [12]. On the other hand, they pose different
challenges such as: cold start or data scarcity [8], non-reusable/non-scalable, complex
model, and high computational costs [13]. Knowledge-driven Techniques: exploit prior
knowledge that is expressive and rich in meaningful patterns [7]. There is a variety of
knowledge-driven techniques such as: rule-based, mining-based and ontology-based [8]
techniques where AR mostly focuses on ontology-based approaches. Ontology-based
techniques [6] are easy to start, semantically consistent and logically elegant [42, 43];
however, these techniques have shortcomings in managing dubious actions, temporal
information and incomplete models [13]. Hybrid Techniques: are the combination of
data-driven approaches and knowledge-driven techniques for activity modelling in a
real-time environment [23, 24].

The perspective of activity recognition complexity describes the intricacy of action se-
quences performed by inhabitants in a smart home. It is triggered by the sequential activity of a
Bsingle user^ and lasts with concurrent activities of Bmultiple users^.

This paper focuses on exploiting both data-driven approaches and knowledge-driven
techniques for concurrent activity recognition in a personalized fashion. The dimension spaces
of proposed research have been encircled in Fig. 1.

In existing research, object-sensor-based AR has been used where three major chal-
lenges were identified in recognizing parallel activities: (i) home-objects may be used in
multiple activities in a smart home. It is very difficult to recognize the context of object-
sensor for which activity is performed especially for parallel activities [16]; e.g., Bwater^
is a common object used in multiple activities such as Bmaking pasta^, Bmaking tea^ and
Bmaking juice^, as shown in Fig. 2. Therefore, activities for which Bwater^ is used need
to be identified rightly. (ii) Unintentional (or mistaken) interaction with objects that are
not part of ongoing activities are referred to as sensor noise or noisy actions [36]; it is
also a major challenge to distinguish such noise in parallel activity recognition. Noisy
actions may result in spurious activity; e.g., touching the Bcoffee jar^ mistakenly in
process of Bmaking tea^. (iii) Extracting the start and end time (dynamic interval) of
parallel activities is another challenge that has been addressed in this paper.

In order to address the challenges, an BOntology-based Semantic Concurrent Activity
Recognition^ (OSCAR) framework is proposed based on knowledge-driven approaches
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exploiting different aspects of data-driven approaches as shown in Fig. 3 (at abstract
level of granularity). The proposed framework is a hybrid of knowledge-driven tech-
niques (ontological constructs), temporal formalisms [1, 2] and data driven techniques
for recognition of the complete action sequence of parallel and interleaved activities.
OSCAR uses the same perceptible activity model for all inhabitants. Perceptible activity,
as a model, establishes a platform for recognizing a complete activity model where
activities run in parallel for inhabitants in a personalized way. The perceptible model of
activities, modelled in an ontology, provides a context to recognize complete activity
models of concurrent activities. The context provided by the ontology model is used in
different components of OSCAR (further elaborated in section 3 and Fig. 6). The
BIdentification of Generic Activity Model^ and BIdentification of Inhabitant-specific
Actions^ components exploit the context of Bduration^, Blocation^ and Bused-in^ onto-
logical properties to cluster the action stream. BElimination of spurious generic activity
model component^ removes the spurious segments through temporal and spatial con-
texts. In the proposed model, the temporal context is developed by using a 4-D
extended fluent approach [34, 48]. BAssigning Inhabitant-specific Action to Generic
Activity Model^ identifies the start and end time (dynamic duration) of ongoing
activities by exploiting the Bduration^ property to determine the complete activity
model. The context of the Bused-in^ property is used to calculate the similarity score
used between the perceptible activity model and inhabitant-specific actions for identi-
fying spurious activities. Lastly, the hierarchical nature of ontology [19, 25] ensures the
benefit of interoperability and reusability without preparing the system over a huge
dataset.

The proposed framework has a generic ontological model for each activity called
Perceptible Activity Model (PAM). Each PAM contains a set of essential actions. No
activity can be performed without these essential actions. The AR process takes the PAM
and a stream of user-performed actions as input, attains the ontological context of PAM
and produces the personalized/complete activity model for inhabitants. Complete Activ-
ity Model (CAM) of an activity is comprised of the PAM’s action plus inhabitant-specific
actions. The PAM remains the same for all individuals and does not need not to be learnt
each time, while the CAM may vary from time to time for an inhabitant. For example,
the PAM for the Bmaking pasta^ activity, as shown in Fig. 4, has a set of essential
actions: Badding pasta^, Badding water^, and Busing stove^. Whereas the CAM (as
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shown in Fig. 5) for the same activity has a set of individual-specific actions such as
Badding sauce^, Badding chicken^ and Busing spoon^ along with actions of the percep-
tible model.

Keeping this in view, our research contributions, as elaborated in the following
sections, are: (i) carrying out activity recognition through learning from personalized
actions of an inhabitant by using the context of the ontological perceptible activity model
(PAM). (ii) Distinguishing an intentional object interaction from a mistaken contact by
examining the sensor stream. For example, inhabitants wrongly touching the Bsugar jar^
while Bmaking pasta^ whereas Bsugar jar^ is used in Bmaking tea^. Such mal-interactions
have been identified as sensor noise. (iii) Comprehending a random or variable sequence
of actions performed by inhabitants. For example, the activity of Bmaking tea^ should be
correctly recognised for all the inhabitants if some inhabitant adds Bsugar^ in the middle
of the Bmaking tea^ activity while another inhabitant adds Bsugar^ at the end of the
Bmaking tea^ activity. (iv) Learning the time interval dynamically for complete activity
model. (v) Learning the context of home-object usage. The same type of objects may be
used for different purposes. For example, a Bcup^ is used as a drinking container in tea,
coffee or juice in the kitchen or it may be used in the wash room as a Bshaving-cup^. The
proposed system has the capacity to figure out the context by specifying interdependency
among actions through temporal and spatial relations.

The rest of the paper is organized as follows. Section 2 provides the review of efforts
made for improving AR systems; Section 3 elaborates the proposed architecture; Section 4
describes the dataset and evaluation methodology, while Section 5 discusses the results and
discussions. Section 6 elaborates the conclusions and future directions of work.
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2 Literature survey

Chen and colleagues [9] approached the issue of AR using a hybrid system to identify
the activities where the ontological model updates its descriptive properties based upon
learning the activity log file. The paper does not cater for the complete activity model of
the inhabitant or the number of actions used to perform the activity. Successive
activities can be recognized using the context knowledge of the ontology. Parallel
activities and the process of handling the sensor noise have not been addressed in this
paper; besides, a static window size has been used to segment the sensor stream instead
of a dynamic one.

The work of Azkune and colleagues [3] is similar to the work proposed in this paper
since it uses data-driven techniques. It uses the contextual knowledge to recognize the
personalized activity model and a specialized model of an existing activity. However, this
work recognizes only the sequential activities lacking the ability to recognize the parallel
activities. The temporal information has not been catered which is an integral part of
activity recognition rather Bduration^, Blocation^ and Bactivity-type^ properties have
been used to recognize the activities. A dynamic window size to segment the sensor
stream is employed.

Okeyo and colleagues [38] combine ontological and temporal knowledge formalisms to
provide a representation for composite activity modelling. This paper also describes the
entailment rules so as to dynamically infer the composite activities. Simple activities modelled
in this paper are static in nature. Our work is distinguished from this work in two aspects.
Firstly, it generates a complete activity model over the foundation of a generic model.
Secondly, it recognizes the activity intervals dynamically.

A knowledge-based approach for a concurrent AR has been presented by Ye and
colleagues [49]. This approach explores the context of sensor activation and uses context
dissimilarity to cluster a continuous sensor sequence into chunks. Each cluster corre-
sponds to one Bunder process^ activity. It exploits the Pyramid Match Kernel (PMK)
approach, augmented with a WordNet matching on hierarchical concepts in order to
recognize activities using the domain ontology from a potentially noisy sensor sequence.
Author uses the dynamic window size to segment the sensor stream.

Meditskos and colleagues [35] propose a technique for identifying parallel activities of
inhabitants using ontologies to encode the context knowledge, dependencies among the
activities and de-feasible reasoning for conflict resolution. The recommended architecture
has been incorporated in a subsisting context-cognizant ADL apperception framework, used
to fortify the diagnosis of the dementia patients in a controlled environment.

In Helaoui and colleagues’ work [21], the difficulty of discovering parallel activities is
addressed by coalescing the statistical-temporal models obtained from training data and
background erudition as first-order temporal rules. While encoding strict temporal rules
often fails to integrate the level of flexibility required in an ambient environment, the
combination of data-driven and knowledge-driven solutions seems unfeasible. Also, the
combination of data and knowledge-driven solutions appears to be promising, but the
definitions of strict temporal rules often fail to incorporate the level of flexibility required
in pervasive environments.

Gayathri and colleagues [14] focus on probabilistic approaches as well as on ontology-based
models independently. Data obtained from sensors is uncertain in nature andmapping uncertainty
over ontology will not yield good accuracy in the context of AR. The proposed system augments
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ontology-based activity recognition with probabilistic reasoning through a Markov Logic Net-
work (MLN) which is a statistical relational learning approach. The proposed framework uses the
model theoretic semantic property of description logic, to change over the ontology action display
in its relating first request rules. MLN is built by learning weighted first request decides that
empower probabilistic thinking inside an information portrayal structure.

Riboni and colleagues’ framework [44] proposes a representation of sensors, devices, activities
and atomic actions. Their approach demonstrates a method for combining DL with probabilistic
thinking. In any case, the likelihood esteems used are not established in the semantics and were
given names manually. Also, the approach models concentration without considering portions of
relations. Moreover, the proposed approach is static in nature with DL rules. The model orders the
actions in the event that it may not characterize the DL. This work recognizes the activities
occurrence but lacks the capacity to recognize the personalized behaviour of the inhabitants.

Liu and colleagues [30] propose a graphical model by combining the Chinese Restaurant
Process model with Allen’s temporal relations. The proposed model is assessed by utilizing
two datasets, i.e., genuine video information and a brilliant home dataset (with normal
exactness of 90%). An enhanced expectation in view of the Bayesian system was proposed
for action acknowledgment. The exactness related to transient could not manage last move-
ment display. These strategies were restricted to the particular order that they were intended
for.

Cui and colleagues [11] propose a technique to incorporate the model learning approach
(GPDM-APF) with standard APF into one structure. The two parallel trackers could run
independently and melded by an arrangement of criteria; this affected the framework to pick
the tracker which performed better as it yielded. By combining the two trackers, this frame-
work could outperform others using a single approach. In any case, it could cost plenty of time
to keep the two trackers running in parallel.

Liu and colleagues [33] highlighted a huge challenge for sensor-based activity recognition
processes. The action highlights were extricated from the increasing speed information gathered
by cell phones. An unsupervised characterization technique called MCODE was used for activity
recognition. However, this method had a few confinements with respect to transient perspectives in
addition to parallel and interleaved circumstances where exercises depended on each other.

The model proposed by Liu and colleagues [29] mines temporal sequences as highlights to
encode temporal relatedness among activities. It utilizes a versatile multi-errand learning
strategy to catch the relationship among activities and to select the discriminant features.
Nevertheless, these supervised methods for model construction needed to annotate the training
data set.

Liu and colleagues [27] used the idea of lossless recovery image and used them in vision-
based child-adult interaction behaviour with missing images due to infrastructural error. We
applied this idea in our framework to guess the missing sensor noise with slight modification
as highlighted in [26, 27].

A probabilistic system [28] for human movement is proposed by intertwining the low-
level and high-level state approaches for conquering their constraints. The two method-
ologies continue in parallel and each time the framework combines their commitments by
a probabilistic strategy which could supplement the benefits of both. Keeping in view the
end goal to choose the trackers in light of the movement types, the calculation for
trackers inspecting depends on low and high-dimensional trackers. The two techniques
have been utilized individually for low-dimensional and high-dimensional trackers; they
incorporated adaptively by sampling the trackers based upon the motion type.

Multimed Tools Appl (2019) 78:2073–2104 2079



For achieving better performance, a multi-view learning system has been proposed [31] to
influence the information and to combine the varied properties from different views to characterize
objects and feature extractors. As there are various spatial and temporal data models around water
quality stations, combining two different views with a station may achieve better performance.

Liu and colleagues [32] used a transparent fusion of data from multiple social networks to
predict the futuristic career path. In activity recognition system the same situation regarding
activities prediction may occur when there are missing sensors in the action stream.

Table 1 shows a comparison summary of promising knowledge-driven and hybrid AR
techniques for parallel and interleaved activities.

3 Architecture of OSCAR

In order to provide a detailed insight into architectural components (as illustrated in Fig. 6), some
important definitions have been devised for providing the rationale to discussion and further details.

Definition 1: Sensor Activation: Sensor activation is triggered when a sensor changes its state
from non-responsive to responsive. For example, when an inhabitant takes a Bcup^, the
generated signal in the data stream is labelled as BcupSens^. The sensor stimulation consists
of few properties such as timestamp (tS°), sensor id (Sen-id) and location (L°).
SS° = {timestamp + sensor-id + location}
SS° = {tS° + Sen-id + L°}
Definition 2: Action Property: Sensor activation is directly linked with action properties
that make our AR model generic. For example, BcupSens^ and BmugSens^ are associated
with action property BhasDrinkingContainer .̂ This action property is a part of the
Bmaking tea^ activity. So BcupSens^ and BmugSens^ can be used alternatively during
the activity of Bmaking tea^.
hasDrinkingContainer = {cupSens, mugSens}

Table 1 Summarizing previous sensor-based activity recognition

Author Modelling Techniques Window
size

Sequential
Activities
Recognition

Parallel
Activities
Recognition

Personalize/
complete
Activities
Recognition

Chen et al. [9] Knowledge Driven(ontology
based)

Fixed Yes No No

Okeyo et al.
[38]

Knowledge Engineering+
temporal

Fixed Yes Yes No

Ye et al. [49] Data Driven(Pyramid
Kernel) + ontology

Dynamic Yes Yes No

Azkune et al.
[3]

Hybrid(Data Driven+
knowledge Driven

Dynamic Yes No Yes

Riboni et al.
[44]

Probabilistic model+ ontology
based

Dynamic Yes Yes No

Our approach Hybrid(Knowledge Driven+
Data Driven+ temporal)

Dynamic Yes Yes Yes
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Definition 3: Perceptible Activity Model (PAM): It is a set of necessary action properties
identified by a domain expert while performing certain activity. For example, the Bmaking
tea^ activity consists of necessary action properties such as BhasDrinkingContainer ,̂
BhasHeating^, BhasAdding^ deduced from sensor activations such as BstoveSens^,
BteaSens^, BmilkSens^ and BwaterSens^, whereas BsugarSens^ is an optional ingredient.
So, the assumption in PAM is:
PAMTea = {hasHeating(stoveSens), hasDrinkingContainer(cupSens), hasAdd (milkSens),
hasAdding(teaSens)}
Definition 4:Optional Actions: They are not mandatory in performing an activity but can
be part of that activity for depicting a personalized behaviour of inhabitants. Optional
actions play an integral role in recognition of Complete Activity Models.
Definition 5: Complete Activity Model (CAM)/Personalized Model: It is the set of all
necessary and optional actions performed by certain inhabitant while performing an
activity. The CAM may vary along each inhabitant.
CAMTea = {turnOnTap(waterSens), hasAdding(milkSens), hasAdding(teaSens),
hasDrinkingContainter(cupSens), hasHeating(stoveSens), hasAdding(sugarSens)}
Definition 6:Overlapped Actions: They are the set of actions in a sensor stream correspond-
ing to two different PAMs while performing different activities in same time frame.
Activity = {S-actioni1, S-actioni2 ….. S-actionin, S-durationi}
Activity = {S-actionj1, S-actionj2 ….. S-actionjn, S-durationj}
Overlapped Activity = {S-actioni1, S-actioni2, S-actionj1, S-actioni2, S-actionj2 …. S-
actionin, S-actionjn}
Definition 7: Missing sensor noise: It is the inability of sensors to stimulate the data
signals caused by infrastructural issues or sensor error despite of inhabitants’ genuine
sensor interaction.
Definition 8: Sensor Noise/Noisy Sensor/ Erratic Behaviour: It refers to the sensor activa-
tion due to a user’s mistaken interaction with objects that are not part of any ongoing activity.

An abstract view of the operational components of OSCAR is illustrated in Fig. 6 with an
elaboration at a finer level of granularity discussed in the following sub-sections.
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Every interaction of an inhabitant with different objects, while performing activities over a
temporal scale, is transmitted as a data stream from sensor to AR system for recognizing the current
activities based upon contextual information in a domain ontology. Such domain ontology describes
the hierarchy of the activities, objects and action properties by establishing the relationship among
activities and objects (details in section 3.1). Once the data stream is received, the first step is to
transform the sensor stream into action properties (details in section 3.2). Later, the semantic
segmentation process identifies the generic activity model in the stream based on the context of
the object, duration and location (elaborations in section 3.3). This process may yield a number of
overlapped generic activity models. Some of these models are rightly identified as parallel activities
while others may be wrongly asserted as generic models that need to be discarded. A reckoning
process discards the spurious generic activity models by identifying action intervals and inferring
their temporal dependencies (as explained in section 3.4). The next step is to identify the complete
activity model by calculating the duration space dynamically (discussed in section 3.5). Complete
activitymodels are further refined through feature-based similarity (given in section 3.6). Finally, the
complete activity models that have been identified are modelled into a log file for behaviour analysis
of the inhabitants.

3.1 Activity modelling in a domain ontology

Keeping the above definitions in view, ontology artefacts have been devised in the form of
classes for an ontological activity model, as shown in Fig. 7.

ADL Activities: is super concept of all the simple activities performed at home like Bmaking
pasta^, Bmaking tea^, Btaking a bath^, etc. Each ADL activity is composed of a set of action
properties and descriptive properties, such as the Bmaking pasta^ activity that requires the
actions: Buse stove^, Badd water^, Badd pasta^ etc. Descriptive properties are used to describe
the activity, such as the duration of the activity, the location to perform the activity etc.

Object: is a super concept of home commodities, electrical appliances, fixtures or other
entities used in routine for performing different activities. Examples of these objects can
be Bstove^, Bcup^, Bfridge^, or BwaterTap^.
Sensors: there are two types of sensors used in our model: On/Off-sensors such as Bon/off
stove^ or Bon/off waterTap^; and Contact-sensors that produce a time interval between a

Fig. 7 Domain ontology for activity modeling (Make Tea)
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start and end time recorded after certain object is touched. Each instance of a sensor class
corresponds to an instance of an object class (or its subclasses) through the
BattachedWith^ property.
Location: is super concept of different locations in home, such as kitchen, bathroom,
living room, etc. Each activity is bind to only one location where it can be performed and
each object is bind to only one location where it can be used.

A snapshot of the developed ontology is illustrated in Fig. 7, which shows the action and
description properties of the Bmaking tea^ activity.

3.1.1 Temporal concepts in activity modelling

The temporal relations among AR actions are required to identify a complete activity model.
Usually the actions of an activity can be performed in any random order, but some of the actions in
activities may have temporal dependencies on each other. For example, in the Bbathing^ activity,
the action Buse shower^ may be used before or during the Buse soap^ action. Such temporal
relations require a tertiary relation among instances of the concepts whereas ontologies typically
hold a binary relation among the concepts. In order to accommodate these temporal relations [20,
36], a time ontology [22] and the 4D extended fluent approach [48] have been used. In smart
homes, activities are partially static and diachronic in nature. Static parts of activities such as
location of activities and objects used in activities can be represented in OWL. On the other hand,
diachronic parts like the interval of the actions or the inter-dependency among the actions can be
represented with time and the 4D extended fluent approach, as shown in Fig. 8. It illustrates a
temporal relation between the Buse shower^ and Buse soap^ actions of the Bbathing^ activity.

Usually, actions of an activity are an open interval in nature. Open interval refers to the time
interval where starting and ending points are not explicitly specified. In the process of
recognizing the complete activity model, starting and ending points of activities are not known.
The 4D extended fluent approach has proved effective in determining the qualitative relations
among open interval actions in AR processes. Our approach has been implemented by using
Allen’s temporal relations (pairwise disjoints). The main classes of temporal relations are:

Shower1 Soap1

Shower TimeSlice Soap TimeSlice

TimeSlice

TimeInterval1 TimeInterval2

TimeInterval

timesliceof
timesliceof

tim
ei
nt
er
va
lo
f tim

eintervalof
start

end

start

end

Allen Temporal Relation

Fig. 8 Ontological dynamic activity model (Bathing)
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DateTimeDescripiton: this concept represents the temporal stamp of data activities and
object interactions such as year, day hour, minute, or second.
Duration: describes the interval of an activity, such as 10 min for an activity to complete.
TimeInterval: is the domain of the time intervals class and TimeSlice: is the domain for
entities representing temporal parts. BTime interval^ instances are used to maintain the start
and end time information of a slice. The property BtimeSliceOf^ builds the relation among
the instances of the BTimeSlice^ class and the BObject^ class, while the BtimeIntervalOf^
property holds the relationship among the instances of two time intervals.

3.2 Mapping sensor activations to action properties

A stream of real sensor activations can be transformed into action properties [3] using the proposed
domain ontology. Such transformation offers the advantages of Description Logic (DL) and OWL
inference through relations of subsumption, equivalence and transitivity. Concepts related to
Bactivities^ in the ontology have super/sub relations with each other. Super and intermediate
concepts are coarse-grained (abstract) activities while the leaf level concepts are fine-grained
(concrete) activities. Fine-grained concepts inherit all the action properties and description properties
from their super concepts in addition to their own properties and restrictions on inherited properties.

The conversion of sensor streams into action properties makes it more generalized in
recognizing the patterns through inference instead of strict object patterns. An example of
transforming the sensor stream into an action property is given next:

Sensor stream: {cupSens, whiteSugarSens, skimmedMilkSens}
Transformed stream: {hasDrinkingContainer (cupSens), hasAdding(whiteSsugarSens),
hasMilk (skimmedmilkSens)}

The result of the sensor stream transformed above remains the same even if BmugsSens^,
BbrownSugarSens^, BliquidMilkSens^ is used instead of BcupSens^, BwhiteSugarSens^ and
BskimmedMilkSens^.

3.3 Semantic segmentation

Semantic segmentation is an iterative process that clusters the sensor stream by observing the actions
associatedwith generic activitymodels (or perceptible activitymodels - PAM)modelled in ontology.
The segmentation process considers the following aspects for completing an activity: if an action is
part of multiple segments, then it is considered in every segment. If a segment has completed its set
of actions, the segmentwill bemarked as closed alongwith its duration. If an action is not part of any
PAM, that action is labelled as Boptional^. Few of the identified segments may be invalid (due to
different issues to be discussed in the coming sections) and require a validation decision for retention
or discarding. Validation of these segments is evaluated through a Semantic Segmentation(SS)
process which is based on three aspects: (i) Object compatibility (Oc), (ii) Duration compatibility
(Dc) and (iii) Location compatibility (Lc).

SS 0;1ð Þ ¼ Oc 0;1ð Þ⋀Dc 0;1ð Þ⋀Lc 0;1ð Þ ð1Þ
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Object compatibility Objects placed at home may be used in more than one activity. Our
ontological model has an object property named Bactivity type^. It describes the possible
activities in which a particular object may be used termed as object compatibility. For example,
the object Bstove^ is used in different kitchen activities like Bmaking tea^, Bmaking coffee^,
Bmaking pasta^, etc.

Duration compatibility Each activity has an estimated time duration for completion; for
example, the Bmaking tea^ activity has a duration of 5 min while Bmaking pasta^ has 10 min.
Time duration starts from the first occurrence of an action of the PAM and ends with the time
duration specified in the ontology. It is mandatory for all the actions of a PAM to complete
within its specified duration.

Location compatibility Each activity is stamped with a location for example Bmaking tea^
is performed in the kitchen while Bbrushing teeth^ is performed in the bathroom. During the
course of our work, we proceed with the baseline assumption that the location of activities and
their associated objects will always be the same. For example, objects used in Bmaking tea^,
such as Bstove^, Bsugar jar^, or Bmilk jar^, will always be located in the kitchen.

The algorithm for the semantic segmentation process is given below.
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The complexity of the algorithm is O(N2). Here, it is worth mentioning that two overlapped
activities may have the same location and common objects to perform activities with over-
lapped duration. This ambiguous situation may entail the lack of an AR decision by the
semantic segmentation algorithm. The non-decisiveness of the semantic segmentation algo-
rithm, with many overlapped PAMs may be caused due to the following reasons:

(1) An inhabitant really performs parallel activities where the sensor stream comprises the
mixed set of actions for multiple activities.

(2) An action may be part of multiple activities for PAMs running in parallel. Partial sets of
actions from different parallel activities may combine to produce new PAMs.

(3) Overlapped segments may arise due to the sensor noisy/erratic behaviour. At some
moment of time, an inhabitant interacts with some object mistakenly resulting in making
clusters overlap. For example, the first coffee jar is contacted unintentionally and then the
tea jar is interacted for the activity of Bmaking tea^. As a result, the two PAMs Bmaking
coffee^ and Bmaking tea^ are overlapped.

(4) An action may be an indispensable part of one activity and may also be an optional part
of another activity. For example, Bspoon^ is a mandatory part of the activity Bmaking
coffee^, while it is an optional part of the activity Bmaking tea^.

In the above-mentioned situations, the most challenging task is to remove the anomalous/
false/spurious clusters out of the identified segments. The reckoning process removes the
anomalous/false/spurious segments to a larger extent though it does not manage to completely
remove such erroneous segments. The reckoning process is used to further refine the process
of removing anomalous clusters as discussed next.

3.4 Reckoning process

In the reckoning process, there are three temporal aspects to be considered when removing the
anomalous segments.

Contact sensors have been used to monitor the interval of interaction with a particular
object, in contrast to traditional binary sensors, producing certain values when an object is
interacted.

The Time ontology [22] has been used to model the minimum interval for each action in the
PAM of an activity; for example, in the Bmaking tea^ activity, Bstove^ has a minimum interval
of 3 min while the Bsugar jar^ interval is 10 s. These minimum interval considerations for each
corresponding action have three advantages:

(i) Any interaction with a duration lower than the minimum interval refers to noisy sensor/
erratic behaviour. A valid interval for certain action in an activity can be identified with
the sum of intervals of more than one interaction with the same object. For example, if the
stove is turned BOFF^ after 1 min and then turned BON^ for two minutes again, a total
time of 3 min is a valid action time for the Bmaking tea^ activity.

(ii) If the action time of an activity exceeds its minimum interval and the same action is part
of overlapping/consecutive activities, that action is considered as an isolated part of the
two activities. For example, for consecutive/overlapped activities of Bmaking tea^ and
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Bmaking coffee^, the stove Bturned on^ action with a duration of 10 min is treated as two
segregated actions.

(iii) In an object-sensor-based AR approach [9], the order of the actions does not matter; e.g.,
the actions of the Bmaking tea^ activity can be performed in any order. But it is observed
in some activities that order needs to be maintained in few actions out of all the action
set. For example, in the Btaking bath^ activity, Bsoap^ must be used before or during the
Bshowering^ action. Similarly, in the Bmaking coffee^ activity, the BuseSoap^ action
must be carried out after interacting with Bkettle^, Bcoffee^ and Bmug^. Such type of
open interval actions can be represented by Allen’s temporal relationships [1, 2].

Allen’s temporal relations have been used to model temporal dependencies among actions
of activities where the order of actions is important. Allen’s relations have been used with the
time ontology and 4D extended fluent to express the interval of the actions and their relations
while performing different activities. The binary relations of Allen’s intervals used by OSCAR
are given in Table 2:

Let: Δt is the duration space of an activity.
Δta&Δtb is the interval of actions Ba^ and Bb^, respectively.
Tai&Tbi is the initial time of actions Ba^ and Bb^, respectively.
Taf&Tbf is the end time of actions Ba^ and Bb^, respectively.
Here, it is worth mentioning that the presented binary relations can be extended further

through inference using transitive relations. Once these relations are defined, the activities not
complying with the order defined in the context knowledge of the domain ontology are
discarded. This further refines the PAMs by removing spurious activities. Now, the refined
sensor stream is analysed for recognizing a complete activity model specific to the inhabitants’
behaviour in the AR process.

3.5 Learning the complete activity model

In this step of the AR process, a complete activity model is identified by incorporating the
actions labelled as Boptional^ during the semantic segmentation process as explained in section
3.3. This requires the actual duration space of the activity. The duration space of an activity
refers to the temporal duration of the sensor stream under observation to gather the set of
actions for completing a particular activity. Determining the duration space of an activity is a
challenging task since the exact start and end times of an activity are not known for the
Complete Activity Model (CAM). On the other hand, the start and end times of the Generic
model (i.e., PAM) are easily identified in the semantic segmentation process. However, the

Table 2 Allen temporal relations among the actions of an activity

Interval Inverse Interval

before(Δta, Δtb)→Taf < Taj after(Δta, Δtb)→Tai > Tbf
meet(Δta, Δtb)→ Taf = Tbi meetby(Δta, Δtb)→Tbf = Tai
overlap(Δta, Δtb)→Tai < Tbi < Taf overlapby(Δta, Δtb)→Tbi < Tai < Tbf
Start(ΔtaΔtb)→ (Tai = Tbi) (Taf < Tbf) Startby(Δta, Δtb)→ (Tbi = Tai) (Tbf < Taf)
during(Δta, Δtb)→ (Tai > Tbi) ((Taf < Tbf) contain(Δta, Δtb)→ (Tai < Tbi) ((Tbf < Taf)
finish (Δta, Δtb)→ (Taf = Tbf) (Tai > Tbi) finishby (Δta, Δtb)→ (Taf = Tbf) (Tbi > Tai)
equal(Δta, Δtb)→ (Tai = Tbi) (Taf = Tbf)
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start and end times of the PAM cannot exactly be the start and end times of the Complete
Activity Model (CAM) since optional actions have no order to be performed. Such random
order of actions may occur before a PAM, during a PAM or after a PAM has been completed.
Therefore, the duration space of an activity may be captured entirely such that all possible
occurrences of actions for the current activity are known.

The duration space is modelled through the Bduration^ property in the OSCAR’s ontology
model for holding enough intervals while completing an activity. Generally, the first action of
complete activity precedes PAM’s first action and the last action follows PAM’s last action.
Therefore, it is assumed that the first action of PAM is the first action of CAM where the end
time of CAM is the first action of PAM plus the duration encoded in the ontology for certain
activity. Similarly, assuming that the last action of PAM is the last action of CAM, the initial
time of CAM is the last action of PAM minus the duration encoded in the ontology. This is
how duration is dynamically computed in the surroundings of PAM. The duration space of an
activity has been calculated through the following formula:

Δt ¼ Tf−Ti ð2Þ
Where.
Ti = dtf - ΔD.
Tf = dti + ΔD.
Δt = Stipulated duration space of the Complete Activity Model (CAM).
Ti = Initial time instance of the duration space of CAM.
Tf = Final time instance of the duration space of CAM.
Δdt = Duration of the PAM in the sensor stream.
dtf = Final time instance of the PAM (first occurrence of the action in PAM).
dti = Initial time instance of the PAM (last occurrence of the action in PAM).
ΔD =Duration of PAM encoded in the ontology.
Now, all the actions labelled as Boptional^ within a duration space of respective activities

are assigned to their semantically compatible PAMs. If an optional action does not exist in any
duration space, it is termed as an outlier. An outlier must be the part of the following or
preceding activity. For this, we propose a heuristic that calculates the centroid of both
activities. The outlier is identified as part of the activity located nearest to the centroid,
conditioning the action is semantically compatible. The centroid (C) of an activity is calculated
by using the following formula:

C Aið Þ ¼ Ti þ Tf–Tið Þ=2 where C is centroid of an Activity Ai ð3Þ
Δt can be calculated by the following algorithm.
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After the reckoning process completes, activities still have a chance of having spurious
segments requiring further refinement by removing the noisy actions. For example sensor
stream BSS^ fulfils every criterion for two activities:

SS = {teaSens, stoveSens, waterSens, coffeeSens, spoonSens, milkSens, sugarSens,
strainerSens, creamerSens, cupSens, iceSens}

The order of actions in the above sensor stream is temporally correct and semantically
compatible with both activities of Bmaking coffee^ and Bmaking tea^. But the time interval
indicated by the actions infers that only one activity, either Bmaking tea^ or Bmaking coffee^,
is being performed or the second one exists only due to sensor noise. The Δt of an activity
provides a way to distinguish such similar activity patterns or spurious patterns.

Here Optional Sensors (OS) are considered for performing an activity. Optional sensors
may vote to an actual occurred activity. Such refinement has been performed through a feature-
based similarity technique as elaborated in following section.

3.6 Feature-based similarity

Feature-based similarity addresses the issue of erratic overlapped PAMs based on optional
sensors similarity. We have customized Tversky’s similarity [34] concepts for our activity
recognition process as given below:

similarity O 1;O 2ð Þ

¼ α ψ O 1ð Þ∩ψ O 2ð Þð Þ
β ψ O 1ð Þψ O 2ð Þð Þ þ γ ψ O 2ð Þψ O 1ð Þð Þ þ α ψ O 1ð Þ∩ψ O 2ð Þð Þ

Where.
ψ (O) is the function capacity depicting all the important highlights of the object O.
α, β & γ ∈ ℝ are real number constants. For α = 1 common features of the two objects

have maximal importance and β = γ.
The following notations have been used in our work:

& Common features of PAM and OS: cf. (PAM, OS) =ψ (PAM) ∩ ψ (OS)
& Distinctive features of PAM: df (PAM) =ψ (PAM) \ ψ (OS)
& Distinctive features of OS: df (OS) =ψ (OS) \ ψ (PAM)

Using the notation and setting α =β = γ = 1, the above formula becomes:

SimT PAM ;OSð Þ ¼ cf PAM ;OSð Þ
df PAMð Þ þ df OSð Þ þ cf PAM ;OSð Þð Þ ð4Þ

To find the Common features for PAM and OS, the formula would be:

cf ¼ k2

h1;h2
df 1 ¼

h1;−k
h1;

and df 2 ¼
h2;−k
h2;

Where K is the number of common features having PAM and OS whereas h1 is the different
members from PAM and h2 is the different members from OS.
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We assume that PAM and OS have common features based on an Bactivity type^ property
from a sensor stream (SS) as follows:

PAMTea ¼ tea; stove;water;milk; spoonf g:
PAMCoffee ¼ coffee; stove;water;milk; spoonf g:
and OS ¼ sugar; strainer; creamer; cup; icef g:

In the above example, the values for tea are: K = 1, h1 = 4 and h2 = 3.
Distinctive sensors having the same value of the Bactivity type^ property as of PAM=

df1(PAM). Distinctive sensors having the same value of the Bactivity type^ property as of
Optional Sensor = df2(OS).

cf ¼ 1= 5*3
� � ¼ 0:067; df1 ¼ 5−1ð Þ=5 ¼ 0:8 and df2 ¼ 3−1ð Þ=3 ¼ 0:67

Putting these values in eq. 4 for finding similarity between tea and its optional sensors:

SimTea ¼ 0:067= 0:8þ 0:67þ 0:067ð Þ ¼ 0:044

The same formula can be used for Bmaking coffee^ after we get values K = 2, h1 = 5 and
h2 = 2.

Common features for coffee and optional sensors are:

cf ¼ 2= 5*2
� � ¼ 0:2; df1 ¼ 5−2ð Þ=5 ¼ 0:6 and df2 ¼ 2−2ð Þ=2 ¼ 0

Putting these values in eq. 2 for finding the similarity between tea and its optional sensors:

SimCoffee ¼ 0:2= 0:6þ 0þ 0:2ð Þ ¼ 0:25

The similarity value of Bmaking tea^ is 0.044 and the value of Bmaking coffee^ is 0.25. It
implies that the activity sequence of Bmaking tea^ should be discarded asserting Bmaking
coffee^ as the actual activity performed.

4 Dataset and evaluation methodology

In order to evaluate the performance of OSCAR and have an empirical view of its effective-
ness compared with contemporary approaches; baseline datasets played an important role. The
experiments were run on two separate datasets, namely CASAS by Cook et al. [45] and other
acquired by our methodology named Data Acquisition Methodology for Smart Homes
(DAMSH).

4.1 The CASAS dataset

There are very few datasets available comprehending the interleaved activities annotated for
smart homes. The ‘Interleaved ADL Activities’ (IAA) dataset was selected from the CASAS
smart home project [45] after a thorough analysis of activities. This data set was collected in a
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smart apartment test bed hosted at Washington State University during the academic year
2009–2010.

The CASAS dataset covers interleaved ADLs of twenty-one inhabitants acquired in a
smart home laboratory. Almost 70 sensors were used to collect data about movement,
temperature, use of water, interaction with objects, doors and phones. Eight activities
were considered: filling medication dispenser, watching DVD, watering plants, answer-
ing the phone, preparing birthday card, preparing soup, cleaning, and choosing outfit.
The average time taken by the participants to complete the eight activities were 3.5 min,
7 min, 1.5 min, 2 min, 4 min, 5.5 min, 4 min, and 1.5 min, respectively. The average
number of sensor events collected for each activity was 31, 59, 71, 31, 56, 96, 118, and
34, respectively [10].

The order and expenditure of time were up to the inhabitants and they were allowed to
perform the activities in parallel. Only one person was allowed to stay in the home while
acquiring the data. Five out of eight activities have been considered for evaluation. The five
activities shortlisted are: watching DVD, answering the phone, preparing birthday card,
preparing soup and cleaning. Three activities which have not been included in experiments
are: choosing outfit, watering plants and filling medication dispenser. The reason for not
considering these three activities is having few distinct actions in their action sequence. So it is
not appropriate to build generic model and to learn for devising a complete model in our case.
For example choosing outfit activity has just two distinct sensors in its dataset i.e. motion
sensor and cabinet sensor. These actions are not sufficient to build the generic model and hence
complete model.

We pre-processed the CASAS dataset to build the Perceptible Activity Model for all
activities. All the distinct actions that had been used in dataset for a particular activity were
enlisted. Necessary actions are chosen as a part of the PAM and the rest of the actions are
considered as user-specific actions. For example, the Bpreparing soup^ activity includes seven
distinct sensor values: cabinet sensor, water sensor, burner sensor, raisin sensor, oatmeal
sensor, pot sensor, and motion senor. Out of seven sensors, four were considered part of the
PAM such as cabinet sensor, water sensor, burner sensor and pot sensor while the rest of
sensors (such as raisin sensor, oatmeal sensor) were considered as optional ones.

4.2 The DAMSH dataset

The rationale for acquiring the Data Acquisition Methodology for Smart Homes (DAMSH) is
given in the following.

Firstly, datasets used for deriving a complete/personalized activity model from a generic
activity model are not available publicly on dataset sources like the CASAS Datasets [27], Box
lab [28] or any other AR portals [39] to the best of our knowledge.

Secondly, the proposed solution (OSCAR) claims to recognize highly similar activities.
Such similar activities have one or two different actions in the generic model. For example,
Bmaking tea^ and Bmaking coffee^ can be differentiated with only one action, i.e., Badd tea^
and Badd coffee^; the rest of the actions in both activities are the same. A single positive sensor
noise may cause a serious challenge in recognizing the activities so considering such scenarios
in AR is very important. Such scenarios are not available in any of the datasets to the best of
our knowledge.

Thirdly, the available datasets do not have positive sensor noise caused by unintentional
interactions. One of the research challenges addressed by OSCAR is to identify and remove
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the positive sensor noise from the sensor stream. DAMSH comprehends all these scenarios
while assuring the coverage of common scenarios in AR at smart homes.

4.2.1 Data acquisition in DAMSH

One of the famous methodologies [42, 46] is used by DAMSH with different steps as follows:
(i) Select a home to install sensors over home objects; (ii) Select the inhabitants residing to
perform the activities; (iii) Label the segmentations of sensor streams generated as result of
inhabitants’ actions; (iv) Use the labelled data as ground truth for AR, for evaluation process
and to build the activity ontology (as described in section 3.1); (v) Use the same datasets to test
the AR system and to store the labels produced; and (vi) Compare the labels of the AR system
with ground truth using appropriate metrics.

The idea starts with the process of getting the real time user input through an activity survey
form targeted to the inhabitants. The survey form recorded the possible steps for performing
the same activities differently along with the duration to perform the activities. Different
aspects of the activities were also considered such as the most probable day interval of
performing an activity, e.g., taking a bath between 7:00 AM to 8:00 AM; the location of the
activity, e.g., kitchen, bathroom, etc. Moreover, activities that inhabitants perform in parallel
are enlisted such as Bmaking tea^ and Btoasting^ while taking breakfast. The purpose of
circulating activity surveys is to encode the context-based knowledge of the activities in the
ontology such as the necessary actions, duration and temporal dependencies. Moreover, survey
form data has been used for generating the ground truth data through simulation. The survey
form is available online:

https://www.dropbox.com/s/yddl2om2xz5w0j9/Human%20activity%20recognition%20
Survey.docx?dl=0

Fig. 9 illustrates the data flow diagram of the data acquisition module for DAMSH.
Targeting the right audience and their activities plays a key role in designing the

survey forms. The target groups for the survey were selected from communities having
specialization in performing different activities, for example chefs, house hold ladies
performing kitchen activities, or launderer for washing and ironing activities. The survey
forms with responses had labelled activities and action sequences. Domain experts
developed the domain ontology based upon perceptions of performing activity sequences
as discussed in section 3.1. It was hard to incorporate all the action variants of an activity
in the survey form so a simulation tool was developed that received the activity scripts
and domain ontology as input and produced the permutation of action sequences of all
activities (called ground truth). Ground truth facts, unlabelled data acquisition source files
and dataset file are available online:

https://www.dropbox.com/sh/28e7ca7gdeap7d9/AAAFGhIcXmdEmJIYh5fTxAVya?dl=0
The purpose of the proposed AR models is to recognize a complete action sequence for

parallel activities. So, a handful of parallel, unlabelled action sequences along with some noise
(see definition 8) was desired. Table 3 shows the characteristics and statistics of DAMSH with
associated details.

DAMSH acquired 2.483 sensors stimulations in 111 days. A total of 10 distinct activities
have been performed in parallel and sequential fashion. Among the parallel activities are
Bwatching tv ,̂ Bmaking tea^, Bmaking coffee^, and Bmaking pasta^. Among the sequential
activities are Btaking nap^, Bchores^, Bshaving^,^ bathing^, Btaking medicine^, and Bwashing
cloth^. The dataset contains 10% sensor noise of actual data. Sensor noise is unbiased and
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generated without any human interruption by the random() function. DAMSH code, sensor
noise stimulation code and software manual are available online:

https://www.dropbox.com/sh/vis7da2hi0f8fa9/AABSoRDpUuqpCKlDOEXy4hiEa?dl=0.
The output of this module is labelled datasets having: (i) variation of ground truth by adding

sensor noise; and (ii) Parallel activities by mixing the action stream of two or more activities.

5 Results and discussion

The performance of OSCAR is measured through accuracy metrics [47] such as True Positive
(TP), False Positive (FP) and False Negative (FN). Definitions of TP, FP, and FN in the context
of Activity recognition as given in the following:

True Positive: The sequence action of an activity is labelled correctly by the system.
False Positive: An activity did not occur but it is labelled incorrectly by the system.
False Negative: The sequence action of an activity exists but is not identified by the
system.

Other experiments are done with F-measure [47], an accuracy metric that uses two
parameters: precision and recall. Precision is the number of the times that an activity is
correctly identified divided by the number of times the activity is inferred while Recall is
the number of the times that an activity is correctly inferred divided by number of times that it
really happens. As an overall measure of accuracy, F-measurement has been used that is a
balanced measure of precision and recall together. Also, OSCAR has been compared with
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Fig. 9 Data flow diagram for data acquisition and evaluation
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prevalent techniques in the context of F-measurement to see its impact over the CASAS and
DAMSH datasets (on noisy as well as noiseless data).

The impact of the different modular units of OSCAR such as Semantic Segmentation (SS),
Reckoning Process (RP) and Feature-based Similarity (FS) has also been covered in the
evaluation. These units of OSCAR are compared with respect to their accuracies on a noisy/
noiseless dataset. Results based on these metrics and scenarios are tabulated below followed
by the necessary discussion.

The performance of Semantic Segmentation (SS) module is assessed with noisy and
noiseless data as given in Table 4.

Table 4 depicts the result of the semantic segmentation process on noisy and noiseless data
for sequential activities. In sequential activities, all the actions occur within a specific time
frame considered to be the part of an ongoing activity or to be a noisy action. Since noiseless
data streams are well refined (free of noise) and with an unambiguous set of actions, Semantic
Segmentation presents an ideal performance on noiseless data in terms of identifying correct
clusters of the perceptible activity model. Table 4 (column-1) shows 100% true positivity on
noiseless stream. But the accuracy seems a compromise when there is noise (definition 8) in a
stream and PAM actions are highly similar with other PAMs. As a result, true positive and false
positive get affected. For example, the accuracy of Bmaking tea^ and Bmaking coffee^ are
compromised in TP and FP for noisy data. The Bmaking tea^ activity is performed 130 times
while Bmaking coffee^ is performed 60 times in 111 days. The results observed in the TP ratio
of noisy data are 90 and 92%, respectively, which means that the AR system is capable of
segmenting the activity for 117 times and 55 times, respectively, while having noise in the data
stream. The presence of FP in both the Bmaking tea^ and Bmaking coffee^ activities with 10
and 8% is due to a higher degree of similarity among the action sequence of two activities. A
single unintentional touch with the Bmaking coffee^ object during the Bmaking tea^ activity
resulted in generating the Bmaking coffee^ segment and vice versa. Other three activities
having lower degree of TP are Bwatching TV ,̂ Btaking medicine^ and Bchores^. This lower
degree of TP is due to a small number of actions in their PAMs where a single positive sensor
noise or missing sensor may produce FP and FN, respectively. The activities Bmaking pasta^,
Bbathing^ and Bwashing cloth^ have given consistent results on noisy and noiseless data
because the noise is semantically recognized in these activities with the factor of location and
the used-in property.

Table 4 Semantic segmentation process for sequential activities on noisy and noiseless data

Activities True Positive % False Positive% False Negative%

Noiseless Noise Noiseless Noise Noiseless Noise

Making Tea 100 90 0 10 0 0
Making Coffee 100 92 0 8 0 0
Making Pasta 100 100 0 0 0 0
Bathing 100 100 0 0 0 0
Shaving 100 100 0 0 0 0
Watching TV 100 80 0 10 0 10
Taking Medicine 100 85 0 10 0 5
Washing Cloth 100 100 0 0 0 0
Taking Nap 100 95 0 5 0 0
Chores 100 90 0 10 0 0
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The second experiment assesses the performance of the Reckoning Process (RP) and the
Feature-based Similarity (FS) process in OSCAR with noisy and noiseless data for the parallel
activity recognition.

In Table 5, the performance of the Perceptible Activity Model (PAM) recognition is
presented with an insight and impact of modules in OSCAR such as the Reckoning Process
(RP), which eliminates the spurious PAM by exploiting the temporal dependency among the
actions of an activity, if any. Feature-based Similarity (FS) further augments the elimination
process by measuring the similarity of a segment with user-specific actions in that cluster.

The performance of RP degrades if two activities are highly similar in their action sequence,
occurring at same place in parallel fashion and their temporal dependency criteria are fulfilled.
For example, the scenarios of Bmaking tea^ and Bmaking coffee^, as discussed in section 3.6.
As the RP module fails to recognize the spurious PAM, the FP factor increases. Similarly, the
Bmaking pasta^ activity has a TP of 70%. Most of the actions of Bmaking pasta^ are also
common with Bmaking tea^ and Bmaking coffee^ where use-spoon, add water, use-stove are
used commonly. A few mistaken object interactions may generate spurious activity entailing in
a higher FP. Similarly, Btaking bath^, Bshaving^ and Bwashing cloth^ have many actions in
common in their PAMs. Results are promising for those activities whose actions are distinct
from other activities or when activities are performed at different locations. The TP of the
activity model shows significant improvement when the output of the RP module is processed
with the Feature-based Similarity process. Feature-based similarity is processed on the basis of
user-specific actions voting for a particular PAM in a specific duration. This module refines the
RP module results. As we see, the TP for the Bmaking tea^ activity improves from 65 to 93%
and Bmaking coffee^ improves from 67 to 92%. It is worth mentioning that FN values appear
in the results due to missing sensor or infrastructural error and is out of the scope of this paper.

The third experiment assesses the performance of leaning the Complete Activity Model
(CAM) with noisy and noiseless data for parallel activity recognition.

In Table 6, the performance of OSCAR after identifying complete activity models (CAM) is
presented over a mix of noisy and noise-free datasets. The promising performance shown by
CAM is due to the dynamic duration (window) space instead of the static duration encoded in
the ontology. The dynamic window caters the actions of an activity that are outlier of any
activity duration. FP and FN appear in some cases due to actions that lie outside the boundaries
of the dynamic duration or due to missing sensor noise (described in definition 7).

Table 5 Perceptible model recognition comparison on noisy and parallel activities using Reckoning Process
(RP) and feature based similarity (FS)

Activities True Positive% False Positive% False Negative%

RP FS RP FS RP FS

Making Tea 65 93 25 3 10 3
Making Coffee 67 92 27 5 6 3
Making Pasta 70 91 29 3 1 6
Bathing 77 95` 33 0 0 5
Shaving 73 97 26 0 1 3
Watching TV 86 99 14 1 0 0
Taking Medicine 89 97 11 1 0 2
Washing Cloth 90 99 10 0 0 1
Taking Nap 98 100 2 0 0 0
Chores 96 100 4 0 0 0
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To further demonstrate the effectiveness of the proposed approach, we compared the
complete activity recognition results of OSCAR with well-known techniques described in
the literature [38, 49], as shown in Fig. 10. F-measure has been used as performance metric.
Fig. 10 shows the F-measure result on the DAMSH dataset while Fig. 11 shows the F-measure
result on the CASAS dataset. Fig. 10 compares the activities of Bmaking tea^, Bmaking coffee^
and Bmaking pasta^ with [38] while Bmaking pasta^, Bbathing^, Bwatching TV ,̂ Btaking nap^
is compared with [49]. The results in Fig. 10 show that OSCAR outperforms the rest of the
techniques described in [38, 49]. Specifically, OSCAR has better performance than FTS due to
the dynamic duration approach increasing AR accuracy compared to FTS that uses a static
sliding window approach. This fact can be observed in Fig.10 where FTS exhibits poor
performance for the Bbathing^ activity since this activity takes 2 min as defined in the ontology
duration property compared to the actual time taken by the inhabitant, i.e., more than 2 min.
Similarly, FTS shows better performance for the Bmaking pasta^ activity since the time defined
in the ontology is of 5 min compared with the actual time of 4 min.

KCAR recognized the boundary of parallel activities more accurately using distance
measured through Least Common Subsume (LCS) for having a smaller number of partitions
that better resemble real activities. The fundamental standard is to segregate sensor occurrence
and gathering similar ones, yet it does not ensure that the assembled sensor events map to only

Table 6 Complete recognition model for noisy and noiseless parallel scenario

Activities True Positive False Positive False Negative Accuracy

Noise-less Noise Noise-less Noise Noise-less Noise

Making Tea 96 95 1 1 3 4 0.95
Making Coffee 95 94 0 1 5 5 0.94
Making Pasta 98 97 1 1 1 2 0.97
Bathing 97 97 0 0 3 3 0.97
Shaving 98 98 0 0 2 2 0.98
Watching TV 99 99 1 1 0 0 0.99
Taking Medicine 99 99 1 1 1 1 0.99
Washing Cloth 99 99 0 0 1 1 0.99
Taking Nap 100 97 0 0 0 3 0.97
Chores 100 98 0 0 0 2 0.98
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Fig. 10 Comparison of accuracy with other knowledge driven techniques
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one activity. KCAR’s performance degrades when the activity actions cannot be distinguished
like bathing, which is not well separable from shaving and washing hands, or making pasta,
which is not well separable form making tea and making coffee. Okeyo and colleagues’ results
are promising and near to the proposed work; they differ slightly on all activities including
Bmaking tea^, Bmaking coffee^ and Bmaking pasta^. The OSCAR methodology focused on
personalized activity modelling while Okeyo and colleagues worked on composite activity
modelling.

Fig. 11 shows the results on the CASAS dataset as described in section 4.1. Results are
compared with a state of the art technique [44]. To process the CASAS dataset by our system,
a domain ontology model was developed for the activities given in the dataset: watch DVD,
answer the phone, prepare birthday card, prepare soup, and cleaning. All distinct actions were
enlisted from the dataset for each activity. All the necessary and user-specific actions of each
activity were identified to build the perceptible activity model for each activity and encode all
the actions in the domain ontology. The results in Fig. 11 show that OSCAR performed better
than the technique described [44] for experimented except the cleaning activity. Since PAM
actions of the cleaning activity are a super set of all other activities, the cleaning activity results
in interaction with almost all the objects such as cabinet, oatmeal, raisin, pot, burner, medicine,
bowl, brown sugar, etc. All these objects are used in the rest of the activities and end up with
spurious actions showing a degraded performance for the cleaning activity.

The performance of OSCAR needs to be measured with positive sensor noise with noisy
data stream. In principle, the semantic segmentation criterion of the activity suggests that if the
action sequence of an activity is mapped to one of the PAM, the semantic segmentation
process marks it as a performed activity. Mistaken interactions with wrong objects may result
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Fig. 11 Comparison of accuracy with Riboni [44]

Table 7 Positive sensor noise effect on accuracy

Positive Sensor Noise Effect

Activities No. of Sensors 1
TP FP FN

2
TP FP FN

3
TP FP FN

4
TP FP FN

Making Tea
Making Pasta
Bathing

.98 .02 0

.98 .02 0

.96 .04 0

.95 .05 0

.94 .06 0

.92 .08 0

.90 .11 0

.89 .11 0

.89 .11 0

.86 .14 0

.86 .14 0

.83 .17 0
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in a number of overlapped spurious PAMs over the original one that affect the TP rate. It
implies that the greater the positive sensor noise, the lower the TP rate.

Table 7 shows the results for scenario having positive sensor noise in the dataset. Three
activities were shortlisted for this experiment: Bmaking tea^, Bmaking coffee^ and Bbathing^.
These experiments were run while having the noisy data of 111 days. The results tabulated in
Table 7 have been illustrated in Fig. 12 having BSensor Noise Action^ on the x-axis and
BAccuracy (True Positivity)^ on the y-axis. Activity-based evaluation criterion has been used
for having TP, FP and FN rates. However, the TP rate of the Bmaking tea^, Bmaking coffee^
and Bbathing^ activities seems to reduce linearly with positive sensor noise. TP reduction
causes an increase in the FP rate as the detected activities did not occur actually. There is no
effect on FN but the effect on TP is apparent as expected.

6 Conclusion

This paper presents a novel approach named OSCAR for deriving a complete activity model
for parallel activities from a generic activity model. The effectiveness of the proposed
approach is signified by the semantics in perspective of duration, location, activity type,
temporal dependency among activity actions and feature-based similarity among activity
actions. The complete activity model characteristics claimed in the introduction section have
been achieved by different components of the proposed model. (i) During the evaluation, it has
been observed that sensor noise produced subtle anomalies during parallel activities recogni-
tion which are removed gradually by the semantic segmentation, reckoning process and feature
based similarity; (ii) The proposed algorithm in semantic segmentation is not influenced by the
order of the occurrence actions in a sequence. The order among the actions is considered
during the reckoning process only if it is explicitly defined in the ontology through the 4D
fluent approach. The rest of the actions are catered in all possible randomized orders. (iii) Our
proposed approach does not use a conventional static time window approach; instead, a
dynamic calculation of the AR duration is proposed that played a key role in identifying the
complete/personalize activity model. (iv) Similarly, if an object is part of multiple activities,
the feature-based similarity component calculates the action similarity for an activity if two
activities are running in parallel.

T
ru

e 
P

o
si

ti
v

e

Sensor Noise Action

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

1 2 3 4

Making Tea

Making Pasta

Bathing

Fig. 12 The TP of activities in presence of positive sensor noise

Multimed Tools Appl (2019) 78:2073–2104 2099



OSCAR is presented for single-user parallel activities with capacity for extending and
recognizingmultiple user activities in collaborative manner. Also, these activities can be extended
from simple to composite ones. We look forward to complete the AR process for inhabitants to
extend their behaviour for learning and evolving the context knowledge (modelled in ontology)
by identifying the specialized activities performed by inhabitants. Lastly, the set of activities in
CASAS dataset which have not been considered in experiments due to infrastructural issues will
be incorporated in future experiments with necessary arrangements.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.
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