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Abstract Low illumination is a common problem for recognition and tracking. Low
illumination video-based person re identification (re-id) is an important application in prac-
tice. Low illumination usually results in severe loss of visual appearance and space-time
information contained in pedestrian image or video, which brings large difficulty to re-
identification. However, the problem of low illumination video-based person re-id (LIVPR)
has not been well studied. In this paper, we propose a novel triplet-based manifold discrim-
inative distance learning (TMD2L) approach for LIVPR. By regarding each video as an
image set, TMD2L aims to learn a manifold-based distance metric, under which the intrin-
sic structure of image sets can be preserved, and the distance between truly matching sets
is smaller than that between wrong matching sets. Experiment results on the new collected
low illumination person sequence (LIPS) dataset, as well as two simulated datasets LI-PRID
2011 and LI-iLIDS-VID show that our proposed approach TMD2L outperforms existing
representative person re-id methods.

Keywords Low illumination · Person re-identification · Local linear model ·
Discriminative distance learning

1 Introduction

Person re-identification (re-id) is becoming a hot topic in computer vision and machine
learning gradually. Person re-id matches pedestrians across different disjoint cameras in
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different time periods [3], which plays an import role in smart city. However, the prob-
lem of person re-identification has the following challenges. First, most faces in images
captured by different non-overlapping cameras are blurred in that the pedestrians are long
distance away from the cameras. Therefore, only the appearance of pedestrian can be used
to re-identification. Second, pedestrians’ images are largely different due to illumination
variations, poses, viewpoint, background clutter and occlusion. Third, the clothes of dif-
ferent persons may be similar or even same, e.g. the same uniform. Therefore, person
re-identification has been an extremely challenging problem [23].

A great number of methods have been presented for person re-id problem, which can
be divided into two categories: feature learning based methods [11, 15, 33, 36, 38, 41–
43] and metric learning based methods [1, 9, 37, 45, 47]. Feature learning based methods
aim to learn a distinct and robust feature representation. Literature [39] seeks to use a
salient color names based color descriptor to describe colors. Color distributions in dif-
ferent color spaces are then obtained and fused for a feature vector representation. Work
[13] is proposed to learn a feature representation local maximal occurrence, which analyzes
the horizontal occurrence of local features to make a stable representation against view-
point changes. The literature [15] is presented to learn a robust and efficient appearance
descriptor for re-identification based on coarse, striped pooling of local features. Besides
the methods of robust features, metric based approaches focus on learning an effective met-
ric for person re-identification. Zheng et al. [45] presented the relative distance comparison
(RDC) method to learn the optimal similarity measure between a pair of person images,
which can avoid treating all features indiscriminately. Hirzer et al. [5] learned a discrimina-
tive Mahalanobis distance metric from pairs of samples belonging to different cameras. In
[22], a latent metric learning method is developed for learning an effective metric, which
can be solved via an iterative manner. A joint feature projection matrix and heterogeneous
dictionary pair learning (PHDL) [48] approach is presented to jointly learn an intra-video
projection matrix and a pair of heterogeneous image and video dictionaries. The learned pro-
jection matrix is used to reduce the influence of variations within each video. Two learned
dictionaries can transform the heterogeneous image and video features into same dimen-
sional coding coefficients. Joint dictionary and metric learning (JDML) [46] is presented
to formulate robust feature representation learning and discriminative metric learning into a
unified framework. The dictionary learning is utilized to obtain robust feature representation
for images across different camera views. Metric learning is exploited to find optimal fea-
ture subspace that maximizes the inter-person divergence while minimizes the intra-person
divergence.

The above works focus on matching pedestrians under normal illumination. In many
cases, pedestrian videos are captured under low illumination conditions, e.g. pedestrian
videos captured at night or under poor light conditions like underpass. Under these scenar-
ios, the captured videos are low-illumination. We call re-identification under this kind of
scenarios as low illumination video-based person re-identification (LIVPR). Figure 1 shows
the problem of low illumination video-based person re-identification. Although there exists
a street lamp in Fig. 1, the illumination under this scenario is too low to observe the texture
of the pedestrian’s clothes clearly, which is more difficult for person re-id than that under
normal illumination.

1.1 Motivation

Low illumination is a common problem for video-based person re-id, e.g., monitoring
at night or under poor light conditions like underpass. However, this problem is usually
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Fig. 1 A typical low illumination video-based person re-identification scenario. The pedestrian image
sequences are captured under low illumination condition. One can see that the illumination is severely low,
which is difficult to observe the texture of the pedestrian’s clothes clearly

ignored by the existing video-based person re-identification methods, which mainly focus
on solving the challenges under normal illumination condition.

Low illumination will result in severe loss of visual appearance information to the
captured videos, which is harmful to the re-identification process. In particular, many
appearance details, e.g., color, gradient and texture, have been lost [21] in low illumi-
nation person images. To reveal this influence, we make the following experiment. We
selected randomly 10 different persons’ images under normal and low illumination from
two datasets respectively and computed the cosine similarity of image level visual appear-
ance features (including LBP, LAB, RGB, HSV and HOG). Here, the low illumination scene
is simulated by using the same way as [25]. The experimental result is shown in Fig. 2a.
One can see that most of the cosine similarity values are smaller than 0.5, which means

Fig. 2 Effect of low illumination. a Cosine similarities of the same person’s appearance feature patches
under normal and low illumination. The person image (64 × 128) is divided into 128 non-overlapped
patches with the patch size 8 × 8. Example pairs on PRID2011 dataset under normal and simulated
low illumination. For each instance, we computed the cosine similarity of image level feature patch
(LBP+LAB+RGB+HSV+HOG). b The extraction of the walking cycles versus FEP under normal and low
illumination. (Top Row): The first frame of each walking cycle from the third person on PRID 2011 dataset.
(Middle Row): The normal illumination FEP (red curve) and low illumination FEP (blue curve) correspond-
ing to 70 frames including five walking cycles. (Bottom Row): The first frame of each walking cycle from
the third person on the LI-PRID 2011 dataset under low illumination
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that the appearance information of pedestrians images under low illumination changes
severely. Therefore, low illumination will increase the difficulty of distinguishing the visual
appearance representations of different persons.

In addition, due to the low illumination, it is difficult to detect a walking cycle of each
person by Flow Energy (FEP) [17, 31] accurately. The extraction of the walking cycles by
FEP under normal and low illumination is shown in Fig. 2b. The extracted correct walking
cycles under normal illumination are shown in Fig. 2b (Top Row). The local maxima of FEP
corresponds to the posture when the person’s two legs overlap while at the local minima the
two legs are the farthest away. We take the frame at the local maxima of FEP as the start
frame of each walking cycle. Under normal illumination, the sequence numbers of the start
frames for all walking cycles are {8,20,32,44,57,69}, respectively. As shown in Fig. 2b (Bot-
tom Row), the detected start frames under low illumination are separately {7,22,37,52,67},
and there is even one walking cycle that is not detected at all. The main reason why the
first frame of each walking cycle is inaccurate under low illumination is that FEP is greatly
affected by the low illumination. However, existing video-based person re-id models do not
provide a good solution to the LIVPR task.

Researches in [14] indicate that images of the same identity captured under low illu-
mination usually lie on a nonlinear space, e.g., the samples caused by the pose changing
and illumination changing will lie on a nonlinear space, which will result in a poor perfor-
mance for recognition in linear space. Manifold learning is an effective technique to deal
with the data in nonlinear distribution, which can preserve the intrinsic structure of the data
in low dimension space from high dimension space. Manifold is stable to varying poses
and lighting conditions [28, 35]. The linear subspace model is limiting for complex cases
with variations in pose or illumination [6]. Comparing to the explicitly mapped Euclidean
space [19], the discriminative learning on the original manifold space can better preserve
geometry structure of samples.

Motivated by the above analysis, we intend to solve the problem of video-based person
re-id under low illumination based on the manifold learning technique.

1.2 Contribution

We summarize the contributions of this paper as the following four points:

(1) To the best of our knowledge, this is the first attempt to solve the problem of low
illumination video-based person re-id (LIVPR).

(2) We propose a triplet-based manifold discriminative distance learning (TMD2L)
approach for LIVPR task. Local Linear Models (LLMs) of each manifold are con-
structed by the furthest seed point of the maximal linear patch (MLP) [30]. The
distance of different global nonlinear manifolds is presented by their corresponding
LLMs. TMD2L seeks to learn a discriminant metric that makes the distance between
videos from the same person become smaller than that between videos from different
persons.

(3) We contribute a new person sequence dataset, named Low Illumination Pedestrian
Sequence (LIPS) dataset, which is collected under night scenes in campus of Wuhan
University. The dataset includes 90021 images of 100 pedestrians captured by different
cameras, with around 450 images per person at each camera. The LIPS dataset is chal-
lenging since it involves complicated cluttered background and occlusions under low
illumination. To the best of our knowledge, this is the first pedestrian video sequence
dataset under low illumination for person re-identification.



Multimed Tools Appl (2019) 78:337–362 341

(4) We evaluate the proposed approach on three pedestrian video datasets, including the
new collected LIPS dataset, as well as two simulated PRID 2011 [4] and iLIDS-VID
[31]. Extensive experiments are conducted on three datasets, and experimental results
demonstrate the effectiveness of the proposed approach for the LIVPR problem.

The remainder of this paper is organized as follows: Section 2 presents the most related
works and gives a discussion of the relationship between our proposed approach and these
works. Section 3 details the proposed TMD2L approach and shows the process of perform-
ing person re-identification with the proposed approach. Section 4 elaborates the matching
process of person re-identification. Section 5 details the experimental results and parameters
analysis. Section 6 concludes the paper and the future work.

2 Brief review of related work

In this section, we briefly review the related person re-id methods. Existing person re-id
methods can be classified into two categories: image-based and video-based person re-id
methods. The former focuses on the image-to-image matching and can be further divided
into two categories: feature learning methods [2, 7, 44] and distance learning methods [9, 12,
24, 37, 45]. The feature learning methods [10, 39] aim to extract a distinct and robust feature
representation for matching. The distance learning methods [16, 37] focus on seeking an
optimal distance metric for person re-id.

Recently, several researches [17, 31, 40, 47] started to consider solving the video-based
person re-id problem. In [20], a novel recurrent neural network architecture is presented for
video-based person re-id. The convolutional network, recurrent layer, and temporal pool-
ing layer, are jointly trained to act as a feature extractor to extract temporal features by a
recurrent convolutional neural network. Top-push distance learning model (TDL) [40] inte-
grates metric learning with a top-push constraint for matching video features of persons.
Under the constraint of top-push, the learned distance metric can help to look for a latent
feature space to maximize the margin of inter-classes while minimize the distance between
intra-class. TDL model utilizes a stochastic gradient descent projection algorithm to obtain
an optimized positive semi-definite matrix. With the learned metric, TDL can reduce the
ambiguities of the sample distribution.

The spatio-temporal representation Fisher vectors approach (STFV3D) [17] introduces a
method of extracting space-time features from videos. It extracts the same person’s walking
cycles from the video by computing the Flow Energy Profile (FEP) of the lower body. FEP
is the local maxima when the person’s two legs overlap and the local minima when the two
legs are the farthest away. It splits the same person’s video sequence into small segments
according to the obtained local maxima/minima of FEP. It needs more than 20 frames for
each person’s video sequence. The smaller segmentation of walking cycles can align the
dynamic appearance of different people both spatially and temporally. Therefore, a series of
body-action units can be obtained. The final space-time representation can be concatenated
by learning Fisher vectors in each unit. STFV3D is the competing feature from videos for
person re-identification.

Simultaneous intra-video and inter-video distance learning (SI2DL) [47] learns a distance
metric for intra-video and an inter-video distance metric from the training videos simulta-
neously. Each video can be considered as an image set, which has the existence of large
intra-video and inter-video variations. SI2DL learns the more discriminative distance met-
ric by reducing the influence of these variations. The intra-video distance metric can make
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each video more compact. It designs a video relationship model, i.e., video triplet, which is
constituted by a pair of truly matching videos and an ”impostor” video. Under the constraint
of video triplet, the learned inter-video discriminant metric can make the distance between
two truly matching persons smaller than that between two wrong matching persons.

Although the above methods solve some problems of person re-id effectively, they
study the person re-id problems under normal illumination. Different from these methods,
our approach is designed to solve the low illumination video-based person re-id problem
particularly.

3 Our approach

In this section, we elaborate two key components of the proposed TMD2L approach,
including constructing the Local Linear Model(LLM) and learning discriminative distance
metric.

3.1 Constructing local linear model

We firstly prepare each frames of each person by histogram equalization, which can elim-
inate the low illumination effects [28] as shown in Fig. 4b. As the analysis in Fig. 2, the
low-illumination images contain less effective information than those with normal illumi-
nation. The features caused by the pose changing and illumination changing will lie on
a nonlinear space [26], which will result in a poor performance for recognition in linear
space. Manifold learning is an effective technique to deal with the data in nonlinear distri-
bution, which can preserve the intrinsic structure of the data in low dimension space from
high dimension space. Although the contrast of neighbor pixels under low illumination is
not significant, there exist intrinsic structure in image samples. Manifold can preserve local
neighborhood structures of the pedestrian data [14] in nonlinear space to some extent. In
this paper, we model the image set as a manifold. For each manifold, we utilize an effective
clustering method to extract a set of clusters, with each cluster being one local linear model
[28]. The distance between different manifolds is computed by that between their corre-
sponding LLMs. We utilize the furthest seed point of the maximal linear patch (MLP) [18,
30, 32] to construct the LLMs, which can avoid the problem of unbalanced clusters. Denote
by X = [x1, x2, ..., xi , ...xn] a video of one pedestrian and xi is the ith image sample in X.
Let {M1, M2, ..., Mi, ..., Mk} (k < n) be the constructed LLMs, where Mi is the ith LLM.
The basic idea of constructing LLMs is shown in Fig. 3. Detailed steps of constructing
LLMs are as follows:

(1) We firstly compute the distance between geodesic distance matrix DG and Euclidean
distance matrix DE , which can be used to judge whether two samples are neighbors by
(1). The samples xi and xj are neighbors ifDG(xi, xj )/DE(xi, xj ) ≤ δ. The threshold
δ is set by referring to [28, 30]. A larger δ implies fewer local linear models vice versa.
Therefore, δ affects the trade off between efficiency and accuracy [30], which can be
written as follow:

DG(xi, xj )

DE(xi, xj )
≤ δ. (1)

(2) We select the furthest point xf away from Xmean as a seed point each time shown
in Fig. 3a, which can make the different LLMs separate away in some extent. Here,
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Fig. 3 Illustration of constructing LLMs. Samples are constructed to the corresponding LLMs by the ratio
of geodesic distance and Euclidean distance. a The distribution of all original samples. Xmean represents the
center of all samples. Xf denotes the furthest point away from Xmean. b Computing the ratio of Euclidean
distance and geodesic distance between Xi and Xf . c The first LLM has been constructed. d Constructing
next LLM. e All LLMs have been constructed

Xmean is the first-order statistics of all samples in X, which can be computed with
Xmean = 1

n

∑n
i=1 xi .

(3) Grouping each sample of X into the corresponding LLM according to (1), as shown
in Fig. 3b–c. The process of constructing the LLMs of each person is summarized as
Algorithm 1.

3.2 Triplet-based manifold discriminative distance learning (TMD2L)

As described in the above subsection, the local linear models can be obtained by Algorithm
1. Denote by M = {M1, ..., Mi, ..., Mn} the collection of constructed LLMs of all train-
ing pedestrian videos, where n is the LLM number, Mi={yi1, ...yij , ...yini

} is the ith LLM.
Here, yij is the j th sample in Mi , and ni is the sample number of Mi . The contrast of pix-
els in neighbor area under low illumination is not significant, which will make it difficult to
distinguish the samples. To solve the problem of low distinction between persons under low
illumination and improve the discriminability of LLMs, we introduce the idea of discrimi-
nant distance learning into the problem of low-illumination person re-identification, which
can make the same person compact and separate the different persons away. This basic idea
has been illustrated in Fig. 4. Therefore, the objective function is defined as:

argmin
W

f (W, M) + αg(W,M)

s.t.WT W = I,
(2)
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Fig. 4 Conceptual illustration of our approach. a Modeling image set of each person as corresponding
manifold. b Histogram equalization is used to eliminate the illumination effects. c Taking one manifold as
an example, to show the brief illustration of constructing the LLM. d Learning the discriminative metric to
maximize the distance of different persons and minimize the distance of same persons after constructing the
local linear models by the furthest points based on MLP. e Positions of different LLMs under the learned
distance metric W

where W represents the distance metric to be learned and α is a balancing factor. f (W, M)

is the LLM congregating term, which can make the samples within each LLMmove close to
the center of this LLM, as shown in Fig. 4c. g(W,M) is the triplet-based LLM discriminant
term, which is used to make the distance between truly matching LLMs smaller than that
between the wrong matching LLMs, as shown in Fig. 4c.

f (W, M) = 1
L

n∑

i=1

ni∑

j=1

∥
∥WT (yij − mi)

∥
∥2
2 (3)

where L is the number of all samples, ni is the number of samples in the ith LLM. mi is the
first-order statistics of the ith LLM, which can be computed by

mi = 1

ni

ni∑

j=1

yij . (4)

g(W,M) is designed as follows:

g(W,M) =
∑

<i,j,k>∈T
d(W,Mi, Mj ) − βd(W, Mi, Mk). (5)

where β is a balancing factor of the discriminant term, T is the collection of LLM triplets,
with each triplet consisting of two truly matching LLMs and an ”impostor” LLM. Here,
we employ the similar strategy as [47] to construct LLM triplet. Mi and Mj represents the
truly matching pair, and Mi and Mk is the wrong matching pair. d(W ,Mi,Mj) is the distance
function under the learned distance metric.

d(W, Mi,Mj ) = 1

ni ∗ nj

ni∑

p=1

nj∑

q=1

∥
∥
∥WT (yip − yjq)

∥
∥
∥
2

2
. (6)

3.3 The optimization of TMD2L

In this subsection, we will describe an efficient solution of (2). Firstly, we simplify f (W, M)

as follows:

f (W, M) = tr
(
WT �F W

)
, (7)
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where

�F = 1
L

n∑

i=1

ni∑

j=1
(yij − mi)(yij − mi)

T . (8)

Secondly, we reformulate g(W,M) to the following form:

g(W,M) =
∑

<i,j,k>∈T
tr

(
WT (�G1 − β �G2)W

)
, (9)

where

�G1 = 1

ni ∗ nj

ni∑

p=1

nj∑

q=1

(yip − yjq)(yip−yjq)T , (10)

�G2 = 1

ni ∗ nk

ni∑

p=1

nk∑

q=1

(yip − ykq)(yip−ykq)T . (11)

By substituting (7) and (9) into (2), we can rewrite our objective function as:

min
W

tr
(
WT �F W

)

+ α
∑

<i,j,k>∈T
tr

(
WT (�G1 − β �G2)W

)

s.t. WT W = I.

(12)

Based on (12), we can reformulate our objective function as:

min
W

tr
(
WT (D1 + D2) W

)

s.t. WT W = I,
(13)

where

D1 = 1

L

n∑

i=1

ni∑

j=1

(yij − mi)(yij − mi)
T , (14)

D2= α
∑

<i,j,k>∈T
( 1
ni∗nj

ni∑

p=1

nj∑

q=1
(yip − yjq)(yip−yjq)T

− β
ni∗nk

ni∑

p=1

nk∑

q=1
(yip − ykq)(yip−ykq)T ).

(15)

By constructing the Lagrange function and setting the derivative of (13) w.r.t. W to zero, we
can get:

(D1 + D2)W = λW (16)
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where λ is a Lagrange multiplier. Then, W can be obtained by solving the above eigen-
decomposition problem (16). It is clear that the solution of (16) yields the eigenvectors and
eigenvalues of (D1 + D2). The eigenvectors corresponding to the k smallest eigen-values
of (D1 + D2) can be selected as W = [w1, w2, ..., wk]. The optimization of TMD2L is
summarized in Algorithm 2.

3.4 Computational cost

The time complexity of our model TMD2L mainly comes from three phases, especially
constructing LLMs, dividing the negative samples and learning the discriminant met-
ric phase. In the phase of constructing LLMs phase, the main time cost is to group
the samples of each person into the corresponding LLM, which is O(N2). In the
phase of dividing the negative samples, the time cost focuses on the calculation for
�G1 and �G2, which is O(p × NG1 + p × NG2). NG1 and NG2 are the number of
�G1 and �G2, respectively. p is the dimension of features. In the phase of learning
the discriminant metric, the time cost is to compute the eigen-decomposition, which is
O(p3). The space complexity focuses on constructing LLMs and computing the eigen-
decomposition. The space complexity of constructing LLMs is O(N ∗ p). The space
complexity of eigen-decomposition in (16) is O(N ∗ k) + O(k2). k is the number of
eigenvalues.

4 Re-identification

In this section, we elaborate the person re-identification with the LLMs and the learned
discriminant metric. The steps of detailed re-identification are as follows:

1) Constructing local linear models: For the probe and gallery videos, we construct LLMs
using Algorithm 1. Let P = {M1

p, ..., Mi
p, ..., M

np
p } be a probe video with np LLMs,

andMi
p is the ith LLM of P .G = {G1, ..., Gj , ..., Gm} be a set of them gallery videos,

where Gj = {Mj1
g , ..., M

jk
g , ..., M

jnk
g } with nk LLMs and M

jk
g is the kth LLM of

Gj .
2) Computing the distance: With the learned discriminant metric W , the distance

d(Mi
p,M

jk
g ) between the probe LLMs and the LLMs of each gallery is computed by

(6) and the smallest distance represents the distance between the probe video and each
gallery video.

3) Re-Identifying the Probe video in Gallery videos: Sorting the obtained distances, and
the gallery video with the smallest distance is the true matching of P . The procedure
of our approach TMD2L for matching is summarized in Algorithm 3.
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5 Experiments

To evaluate the effectiveness of our approach, we conduct extensive experiments on three
pedestrian video datasets, including the new collected LIPS dataset, and two simulated
publicly available datasets(PRID 2011 and iLIDS-VID), as shown in Fig. 6 and Table 1.

5.1 Datasets and settings

In this section, we briefly introduce the collected person re-id dataset under night scene in
Wuhan University campus and two publicly available datasets. Table 1 provides a statistical
summary of three datasets. We also annotate the attributes of each dataset by the following
list: “cameras” denotes thenumberofdifferent disjoint cameras. “label” means the way of seg-
menting pedestrians from the original frames by manually or automatically. “total frames”
is the total number of persons appearing in both cameras of the corresponding dataset.

(1) Newly collected low illumination pedestrian sequence dataset: There exists no pub-
licly available low illumination person re-id dataset. To fill this gap, we contribute
a new low illumination pedestrian sequence (LIPS) dataset, which is collected under
night scenes in campus of Wuhan University. The flowchart of collecting new pedes-
trian dataset is shown in Fig. 5. Firstly, we use two cameras to record the videos
of pedestrians walking through the road on campus. Secondly, the videos including
pedestrians are converted into image sequences. We extract the persons with bounding
box from each frame by a self-developed software manually. Finally, we normalize
the extracted image into the same size and encode the image sequences corresponding
persons.

Table 1 Information of Three Datasets

Dataset People Total Frames Average length Occlusion degree Year Cameras Label

LIPS 100 90,021 450 Partial 2017 2 hand

LI-iLIDS-VID 300 42,459 100 Partial 2014 2 hand

LI-PRID 2011 200 40,033 73 Few 2011 2 hand

One real night-scene person dataset LIPS, and two simulated datasets (LI-iLIDS-VID and LI-PRID 2011)
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Fig. 5 The flowchart of collecting and normalizing new person dataset at night scene. The original videos
of pedestrian are captured by two disjoint cameras. Firstly, we transform the video to image sequences.
Secondly, persons with bounding boxes are segmented by manually. Finally, the samples are normalized by
the same size, which is 64×128. In the left subgraph, the pedestrian is marked by red(green) rectangle. In the
right subgraph, the image sequences belong to the corresponding pedestrian

The dataset includes 90021 images of 100 pedestrians captured by two non-overlapping
cameras. The length of each image sequence ranges from 193 to 833 frames, with an aver-
age number of 450 for each person at each camera. Most images are captured under very low
illumination (see Fig. 6a). Many persons are occluded by other objects, e.g., other pedestri-
ans, cars or trees. The illumination of some frames in persons video is severe low or huge
changed by the cars light. All image sequences are normalized to 64 × 128 pixels after
segmenting the person from each video. The key frames of each person in newly collected
dataset are available at.1

(2) Two simulated datasets: There exist two publicly available video person datasets,
whose attributes are shown in Table 1, however they are under normal illumination.
For PRID 2011 dataset, we utilize image sequence pairs that have more than 20 frames
for evaluation. This dataset was created in co-operation with the Austrian Institute of
Technology. In experiments, half of all sequence pairs sets are randomly selected for
training, and the remaining sequence pairs are used for testing. The PRID 2011 dataset
includes video pairs captured by two different outdoor cameras. 385 persons were
recorded in one camera, and 749 persons in the other camera. 245 persons appear in
both cameras simultaneously. The number of images in each image sequence ranges 5
to 675 frames, with an average of 100 for each person.

The iLIDS-VID dataset consists of 600 videos. This dataset was captured in an airport
arrival hall under a multi-camera CCTV network. Each person has one pair of video from
two different cameras. The number of frames in each video ranges from 23 to 192, with an
average of 73 for each person. We utilize sequences pairs that have more than 20 frames
for evaluation. Then, all sequence pairs are randomly divided into two parts of equal size,
with one for training, and the other for testing. The iLIDS-VID dataset is challenging since
it involves complicated cluttered background and occlusions.

Simulating night-scene datasets To further verify the evaluation of our approach,
inspired by [12, 34], we generate two simulated low-illumination datasets (LI-PRID 2011
and LI-iLIDS-VID) for evaluation, which are based on PRID 2011 [4] and iLIDS-VID [31].
Figure 6b and c show the simulated images from LI-PRID 2011 and LI-iLIDS-VID datasets.

1https://sites.google.com/site/whulips

https://sites.google.com/site/whulips
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(a) LIPS dataset

(b) LI PRID2011 dataset

(c) LI iLIDS VID dataset

Fig. 6 Example pairs of several key frames on three datasets. The same person walks through two differ-
ent cameras in each row. a LIPS dataset is a newly collected person dataset under low illumination. Two
simulated datasets: b LI-PRID2011 dataset, and c LI-iLIDS-VID dataset

In experiments, the low illumination scene is simulated by using [25]. The procedure of sim-
ulating night scene is as follows. I denotes the original normal-illumination image from two
existing datasets. T denotes the simulated night-scene image. Firstly, R,G and B denote
three channels of color image respectively. X, Y and Z are the temporary variables, which
are computed by (17).

⎡

⎣
X

Y

Z

⎤

⎦ =
⎡

⎣
0.5149 0.3244 0.1607
0.2654 0.6704 0.0642
0.0248 0.1248 0.8504

⎤

⎦

⎡

⎣
R

G

B

⎤

⎦ . (17)

The scotopic luminance V = Y
[
1.33(1 + Y+Z

X
) − 1.68

]
. Secondly, we compute the

each pixel by cT = cI − kV cblue. cI (cT ) presents the pixel of the original image I (the
target simulated image T ). k = 0.93 and cblue = 0.9 are set empirically. Finally, we filter
the obtained image by Gaussian, where the default value for filter template is 5×5 and the
standard deviation is 1.6. The illustration of simulating low-illumination datasets are shown
in Fig. 7. The simulated night-scene image samples corresponding to two existing datasets
are shown in Fig. 6b–c.

(3) Parameter Settings. The important parameters in our model include α, β and δ. α

controls the balance of two items. β controls the balance of the triplet including neg-
ative sample pair and positive sample pair. δ denotes the ratio of geodesic distance
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Fig. 7 The original and simulated illumination datasets. The process of simulating night scene is detailed
in Simulating night-scene datasets. a PRID2011 and c iLIDS-VID are the original datasets under normal
illumination; b LI-PRID2011 and d LI-iLIDS-VID are the simulated low-illumination datasets

and Euclidean distance, which controls the number of neighbor points. In particular,
we set the balancing factor α = 0.3 on LIPS, LI-PRID 2011 and LI-iLIDS-VID. The
balancing factor of the discriminant term β is set as 0.6 on LIPS, LI-PRID 2011 and
LI-iLIDS-VID. The threshold δ is set as 1.4 for all datasets.

(4) Compared Methods. To evaluate the performance of TMD2L, we select seven state-
of-the-art related methods as the compared methods, including STFV3D [17], RDC
[45], KISSME [9], TDL [40], SI2DL [47], JDML [46] and PHDL [48] . In exper-
iments, we perform competing methods with the codes provided by the authors. In
experiment results, we use the average cumulative match characteristic (CMC) curves
[29] to show the top ranked matching rates.

(5) Feature Extraction. In preparation phase, we conduct histogram equalization [28] on
image sequences of each person. The person image (128× 64 pixels) is divided into
128 non-overlapped patches with the patch size 8 × 8. We extract the HSV, LAB and
LBP features from each patch and is represented by a 25600-dimensional feature vec-
tor. We perform PCA to keep above 90% data energy, and obtain the 600-dimensional
feature vector.

5.2 Evaluation on the LIPS dataset

Following the evaluation protocol in [9], we randomly select half of the dataset, i.e., 50 video
pairs, for training, and use the remaining 50 pairs for testing. Table 2 and Fig. 8a report the
top ranked matching rates of TMD2L and the competing methods on the new LIPS dataset.
We can see that our TMD2L achieves better performance than the other methods. In par-
ticular, our TMD2L improves the rank 1 matching rate by at least 3.81%(57.81%-54.00%).
The main advantages of our proposed method have two folds: 1) TMD2L can preserve local
neighborhood structures of the pedestrian data to some extent. Although the entire pixel val-
ues of the images are declining severely, there exists a certain intrinsic structure of images
in the data space corresponding to different persons. 2) TMD2L learns a discriminative dis-
tance metric. The distance metric is an effective technique for person re-identification. The
discriminative distance metric contains a better discriminative capability, which can reduce
the between-video and within-video variations simultaneously.
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Table 2 Top r ranked matching rate (%) on LIPS dataset

Method r = 1 r = 5 r = 10 r = 20

RDC 19.53 46.83 56.34 61.98

STFV3D 23.22 46.23 59.56 75.48

KISSME 26.53 52.96 73.99 84.96

PHDL 44.51 75.62 83.75 92.18

TDL 49.31 86.96 94.91 98.83

SI2DL 53.63 87.84 95.56 97.91

JMDL 54.00 87.50 94.50 98.50

TMD2L 57.81 89.65 96.76 98.98

Best results are in boldface font

5.3 Evaluation on the LI-PRID 2011 dataset

We also evaluated the proposed approach on the simulated LI-PRID 2011 dataset. The
results in Table 3 and Fig. 8b show that our approach outperforms the other methods. More
specifically, our TMD2L improves the average rank 10 matching rate by at least 6.04%
(79.98%-73.94%) on LI-PRID 2011. The results are worse than the original. This is because
the illumination of most pedestrians is much low. The disadvantages are two folds: 1) The
effective information under low illumination is lost severely. Pixel values of pedestrians are
too low under low illumination so that the difference of some pixels in each frame are lower
than that under normal illumination. The feature information, e.g., texture and gradient, is
lost severely. 2) The extreme points of FEP are not obvious. The space-time feature can-
not be aligned by the walking cycles correctly. In this case, even some pedestrians’ walking
cycles would be partitioned wrongly, leading to that the methods based on walking cycles
(e.g. STFV3D) perform poorly .

5.4 Evaluation on the LI-iLIDS-VID dataset

In Table 4 and Fig. 8c, we reported the comparison of our TMD2L with five state-of-the-
art person re-identification methods on LI-iLIDS-VID dataset. The results show that our
TMD2L outperforms the other competing methods. For instance, our proposed TMD2L
model improved the average rank 10 matching rate by at least 5.33%(74.06%-68.73%) on
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Table 3 Top r ranked matching rate (%) on simulated LI-PRID 2011 dataset

Method r = 1 r = 5 r = 10 r = 20

RDC 15.34 41.98 51.98 56.93

STFV3D 19.24 42.45 55.66 70.56

KISSME 23.39 44.91 59.99 74.43

PHDL 24.69 57.07 69.84 82.79

TDL 29.36 59.11 71.44 84.93

SI2DL 30.76 59.98 72.39 85.63

JMDL 30.16 60.35 73.94 88.39

TMD2L 32.49 67.39 79.98 89.43

Best results are in boldface font

LI-iLIDS-VID dataset. The results are worse than the original. This database is very chal-
lenging under normal illumination. This is because the many pedestrian in videos were
captured with significant background clutter and occluded by other people or objects. The
effective feature information corresponding to same person is lost.

5.5 Further analysis of TMD2L

5.5.1 Influence of parameters

There are two important parameters, i.e., the balancing factors α and β, in objective func-
tion, we implemented TMD2L model by selecting the parameters on three datasets. In
particular, we take the experiment on the LIPS dataset as an example. We conduct experi-
ments by changing the value of α from 0.1 to 1 step by 0.1 and β from 0.01 to 1 step by
0.05. The top ranked matching rates are shown in Fig. 9a and b. As illustrated, the perfor-
mance of our approach is not very sensitive to the choice of α in the range (0.2, 0.6) and β

in the range (0.3, 0.8). When α = 0.3 and β = 0.6, our TMD2L achieved the best result.
On the simulated datasets, we take the simulated LI-PRID 2011 dataset as an example.

α is a tuning parameter, which controls the balance of two items in objective function. β

controls the balance of the triplet including negative sample pair and positive sample pair.

Table 4 Top r ranked matching rate (%) on simulated LI-iLIDS-VID dataset

Method r = 1 r = 5 r = 10 r = 20

RDC 12.15 32.59 45.14 57.91

STFV3D 14.31 33.16 44.87 59.84

KISSME 21.11 42.22 58.22 74.44

PHDL 24.78 48.67 61.20 77.83

TDL 27.27 53.76 67.01 81.29

SI2DL 26.71 50.38 64.93 80.25

JMDL 28.57 55.77 68.73 83.66

TMD2L 29.62 58.75 74.06 86.25

Best results are in boldface font
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Fig. 9 Rank 1 matching rates versus different values of α, β and δ on LIPS dataset. a Performance:α. b
Performance:β. c Performance:δ

We conduct experiments by changing the value of α from 0.1 to 1 step by 0.1 and β from
0.01 to 1 step by 0.05. The results of matching rate are shown in Fig. 10a–b. As illustrated,
the performance of our approach is stable to the choice of α in the range (0.2, 0.7) and β

in the range (0.4, 0.9). When α = 0.3 and β = 0.6, our TMD2L achieved the best result.
Similar conclusions can be observed on the LI-iLIDS-VID dataset.

5.5.2 Influence of threshold parameter

In the phase of constructing the LLMs, the geodesic distance is always no smaller than
Euclidean distance, therefore the threshold δ is no less than 1 in (1). Here, we take the
experiment on the LIPS dataset as an example. We conduct experiments by changing the
value of δ from 1 to 2 step by 0.1. When δ = 1.4, our TMD2L achieved the best result as
shown in Fig. 9c. As illustrated, the performance of our approach is not very sensitive to the
choice of δ in the range (1.2, 1.7).

On the simulated dataset, we take the simulated LI-PRID2011 dataset as an example. δ denotes
the ratio of geodesic distance and Euclidean distance, which controls the number of neighbor
points.We conduct experiments by changing the value of δ from 1 to 2 step by 0.1. The results
of matching rate are shown in Fig. 10c. As illustrated, the performance of our approach
is stable to the choice of δ in the range (1.2, 1.7). When δ = 1.4, our approach TMD2L
achieved the highest. Similar conclusions can be observed on the LI-iLIDS-VID dataset.

5.5.3 Effect of manifold technique

In this section, we discuss the effect of manifold in our model. The manifold technique
can preserve the intrinsic structure of the data and be stable to varying poses and lighting
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Fig. 10 Rank 1 matching rates versus different values of α, β and δ on LI-PRID 2011 dataset.
a Performance:α. b Performance:β. c Performance:δ
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Fig. 11 Illustration of the effectiveness of triplet-based manifold, where ten different persons in LIPS dataset
were selected for demonstration. Points with same color denote the same person pair from two cameras.
a The sample data points in the original 2-D space, and b the projected sample data points in the new subspace
learned by TMD2L

conditions [28, 35]. Although the low-illumination images contain less effective information
than those with normal illumination and lie in non-linear subspace, there exist the intrinsic struc-
tures in low-illumination images. Manifold learning technique can preserve local neighbor-
hood structures [26] of the pedestrian data in nonlinear space to some extent. To visualize the
effectiveness of triplet-based manifold, a demonstration between the feature distributions
of the original feature subspace and the latent feature subspace learned by our approach is
shown in Fig. 11. We perform PCA [27] on the features to obtain two major principal com-
ponents that are used to show the sample distribution. The distribution of samples belonging
to the same class is scattered before performing manifold, while the samples belonging to
the same class are clustered together with performing manifold for our model. We can see
that the original samples of the same person are ambiguous, while our TMD2L can improve
the discriminability, and thus the distribution of samples is more favorable for matching.

To demonstrate the effect of manifold in our TMD2L on the matching rates, we remove
the local linear model construction out of our model, and reformulate our model as a linear
distance learning model. We call the modified method of TMD2L as TMD2L-M . We con-
duct the experiments on LIPS, LI-PRID 2011 and LI-iLIDS-VID. The results of TMD2L
and TMD2L-M are reported in Table 5. One can see that the matching rate decreases
significantly without the manifold. Therefore the manifold in our model is effective.

5.5.4 Effect of local model

In this section, we analyze the effect of constructing local models by different clustering
methods, e.g., K-means [8] and the furthest point based MLP [30]. K-means algorithm often
utilizes Euclidean distance as metric. Our method, i.e.,the furthest point based MLP, gets

Table 5 Top r ranked matching rate (%) of TMD2L and TMD2L-M on three datasets

Methods LIPS LI-PRID 2011 LI-iLIDS-VID

r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

TMD2L-M 54.73 86.57 94.69 96.86 28.51 64.43 76.86 87.31 25.54 54.69 71.13 84.31

TMD2L 57.81 89.65 96.76 98.98 32.49 67.39 79.98 89.43 29.62 58.75 74.06 86.25
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Fig. 12 The effect of local models on the LIPS dataset. a The relationship of the number of LLMs and
the ratio δ on the LIPS dataset. b The number of cluster affects the matching rates with different clustering
algorithms

the LLMs by (1), which is the ratio of Euclidean distance and geodesic distance. We take
the image set of the first person on LIPS dataset as an example. δ ranges from 1.2 to 1.7.
Similar results can be obtained from the other persons. As shown in Fig. 12a, one can see
that the larger δ is, the fewer the number of LLMs is. In experiments, the matching rates
achieve the highest when δ = 1.4 with the average number of all persons.

The results in Fig. 12b demonstrate that our clustering method outperforms K-means
algorithm. We can observe that the matching rates are higher than those of K-means when
the number of cluster is bigger than 1. When the number of cluster is 1, we learn the intra
projection from the whole image set of each person. Similar conclusions can be obtained
from other datasets.

5.5.5 Effect of low illumination

In this section, we discuss the effect of low illumination. The effective space-time feature
approaches, e.g., DVR and STFV3D, are based on the correct walking cycles, which are
extracted by FEP [17, 31]. The energy of FEP is affected by the low illumination. The
illumination at night scene is low that causes inaccurate walking cycle extraction of the
pedestrians. The error segments of walking cycles cannot align the space-time feature, and
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Fig. 13 The key frames versus FEP on LIPS dataset. (Top Row): The key frames from the first person on
LIPS dataset. (Bottom Row): The energy of FEP corresponding to 110 image sequences
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Fig. 14 Failure examples on LIPS dataset. The color of clothes is changing under lamp light at night. a One
person appears in two cameras. (First Row): the image sequences belong to camera A in the probe set for
testing. (Second Row): the image sequences of the same person belong to camera B in the gallery set. b The
image sequences of different person belonging to camera B are the wrong matching samples

then it will result in the incorrect matching between the probe video and the gallery videos.
Here, we take the experiments on the real scene (LIPS) dataset as an example and analyze
the failure examples for incorrect extraction of walking cycles. We selected the first person
from LIPS as an example. The result of walking cycles extraction is shown in Fig. 13,
which includes five walking cycles. We can see that the low illumination affects the FEP
significantly and the energy varies largely, and thus results in inaccurate walking cycles
extraction.

5.5.6 Failure examples

In this section, we discuss about the failure examples in experiments. We take the new
collected dataset LIPS as an example. As shown in Fig. 14, the color of clothes is changing
since one person walks through different lamps. The changing color causes trouble for re-id.
As shown in Fig. 14a, one person walks through different cameras in different time periods.
As can be seen from Fig. 14b, the color of another person is more similar to the first row
of Fig. 14a than that of the second row in Fig. 14a. The reason may be that the color of
clothes belonging to different pedestrians is becoming much similar under different lamp
light, while there exist much differences in the visual appearance of the same person under
the different light source.

Fig. 15 Failure examples on LIPS dataset. The cluttered background causes inaccurate walking cycle extrac-
tion and trouble for matching. aOne person appears in two cameras. (First Row): the image sequences belong
to camera A in the probe set for testing. (Second Row): the image sequences of other person belong to camera
B in the gallery set. b The image sequences belonging to camera B are the wrong matching samples
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In the second case, the scenario with occlusion and cluttered background is a common
problem for person re-id and tracking since the pedestrians are moving under the complex
environment. The occlusions (e.g., occluded by trees and cars) result in the severe loss of
effective information as shown in Fig. 15, which make it difficult match. And the occlusion
will cause inaccurate walking cycle extraction and affect the space-time information for re-
id methods based on space-time features. As can be seen from Fig. 15b, the occlusion by
tree is severe, which is trouble for re-id.

6 Conclusion

There exists no low illumination pedestrian dataset, to fill the gap, we contribute a new
low illumination pedestrian dataset (LIPS) . To address the challenges associated with low
illumination video-based person re-id problem, we propose a novel triplet-based manifold
discriminative metric learning model. The effectiveness of TMD2L has been demonstrated
by extensive experiments on three datasets including a newly collected dataset (LIPS) and
two simulated datasets.

Future works include two aspects as follows: 1) There exist some occlusions for pedes-
trians, e.g., occluded by other persons, trees or cars. Occlusions will lead to the loss of
effective information, which can be difficult for person re-id. We will consider extending
our model to solve the problem of occlusion for pedestrians. 2) The distance between pedes-
trian and cameras is different while the pedestrian is walking in the street. The different
distance will lead to the different scales of pedestrians’ image sequences, which will be a
new problem for person re-id. Different scales of images will be difficult for alignment of
images belonging to the same person.
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