
Multimed Tools Appl (2019) 78:1971–1998
https://doi.org/10.1007/s11042-018-6209-9

Action recognition by fusing depth video and skeletal
data information

Ioannis Kapsouras1 ·Nikos Nikolaidis1

Received: 29 August 2017 / Revised: 31 March 2018 / Accepted: 23 May 2018 /
Published online: 4 July 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Two action recognition approaches that utilize depth videos and skeletal informa-
tion are proposed in this paper. Dense trajectories are used to represent the depth video data.
Skeletal data are represented by vectors of skeleton joints positions and their forward dif-
ferences in various temporal scales. The extracted features are encoded using either Bag of
Words (BoW) or Vector of Locally Aggregated Descriptors (VLAD) approaches. Finally, a
Support Vector Machine (SVM) is used for classification. Experiments were performed on
three datasets, namely MSR Action3D, MSR Action Pairs and Florence3D in order to mea-
sure the performance of the methods. The proposed approaches outperform all state of the
art action recognition methods that operate on depth video/skeletal data in the most chal-
lenging and fair experimental setup of the MSR Action3D dataset. Moreover, they achieve
100% correct recognition in the MSR Action Pairs dataset and the highest classification rate
among all compared methods on the Florence3D dataset.

Keywords Kinect · Bag of Words · Vector of Locally Aggregated Descriptors ·
Action recognition · Fusion · Depth video · Motion capture data · MSR Action3D

1 Introduction

Depth videos have been lately used very often in computer vision and video analysis and
understanding research, especially since the release of the Microsoft Kinect RGBD device
in 2010 [45]. Kinect is able to record depth video data and can also track the skeletons of
the humans depicted in the videos (Fig. 1), transforming motion capture (mocap), a rather
expensive procedure until recently, to a common and affordable operation. Thus, many
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Fig. 1 A depth frame acquired
by a Kinect device, alongside
with the tracked skeleton of the
depicted subject

algorithms that utilize skeletal data and/or depth video data have been introduced through
the past few years.

One important research topic related to data acquired from depth cameras is action recog-
nition. Action recognition is the process of labeling a motion sequence with respect to the
human actions depicted in them. Action recognition has numerous applications including
human computer interaction, video surveillance, multimedia annotation and retrieval, etc.

This paper presents two multimodal action recognition methods that operate on features
derived from both depth and skeletal data. The proposed methods fuse information from
both modalities and manage to achieve better action classification rates compared to those
obtained by using information from only one modality.

The first approach is an extension of the method presented in [19]. In the proposed exten-
sion, depth videos are combined with skeletal information used in [19]. Dense trajectories
[38] (actually their improved version) are used as features for the depth video since they
have been shown to be very efficient for action recognition. Since their introduction, dense
trajectories have dominated the area of event/action detection/recognition due to their supe-
rior performance over other video features. Similar to [19], posture vectors, containing the
3D positions of skeletal joints, and their forward differences in different temporal scales are
extracted from skeletal data. These features can model complex human actions and take into
account both the pose of the skeleton and its changes through time and have been shown to
achieve state of the art action recognition results on skeletal data. The bag of words frame-
work [7] is used to encode the sequences and Support Vector Machines (SVM) are used for
classification. In more detail, a fuzzy scheme is used to encode dense trajectory features
instead of the hard encoding scheme of the classic Bag of Words (BoW) framework. A vot-
ing scheme is used with the skeletal features. Information derived from both skeletal and
depth video data is fused before the classification through kernel addition.
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In the second approach, the same types of features are used to represent the skeletal and
the depth video data. Vector of Locally Aggregated Descriptors (VLAD) [17] is used in
this approach for encoding the features of each sequence. VLAD is similar to BoW and
is applied in a similar way to both modalities (depth video and skeletal data). K-means is
applied on the extracted features and then the association of each feature vector with each
cluster center is computed. The main difference from BoW is that, instead of encoding each fea-
ture vector to its closest centers (centroids), the residuals of the feature vectors from the closest
centers are encoded. The same fuzzy and voting schemes utilized in the first approach
are also used here for video and skeletal features respectively, whereas a Radial Basis
Function (RBF) kernel SVM is used for classification. The two modalities are fused with
kernel addition as in the BoW framework. A flowchart of the two approaches is shown in
Fig. 2.

The proposed approaches were tested in three action datasets and in various experimen-
tal setups. The methods outperformed all state of the art methods for action recognition
in the most credible and challenging experimental setup of the MSR3D dataset. One of
the proposed variants achieved perfect recognition in MSRAction Pairs dataset and two
of the variants achieved the highest classification rate among all compared methods on
the Florence3D dataset. Results show that the combined use of the two modalities can
significantly increase the correct classification rate (Section 4). These findings verify the
fact that approaches fusing information from more than one modality provide in most
cases better results than their single-modality counterparts, since they can take advantage
of the richer information contained in the combination of modalities. Of course, fusion is
effective only if the used modalities bear complementary information i.e., they are uncor-
related. This seems to be indeed the case in skeletal and depth video data, when using
the selected features. Due to the nature of depth video data, dense trajectories features on
these data concentrate in the human silhouette. Thus the information they carry is, to a
significant extent, complementary to the information carried by the skeletons. Moreover,
skeletal data, especially those from Kinect, are often noisy. In this case, one can expect that
information from the depth modality will be of significant help in the action recognition
task.

The remaining of this paper is organized as follows. In Section 2, we present a review
of previous work on this topic. Section 3 presents the proposed methods. Experimental
performance evaluation and comparison with other approaches is presented in Section 4.
Conclusions follow in Section 5.

Depth Video
Data

Skeletal
animation

data

Posture Vectors

Video Vectors

Skeletal Vectors

Dense Trajectories

HOG

HOF

MBHx

MBHy

BOW Framework / 
VLAD Framework

Fig. 2 Flowchart of the two proposed multimodal action recognition approaches
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2 Related work

Action recognition from video data has been for many years a very active research field.
Surveys and reviews of action recognition methods on such data can be found in [1, 14,
37]. A review of public datasets used for the experimental evaluation of such methods can
be found in [4]. However, motion capture technology became widely available only dur-
ing the last years. Hence the body of research for movement recognition on mocap/skeletal
data is not as extensive as for video data. A review of spacetime representations of skele-
tal data for action recognition or related tasks is presented in [13]. In [18], the human
poses were represented by codewords adopting the Tree-Structured Vector Quantization.
Two approaches were followed for the classification: a spatial approach, based on the his-
togram of codewords, and a spatiotemporal one, based on codeword sequence matching.
Shariat and Pavlovic performed activity classification by using a 1-NN classifier in [30].
They used as distance metric the alignment cost between sequences computed by a sequence
alignment algorithm called IsoCCA. IsoCCA extends the Canonical Correlation Analysis
(CCA) algorithm, by introducing a number of alternative monotonicity constraints. Their
method achieved improved classification rates compared to other alignment algorithms,
such as Canonical Time Wrapping (CTW), Dynamic Time Wrapping (DTW), Hungarian
and CCA. In [27] a method for the classification of dance gestures represented by skele-
tal animation data is proposed. An angular skeleton representation that maps the motion
data to a smaller set of features is applied. The full torso is fitted with a single reference
frame that is used to parametrize the orientation estimates of joints. A cascaded correlation-
based maximum-likelihood multivariate classifier is applied to build statistical models for
the classes. The classifier compares the input data with the model of each class and gen-
erates a maximum-likelihood score. An input gesture is finally compared with a prototype
one using a distance metric that involves DTW. The method proposed by Deng et al. in
[9] applies the K-means algorithm in five partitions of a human model, namely, torso, left
upper limb, right upper limb, left lower limb and right lower limb. Then, a generalized
model is used to represent each K-means class. For continuous motion recognition, body
partition index maps are constructed and applied, whereas for isolated motion recognition
the authors propose a voting scheme that can be used with common dynamic program-
ming techniques. They also present a new penalty-based similarity measure for DTW.
The use of the most informative joints in order to represent skeletal sequences for action
recognition was proposed by Ofli et al. in [22]. A sequence is segmented either by using
a fixed number of segments or by using a fixed temporal window. Then, the proposed
features (the most informative joints) are computed in these segments and used to repre-
sent the sequence. Nearest neighbor and SVM are used for classification. Han et al. used
a hierarchical discriminative approach in [12] for human action recognition. The human
motion is represented in a hierarchical manifold space by performing a hierarchical latent
variable space analysis. Conditional random fields are used to extract mutual invariant
features from each manifold subscpace, and the classification is performed by an SVM
classifier.

Action recognition in depth video data became more popular with the release of devices
such as Microsoft Kinect. Indeed, a number of methods proposed for action recognition on
Kinect data often use the depth video data. Li et al. in [20] proposed a method for action
recognition in depth video data without the use of the corresponding tracked skeleton. They
construct an action graph to encode human actions and propose a bag of 3D points approach
to characterize a set of salient postures that correspond to the nodes in the action graph. They
also propose a projection method to sample the 3D points from the depth maps. The MSR
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dataset, widely used in the action recognition community, is also introduced in this paper.
Chen et al. proposed the use of the Local Binary Pattern (LBP) operator for action recog-
nition in depth video data in [5]. In more detail, the LBP operator is applied in three Depth
Motions Maps, calculated by projecting the frames of a depth video onto three orthogo-
nal planes (front, side, and top). The authors used Kernel Extreme Learning Machine for
the classification. Depth motion maps are also used by Wang et al. in [42]. At first, 3D
point clouds are computed from the depth video data and weighted depth motion maps
are generated. Three orthogonal projections and different temporal scales are used to cal-
culate the depth motion maps. Deep convolutional neural networks (ConvNets) are trained
for the classification. Another method applied on depth video data is proposed in [40]. The
authors extract occupancy patterns features in 4D volumes. A weighted sampling approach
is proposed for excluding subvolumes that do not contain any useful information. Sparse
encoding is performed in order to encode the extracted features and SVM is used for clas-
sification. Rahmani et al. in [26] propose a method for action recognition applied on point
clouds derived from depth video data. The method involves a detector and a descriptor for
such point clouds. The descriptor is called Histogram of Oriented Principal Components
(HOPC). PCA is performed in a volume around a point of the cloud and the resulting eigen-
vectors are projected onto different directions. The projections, scaled by the eigenvalues
are concatenated to form the descriptor. The proposed spatio temporal detector is used to
find keypoints in the point cloud, where the descriptors will be computed. SVM is used for
classification. Wang and Wu proposed a method [39], called Maximum Margin Temporal
Warping (MMTW), that learns to align action sequences and measure their matching score.
A model is learned for each action class so as to achieve the maximum margin separation
from the other classes. The learning process is developed as a latent structural SVM. The
cutting plane algorithm is used to solve the SVM. Oreifej and Liu in [24] represent a depth
action sequence by forming a histogram of the surface normal orientation in time, depth and
space. Moreover, they use a novel discriminative density measure to refine the quantiza-
tion and SVM for classification. Neural networks were used by Veeriah and Zhuang in [33]
for action recognition. In more detail, the authors proposed the differential Recurrent Neu-
ral Network (dRNN), a variation of the long short-term memory (LSTM) neural network.
The LSTM does not consider the impact of spatio-temporal dynamics in human actions. To
address this problem, the authors proposed a differential gating scheme that captures the
information gain between the frames. dRNN quantifies this information using Derivative of
States (DoS).

Skeletal data, e.g. those provided by Kinect, were also used for action recognition. Xia
et al. [43] used Hidden Markov Models to perform action recognition on 3D skeletal joint
locations, extracted from Kinect depth data. The data were represented by histograms of
3D joint locations and action sequences were encoded using Linear Discriminant Analysis,
clustering and vector quantization. Eweiei et al. proposed a method for action recognition
on skeletal data in [10]. The authors used joints position, joints velocity and the correlation
between location and velocity as features. Partial Least Squares (PLS) is used to learn a
representation from these features and an SVM is used for classification. Luo et al. in [21]
proposed the use of sparse coding to address the problem of action recognition in skeletal
data. The differences of all joints from a reference frame are used as features. The extracted
features are utilized from a dictionary learning algorithm that learns a different dictionary
for each action. Features are quantized to the dictionaries and group sparsity, alongside
with geometry constraints, are used in order to aid the proper reconstruction of features. A
new set of features (local occupancy patterns) and a new temporal patterns representation
(Fourier temporal pyramid) was proposed in [41] in order to represent 3D joint positions.
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The authors defined the so-called actionlets, each being a certain conjunction of the features
for a joints subset. A sequence is represented as a linear combination of actionlets. SVM
is used for classification. Chen et al. [6] proposed a two-level hierarchical framework for
action recognition that operates on skeletal data. In the first level, the most important joints
for each action are used to form a five dimensional vector. These vectors are used to cluster
the action sequences. In the second level, motion feature extraction is performed by using
only the relevant joints of the first level. Pairwise differences in different temporal scales
are used as features and standard deviation is used to determine the time scale of these dif-
ferences. Finally, action graphs applied to motion features are used for classification. The
authors in [35] propose a new skeletal representation for action recognition. Instead of using
the joint locations, they model the relative 3D geometry between different body parts as a
point in the Lie group SE3 × · · · × SE3, where × denotes the direct product between Lie
groups. Hence, human actions are modeled as curves in the Lie group SE3 × · · · × SE3.
In order to perform classification, the authors map the action curves from the Lie group to
its Lie algebra, which is the tangent space at the identity element of the group. Moreover,
they use DTW and the Fourier temporal pyramid to cope with rate variations, temporal
misalignment and noise. Finally, the use linear SVM for classification. Anirudh et al. in
[3] use shape silhouettes on the Grassmann manifold [32] and skeletal joints as points on
the product space SE3 × · · · × SE3 [35] as features that lie on different manifolds. They
embed the features in a lower dimensional manifold by using a manifold functional vari-
ant of PCA (mfPCA). Classification is done through SVM. Vemulapalli and Chellappa in
[34] use 3D rotations between various body parts to represent each skeleton. In more detail,
to obtain a scale-invariant representation, the authors use only the rotations to describe the
relative 3D geometry between parts. The authors used a representation similar to that in
[35] to model the human actions as curves in a Lie group. In order to classify the mod-
eled actions, the authors unwrap the action curves onto the Lie algebra by combining the
logarithm map with rolling maps (that describe how a manifold rolls over another, with-
out slip and twist, along a smooth rolling curve). The mapped curves are classified using
SVM. Gowayyed et al. in [11] proposed a new descriptor to represent the 3D trajectories
of body joints and perform action recognition. The descriptor is a histogram of oriented
displacements in 2D space. Each displacement in the trajectory votes with its length in a
histogram of orientation angles. The authors compute the descriptor for each joint in xy, xz
and yz projections and then concatenate the histograms. In order to take into account the
temporal information, they use the temporal pyramid approach to construct the final vector
that represents the human action. Yang and Tian in [44] proposed a new type of features
for action recognition on skeletal data. The authors compute the pairwise joint differences
within the current frame, between the current frame and the preceding frame and between
the current frame and the initial frame. The final feature vector is formed by concatenating
these three vectors. PCA is used to reduce noise and the final vectors are called EigenJoints.
Naive-Bayes-Nearest-Neighbor (NBNN) is used for classification. The covariance matrix
for skeleton joints locations over time is used as a descriptor by Hussein et al. in [15] to
address the action recognition problem. To use the temporal dependency of joint locations,
multiple covariance matrices are computed in a hierarchical fashion. Linear SVM is used for
classification. Amor et al. in [2] represent the skeletons as trajectories on Kendall’s shape
manifold. In order to make these representations suitable for statistical analysis, they use
a combination of the transported square-root invariant vector fields (TSRVFs) of trajecto-
ries and the standard Euclidean norm. The authors used these representations for smoothing
and denoising skeleton trajectories using median filtering, up and down sampling in time
domain, simultaneous temporal registration of multiple actions and for extracting invertible
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Euclidean representations of actions. The latter were used to address the action recognition
task with SVM classification.

The main difference of the methods presented above with the method proposed in this
paper is the use of only one modality. In this paper, both depth and skeletal data are used to
achieve high classification rates for action recognition.

A limited number of methods, i.e. those proposed in [23, 25, 36, 47] and [29] also use
both video and skeletal data. Vieira et al. [36] introduced a new feature representation in
order to combine spatial and temporal information and to encounter for the intra-actions
variations. The proposed features are applied on depth maps. The authors divide space and
time in small segments in order to create 4D cells and use a function to determine the number
of space-time points that fall into these cells. The points of all cells form a high dimensional
feature vector that represents an action. Skeletal information is also used in order to obtain
view invariance. In [47], spatiotemporal features are extracted from video data. In more
detail, Harris3D is used as a detector for keypoints and Histogram of Oriented Gradient
(HOG), Histogram of Optical Flow (HOF), Histogram of Oriented Gradient 3D (HOG3D)
and ESURF are used as descriptors. Pairwise distances of joints, joints differences between
current and previous frame as well as joint differences between the current and the first
frame are used to represent the skeletal data. A bag of words approach is used in both
video and skeletal data and a random forest technique is applied to fuse and classify the
histograms from the two modalities. Ohn-Bar and Trivedi [23] proposed two sets of features
for action recognition on both depth video and skeletal data. For the depth data, the authors
use a modified Histogram of Oriented Gradients approach called HOG2. They compute
histograms at each frame in box regions around each joint. The resulting histograms are
concatenated and the algorithm is reapplied on this array to capture temporal dynamics.
Affinities within sequences of joint angles are used for the skeletal data. Depth video and
skeletal data features are used to represent an action in a bag of words approach. In [29] a
multimodal method for action recognition that combines different features in the learning
process is proposed. The authors use skeleton features, local occupancy patterns (LOP) and
histogram of oriented 4D normals (HON4D). They use a joint sparsity regression based
learning method to select the most discriminative joints for different action classes and
use these joints to train classifiers. They also propose a hierarchical mixed norm which
includes three levels of regularization over learning weights in order to model the hierarchy
of the different types of features and build an integrated learning and selection framework.
Rahmani et al. [25] also used information from both video and skeletal data. The depth
video data are divided into subvolumes and depth alongside with depth gradient variations
are encoded to histograms so as to form video features. The differences of each joint from
a fixed joint position are encoded to histograms to form skeletal features. Moreover, a 3D
space-time motion volume is computed for each joint, to encode the space-time area of the
joint. These volumes, along with their differences from a fixed joint position are also used
as skeletal features. Random Decision Forests (RDF) are used to fuse the different types of
features and for classification.

The proposed methods are multimodal, like those reviewed in the previous paragraph
i.e. [23, 25, 29, 36, 47]. The method proposed in [36] does not use skeletal data for feature
extraction, as in the methods proposed in this paper, but only for alignment purposes. The
differences between the proposed method and the method in [47] are the fusion technique
and the features used to represent the sequences. Random forests are used in [47] to fuse
histograms created by the bag of words framework while kernel addition is used for fusion
before the SVM classification in the proposed method. Moreover, dense trajectories are
used for feature representation of the video data in the proposed method, instead of
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spatiotemporal interest points (STIPs) used in [47]. Regarding the skeletal data, forward
differences in different temporal scales are used instead of pairwise differences in [47].
The method in [23] and the proposed method both use the bag of words framework, but
the proposed methods use a voting scheme instead of hard encoding. Moreover, this paper
also investigates the use of a different encoding scheme (i.e. the VLAD framework). Also,
different features were used both in video and skeletal data (Dense Trajectories instead of
HOG2 for video data and posture vectors and forward differences instead of affinities within
sequences of joint angles). The method proposed in [29] also uses different features than
the proposed methods. In the skeletal data modality, the authors perform a joint selection to
select the most discriminative joints before feature extraction while the proposed methods
use information from all the joints of the skeleton. The method in [25] uses also different
types of features both for depth and skeletal data and a different classification framework
(RDF instead of SVM).

In general, although the constituent parts (BOW, VLAD, dense trajectories etc) of the
introduced methods were proposed elsewhere, the proposed combination is novel and leads
to above the state-of-the-art or state-of-the-art results. It should be also stressed that, as men-
tioned above, there is a rather limited number of activity recognition methods that combine
skeletal and depth data, a fact that gives our approaches an additional element of novelty.
Finally, the methods have some individual novelty elements, the most important being the
use of soft encoding techniques in the VLAD framework (Section 3.2.2) and the fact that,
as far as we know, this is the first time that VLAD encoding is used with multimodal
data.

3 Method description

3.1 Feature extraction

As already mentioned, the proposed approaches use information derived from both depth
video and skeletal data. Different features are used in order to capture information from
each modality. In more detail, dense trajectories are extracted from the video modality while
posture vectors and forward differences are used to represent information from skeletal
data. Both depth and skeletal features are computed in different temporal or spatiotemporal
scales, hence the resulting representations are able to encode the high variety and dynamics
of human motion.

3.1.1 Depth video data

Dense Trajectories features [38] are extracted from depth video data in the proposed
approaches, as summarized below. At first, dense sampling is performed on a grid spaced
by W pixels. Sampling is performed in a number of spatial scales and the sampled points
are tracked through the video. In order to avoid samples in homogeneous image areas, the
criterion presented in [31] is used to remove points from these areas.

Feature points are tracked on each spatial scale separately by computing the optical flow
field ωt = (ut , gt ) for each frame It , where ut and gt are the horizontal and vertical com-
ponents of the optical flow. Given a point Pt = (xt , yt ) in frame It , its tracked position in
frame It+1 is smoothed by applying a median filter on ωt . Points of subsequent frames are
concatenated to form trajectories (Pt ,Pt+1,Pt+2, . . .), whose length is limited to L frames.
The shape of a trajectory is described by a sequence (ΔPt , . . . , ΔPt+L−1) of displacement
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vectors, where ΔPt = (Pt+1 − Pt ). The resulting vector is normalized by the sum of
displacement vector magnitudes.

A space-time volume aligned with a trajectory is also used to encode motion informa-
tion. The size of the volume is N × N pixels and L frames long and is subdivided into
a spatio-temporal grid. In each cell of this grid, various descriptors are computed. These
include Histograms of Oriented Gradients (HOG) and Histograms of Optical Flow (HOF)
descriptors and Motion Boundary Histograms (MBH) descriptors along the two dimensions
x and y [8]. Summing up, five types of features are calculated for each depth sequence
(Trajectories, HOG, HOF, MBHx and MBHy) resulting to 5 sets of feature vectors: f

traj
i ,

f HOG
i , f HOF

i , f MBHx
i , and f

MBHy
i , i = 1 . . . Q where Q is the number of feature vectors

extracted from a certain video. Dense trajectories extracted from a depth video sequence can
be seen in Fig. 3. These descriptors are computed in different spatiotemporal scales, hence
they can form a rich representation of human motion.

3.1.2 Skeletal data

In the proposed approaches, skeletal data are represented by two types of features: the pos-
ture vectors and the forward differences vectors, in a way similar to the approach used in
[19]. However, the method proposed in [19] was unable to distinguish similar motions that
have different directions (e.g., stand up and sit down). This is because the forward differ-
ences calculated in [19] were not able to distinguish the direction of the human motion. In
this paper, the forward differences are computed in a slightly different manner (2) so as to
encode directional information for the human motion. As will be shown in Section 4.2, the
proposed methods can now distinguish similar actions with different directions.

Skeletal data are represented as a sequence of posture vectors qi , i = 1, . . . , N where
N is the number of frames of the sequence. Each posture vector carries information for the
positions of the skeleton joints in the 3D space.

qi = [xi1, yi1, zi1, xi2, yi2, zi2, . . . , xil , yil , zil] (1)

where l is the number of joints that form the posture vector.

Fig. 3 Dense trajectories
extracted from a depth video
sequence. The red color indicates
feature points, while the green
color indicates the tracking of the
feature points (i.e., the trajectory)
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Skeletal sequences are also represented by vectors of forward differences evaluated over
joint positions. Forward differences estimate the first derivative of a signal and thus, when
applied on joint positions, carry information for the average velocities of the skeleton joints.
More specifically, forward differences in terms of skeletal animation data can be defined as:

υ t
i = Δt [q] = qi+t − qi (2)

where qi , qi+t are the posture vectors in frames i and i + t respectively. υ t
i can be consid-

ered as a vector of the average velocities of the skeletal joints in frame i. In the proposed
approaches, the joints forward differences are computed in different temporal scales, more
specifically for t = 1, t = 5 and t = 10, in order to capture the joints dynamics. Posture
vectors, alongside with forward differences can be seen in Fig. 4.

Summarizing, two types of features, forming 4 groups of vectors are used to repre-
sent a skeletal sequence: posture vectors and forward differences vectors in three different
temporal scales. Thus, each sequence is represented by four sets of feature vectors:
T1,T2,T3,T4:

T1 = {q1, . . . , qN }
T2 = {υ1

1, . . . , υ
1
N−1}

T3 = {υ5
1, . . . , υ

5
N−5}

T4 = {υ10
1 , . . . , υ10

N−10} (3)

3.2 Feature vector encoding

Two different approaches are used to encode the derived feature vectors, leading to two
different variants. These approaches are described below.

Fig. 4 The skeletal features. The
postures vectors refer to the joint
positions in the two skeletons
(t = 0, t = 10), while the
forward differences encode the
displacement of the joints. The
displacements of 6 joints are
shown for t = 10 (red lines)
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3.2.1 Bag of Words framework (BoW)

The bag of words framework with soft encoding can be summarized as follows. Feature
vectors extracted from the training data (dense trajectories for video data and posture vectors
along with forward differences for skeletal data) are clustered using K-means. It should be
noted here that K-means is applied separately on each feature type, i.e. 5 times for the video
features (trajectories, HOG, HOF, MBHx, MBHy) and 4 times for the skeletal features
(posture vectors and forward differences for t = 1, t = 5 and t = 10). The centroids
ck, k = 1, . . . , C, where C is the number of K-means clusters in each of the feature spaces,
form a discriminative representation of the feature vectors. Next, the feature vectors of each
sequence are mapped to the corresponding centroids. A different mapping is used for video
features and for skeletal features. Regarding video features, a fuzzy vector quantization is
used as in [16]. In more detail, let fji be a feature vector of the j -th sequence belonging to one
of the five feature spaces and i = 1 . . . Kj where Kj is the number of feature vectors of j -

th sequence. The fuzzy distances of fji from centroids ck in this feature space are calculated
as follows:

e
j
ik =

(
‖fji − ck‖2

) 2
q−1

, k = 1, . . . , C (4)

where q is the fuzzification parameter (q > 1). Thus, the ej
i =

[
e
j

i1, e
j

i2, . . . , e
j
ik

]
distance

vector is formed. ej
i is l2 normalized and the final vector that represents the j -th sequence

is formed as the mean of ej
i vectors:

vj =
∑Kj

i=1e
j
i

Kj

(5)

This procedure is repeated for each video feature type. Thus 5 vectors are formed to repre-
sent the j -th sequence, namely vtraj

j for trajectories, vhog
j for HOG, vhof

j for HOF, vmbhx
j

for MBHx and vmbhy
j for MBHy features.

For the skeletal features, a voting scheme is used for mapping [19]. In more detail, the
similarities of each feature vector (belonging to one of the four feature spaces) of the j -th
sequence with each centroid of this feature space are computed:

s
j
k = sim(ck,pj ) = exp

⎛
⎜⎝−

⎛
⎜⎝

∑l
i=1(‖ cki − p

j
i ‖2)

0.5 ∗ max
k

(
∑l

i=1(‖ cki − p
j
i ‖2))

⎞
⎟⎠

2⎞
⎟⎠ (6)

where s
j
k is the similarity between centroid ck and a feature vector pj of the j -th sequence.

Then, a vector of ordered similarities: S = [sj

(1), . . . , s
j

(C)], where C is the number of clus-
ters, is formed for each feature vector in sequence j . Finally, a C-dimensional vector vj that
characterizes the sequence (for this feature type) is formed by adding to the bin that corre-
sponds to a cluster center the similarity of the feature vector with this center, starting from
the most similar until the sum of the R largest similarities surpasses the Y% of the sum of all
similarities. In other words, R is found as the value that satisfies the following inequalities:

∑R−1
k=1 s

j

(k)∑C
k=1s

j

(k)

< Y <

∑R
k=1s

j

(k)∑C
k=1s

j

(k)

, R ≥ 2 (7)
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In the special case where s
j

(1) > Y
∑C

k=1 s
j

(k), R is set to 1. This happens, for example,
when Y = 0, a case that corresponds to hard encoding. This procedure is repeated for the 4
skeletal feature types, resulting to 4 vectors that represent the j -th sequence, namely vp

j for

posture vectors, and vυ1

j , vυ5

j , vυ10

j for forward differences with t = 1, 5, 10 respectively.
In total, 9 vectors are used to represent the depth video and skeletal data of each action

sequence.

3.2.2 Vector of Locally Aggregated Descriptors approach

In the second proposed approach, the features are encoded using the Vector of Locally
Aggregated Descriptors (VLAD) framework [17]. The VLAD framework is similar to the
BoW framework but also has important differences.

First, feature vectors are clustered in each feature space by using the K-means algorithm.
As in the BoW framework, K-means was applied separately for each feature type, resulting
to 9 ∗ C centroids, where C is the number of clusters in each feature space. The main
difference between VLAD and BoW lies in the calculation of the vector that represents a
sequence. Instead of forming vectors that encode the distance or similarity of the feature
vectors from the cluster centers as described in Section 3.2.1, the differences of the feature
vectors from cluster centers are used to form vectors that represent the sequences.

In more detail, let Tkj (k = 1 . . . 9) be the sets of features that have been extracted
from the j -th sequence, in the 9 different feature spaces. K-means is applied separately in
each feature type, resulting to C clusters in each feature space. Next, each feature vector
is mapped to the cluster centers. As in the BoW framework, a fuzzy vector quantization
is used for the video features and a voting scheme is used for the skeletal features. To the
best of our knowledge, this is the first time that a voting scheme is used for encoding the
features in VLAD framework. Let bij be the C-dimensional quantization/voting vector that
encodes the association of the i-th feature vector of the j -th sequence with each cluster
center. Thus, for the fuzzy vector quantization, the elements bijm of bij = [

bij1, . . . , bijC

]
(m = 1, . . . , C) are the fuzzy distances of feature vector i from each cluster center, while
for the voting scheme, an element of bij is the similarity of the i-th feature with a cluster
center, if the corresponding cluster center is in the R most similar centers (see Section 3.2.1)
of this feature vector or 0 otherwise. In the next step, vectors v′

z are formed as follows:

v′j
z =

M∑
i=1

bijz

(
tji − cz

)
, z = 1, . . . , C (8)

where M is the number of features extracted from the j -th sequence, bijz is an element of

the bij vector and represents the association of i feature with z cluster center, tji the i-th

feature vector in a certain feature space and cz the z cluster center. Dimensionality of v′j
z is

the same as that of the feature vectors. Then, square root normalization is applied to each
v′j

zq element of v′j
z to obtain v′′j

z :

v′′j
zq = sgn(v′j

zq)

√
|v′j

zq |, q = 1, . . . , O (9)

where O the dimensionality of the feature vector. Subsequently, v′′j
z =

[
v′′j

z1, v
′′j
z2, . . . ,

v′′j
zO

]
is normalized using l2 normalization, vj

z = v′′j
z /‖v′′j

z‖2. The resulting vj
z (z =

1 . . . C) vectors are concatenated to form a final vector of dimensionality L = O × C that
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characterizes the j -th sequence:

V′
j =

⎡
⎢⎢⎢⎢⎣

vj

1

vj

2
...

vj
C

⎤
⎥⎥⎥⎥⎦

(10)

The final vector V′
j is also l2 normalized to obtain Vj :

Vj = V′
j

‖V′
j‖2

(11)

This procedure is repeated for each feature type, and, finally, each sequence is represented
by 9 vectors, namely Vtraj

j for trajectories, Vhog
j for HOG, Vhof

j for HOF, Vmbhx
j for MBHx,

Vmbhy
j for MBHy, Vp

j for posture vectors and Vυ1

j , Vυ5

j , Vυ10

j for forward differences with
t = 1, 5, 10 respectively.

3.3 Classification

SVM is used for classification in both approaches (BoW and VLAD). In more detail, χ2

kernels are used for the BoW framework:

K(sj , sk) = exp

(
− 1

2A

C∑
i=1

(sj,i − sk,i )
2

sj,i + sk,i

)
(12)

where A is the mean value of distances between all training samples. RBF kernels are used
for the VLAD framework:

K(xi , xj ) = exp{−γ ‖xi − xj‖2
2} (13)

Since 9 vectors have been formed to represent each sequence, 9 kernels are computed, one
for each feature type. The kernels are fused (i.e., information from both video and skeletal
data is combined) by computing the mean kernel:

Kf = (Ktraj + Khog + Khof + Kmbhx

+Kmbhy + Kpos + Kυ1 + Kυ5 + Kυ10)/9 (14)

where Ktraj the kernel formed from the dense trajectories features, Khog , Khof , Kmbhx ,
Kmbhy the kernels formed from the HOG, HOF, MBHx, and MBHy features respectively
(the video features) and Kpos,Kυ1 ,Kυ5 and Kυ10 the kernels formed from the skeletal
features, namely the posture vectors and the forward differences for t = 1, t = 5 and
t = 10.

4 Experimental results

The proposed method has been tested on three datasets, namely MSR Action3D (MSR3D)
[20], MSR Action Pairs (MSRPairs) [24], and Florence3D [28]. MSR3D and MSRPairs
datasets contain both depth video and skeletal animation data for each action sequence while
Florence3D contains only skeletal animation data. Skeletal data from all three datasets were
obtained using depth cameras, therefore these data are more noisy than those obtained from
“traditional” (and more expensive) motion capture systems.
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4.1 MSR3D dataset

The MSR3D dataset consists of 10 subjects performing 20 actions with 2 or 3 repetitions
of each action: high arm wave (HighArmW), horizontal arm wave (HorizArmW), hammer
(Hammer), hand catch (HandCatch), forward punch (FPunch), high throw (HighThrow),
draw x (DrawX), draw tick (DrawTick), draw circle (DrawCircle), hand clap (Clap), two
hand wave (TwoHandW), side-boxing (Sidebox), Bend (Bend), forward kick (FKick), side
kick (SKick), jogging (Jog), tennis swing (TSwing), Golf (Golf), pickup & throw (PickT) and
tennis serve (TServe). In total there are 567 action sequences and, as stated in [41], 10 of
these sequences are very noisy. In this paper, experiments using both the 567 and the 557
sequences were conducted. It should be also noted that PCA was applied to the positions
of the joints to de-correlate the data. Both SVM classifiers (RBF and χ2) were trained with
values of the soft margin parameter in the range 2−20, 2−19, . . . , 219, 220 and the best results
are presented. Moreover, q (4) was set to 1.2 and Y (7) was set to 0.05 for all experiments
unless stated otherwise.

4.1.1 First experimental setup

The first experimental setup used to asses the performance of the proposed methods in
MSR3D was initially introduced in [20]. All action sequences of the dataset were used in
this setup. Odd subjects (1,3,5,7) were used for training and even subjects (2,4,6,8) were
used for testing. A depth frame of the dataset alongside with the corresponding skeleton are
shown in Fig. 5. The results of the proposed method alongside with those of a number of
methods that use the same experimental setup are shown in Table 1. As can be observed, the
multimodal (depth and skeletal) representation acquired from VLAD framework achieved
the best results among the proposed variants when both 557 and all 567 sequences were
used. Moreover, as expected, the classification rates achieved by the proposed approaches
when features from both modalities were used are higher than the single modal approaches.
One can also observe that, in all variants, the features acquired from the skeletal data achieve

)b()a(

Fig. 5 A frame from an MSR Action3D sequence: a depth data, b skeletal data



Multimed Tools Appl (2019) 78:1971–1998 1985

Table 1 Correct classification rates in the experimental setup proposed in [20] on the MSR Action3D dataset

557 sequences Unknown number 567 sequences

of sequences

skeletal BoW 92.67 92

depth BoW 91.21 90.55

skeletal + depth BoW 95.6 94.18

skeletal VLAD 92.31 91.27

depth VLAD 91.58 91.27

skeletal + depth VLAD 97.8 96.36

Wang et al. [42] (depth) – 100 –

Eweiwi et al. [10] (skeletal) 92.3 – –

Chen et al. [5] (depth) 91.94 – –

Rahmani et al. [26] (depth) – – 91.64

Wang and Wu [39] (depth) – 92.7 –

Luo et al. [21] (skeletal) – – 96.7

Wang et al. [41] (skeletal) 88.2 – –

Oreifej and Liu [24] (depth) – 88.89 –

Vieira et al. [36] (depth + skeletal) – 81.5 –

Rahmani et al. [25] (depth +skeletal) – 90.3 –

Ohn-Bar and Trivedi al [23] (depth + skeletal) – 94.84 –

Vemulapalli et al. [35] (skeletal) – 89.48 –

Veeriah and Zhuang [33] (depth) – – 92.03

Amor et al. [2] (skeletal) – 89 –

Shahroudy et al. [29] (depth + skeletal) – – 93.1

Hussein et al. [15] (skeletal) – 90.53 (544 sequences) –

Gowayyed et al. [11] (skeletal) – – 91.26

When the number of sequences used in the experiments was not stated in the corresponding paper, a single
result is provided

Values in underline correspond to the best score achieved by the proposed variants

Values in bold correspond to the best overall score achieved

slightly better classification results than the depth video features. Furthermore, the proposed
multimodal variants outperform all other methods except for two. The first one, proposed in
[42] achieves 100% classification rate, outperforming the best proposed variant by 3.64%,
while the method in [21] achieves better performance only by about 0.34% in the case of
567 sequences. The confusion matrix for the proposed depth + skeletal VLAD approach,
for the case of 557 sequences, is presented in Fig. 6. As can be seen in this figure, 16 out of
20 actions are recognized with 100% classification rate. For the remaining experiments on
the MSR dataset, presented in Sections 4.1.2 and 4.1.3, the more challenging set of the 567
sequences was used.

4.1.2 Second experimental setup

A second experimental setup [24] was used to assess the performance of the proposed
method. In this setup, all possible combinations of using 5 persons for training and the
rest for testing were used. These combinations construct a 252-fold cross validation setup.
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Fig. 6 Confusion matrix (20 classes/actions) for fusion + VLAD approach with 96.36% overall correct
classification rate (MSR3D datset)

This setup is obviously more fair and credible. The corresponding results are shown in
Table 2. The best, worst and the mean ± std classification rates are presented. As can be
observed, when both skeletal and depth data are used, both the proposed approaches (BoW
and VLAD) outperform all state-of-the-art methods that have been tested with the same
experimental setup. It can be also seen that, similar to the first setup, the fusion of depth
with skeletal features can increase the classification rates obtained with the use of only one
modality. It should be noted that the VLAD variant achieves slightly better results than
BOW and has more consistent performance across folds, as indicated by its smaller standard
deviation.

4.1.3 Third experimental setup

In the third experimental setup, proposed in [20], the dataset sequences were divided into
three subsets (AS1, AS2 and AS3), each containing 8 actions and recognition was performed
separately within each subset. The actions that form each subset are shown in Table 3. The
AS1 and AS2 subsets group actions with similar movements, while AS3 groups complex
actions. Three different tests, proposed in [20], were performed using subsets AS1, AS2
and AS3 in order to evaluate the performance of the proposed methods and for comparison
with the state-of-the-art. In the first test (TEST 1), 1/3 of the sequences were used for
training and the remaining ones for testing, while in the second test (TEST 2), 2/3 of the
sequences were used to form the training set and the remaining sequences were used for
testing. Finally, in the third test (TEST 3), action sequences of the odd subjects were used
for training and those of the even subjects for testing. TEST 1 and TEST 2 test performance
in small/large training sets respectively and TEST 3 tests performance when the training
and test sets consist of different subjects. The overall classification results (over all three



Multimed Tools Appl (2019) 78:1971–1998 1987

Table 2 Correct classification
rates in the experimental setup of
252-fold cross validation on the
MSR Action3D dataset (567
sequences)

min max mean ± std

skeletal BoW 78.35 91.27 85.10 ± 2.55

depth BoW 70 90.15 80.93 ± 4.26

skeletal + depth BoW 79.04 96.01 89.4 ± 2.97

skeletal VLAD 72.6 92.73 83.33 ± 0.0364

depth VLAD 73.10 92.39 84.13 ± 0.0384

skeletal + depth VLAD 80 96.01 89.66 ± 0.0314

Eweiwi et al. [10] (skeletal) – – 88.38 ± 0.027

Oreifej and Liu [24] (depth) – – 82.15 ± 4.18

Rahmani et al. [26] (depth) 74.36 92.39 86.46 ± 2.28

Rahmani et al. [25] (depth skeletal) 70.9 90.3 82.7 ± 3.3

Anirudh et al. [3] 82.03 88.29 85.16 ± 3.13

Chen et al. [6] (depth + skeletal) 77.39 95.56 87.05 ± 3.75Values in bold correspond to the
best overall score achieved

subsets AS1 − 3) for the three tests are shown in Table 4 alongside with results of methods
that were tested in the same experimental setup.

As can be seen in this table, the proposed methods achieve very high classification rates
in all three tests. The lowest classification rates were obtained in TEST 1, where only the
1/3 of the sequences were used for training. Very high classification rates were achieved in
TEST 2, which is the easiest one, since 2/3 of the sequences were used for training. The
proposed methods also achieved very good classification rates in TEST 3 which is the fairest
one, since sequences of the same subject cannot coexist in both the training and test sets.
The multimodal variants (depth + skeletal BOW and VLAD) achieved higher performance
than their single modality counterparts in all three tests.

The proposed methods were surpassed by one method from the competition and outper-
formed all others in each test. In more detail, the method proposed in [21] achieved slightly
better classification rates (0.86%) from the multimodal BOW variant in TEST 1, while
the method proposed in [5] achieved perfect recognition in TEST 2, surpassing the multi-
modal VLAD variant by 0.43%. The multimodal VLAD variant was also surpassed by the
method proposed in [29] in TEST 3 by 0.6%. However the method in [29] was not able to
achieve as high classification rates as the multimodal VLAD variant in the more difficult
first experimental setup (Section 4.1.1, Table 1).

Table 3 The three subsets of
actions from the MSR database
used in the experiments as
proposed in [20]

Action Set 1 (AS1) Action Set 2 (AS2) Action Set 3 (AS3)

Horizontal arm wave High arm wave High throw

Hammer Hand catch Forward kick

Forward punch Draw x Side kick

High Throw Draw tick Jogging

Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve

Tennis serve Forward kick Golf swing

Pickup & throw Side boxing Pickup & throw
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Table 4 Correct classification
rates in the third experimental
setup (TEST 1, TEST 2 and
TEST 3) proposed in [20] on the
MSR Action3D dataset

TEST 1 TEST 2 TEST 3

skeletal BoW 94.98 94.85 96.17

depth BoW 87.02 96.96 94.84

skeletal + depth BoW 98.04 99.56 96.34

skeletal VLAD 95.85 98.7 94.26

depth VLAD 90.99 97.35 94.25

skeletal + depth VLAD 95.62 99.57 97.6

Gowayyed et al. [11] (skeletal) – – 91.26

Yang and Tian [44] (skeletal) 95.8 97.78 82.33

Shahroudy et al.[29] (depth + skeletal) – – 98.2
Chen et al. [5] (557 seq.) (depth) 98.7 100 94.9

Luo et al. [21] (557 seq.) (skeletal) 98.9 98.9 96.7

Vieira et al. [33] (557 seq.) (depth) 96.8 98.27 87.5

Vemulapalli et al. [35] (skeletal) 95.29 83.87 92.46

The results are the overall
classification rates achieved in
the three subsets (AS1, AS2 and
AS3)

Values in underline correspond
to the best score achieved by the
proposed variants

Values in bold correspond to the
best overall score achieved

4.2 MSRPairs dataset

The MSRPairs dataset was introduced in [24]. The main characteristic of this dataset is that
it consists of 6 pairs of actions: Pick up a box/Put down a box, Lift a box/Place a box, Push
a chair/Pull a chair, Wear a hat/Take off a hat, Put on a backpack/Take of a backpack, Stick
a poster/Remove a poster. Ten subjects perform each action three times. Sequences of half
of the subjects were used for training and the rest for testing. PCA was performed to the
skeletal data as in MSR3D dataset. The classification rates can be seen in Table 5.

One can observe that all the variants of the proposed methods achieve high classification
rates. Again, mulitmodal variants achieve, as expected, better classification rates than the
single modal ones. The skeletal + depth VLAD variant alongside with the method proposed
in [29] achieve the highest classification rate for this dataset (100%). All other methods
tested on this dataset yield lower rates.

Table 5 Correct classification
rates in the experimental setup
proposed in [24] on the
MSRPairs dataset

Classification rate

skeletal BoW 92.13

depth BoW 92.22

skeletal + depth BoW 97.8

skeletal VLAD 95.51

depth VLAD 95.56

skeletal + depth VLAD 100

Shahroudy et al. [29] (depth + skeletal) 100

Vemulapalli and Chellappa [34] (skeletal) 94.09

Amor et al. [2] (skeletal) 93

Eweiwi et al. [10] (skeletal) 99.4

Rahmani et al. [26] (depth) 98.33

Wang and Wu [39] (depth) 97.22

Oreifej and Liu [24] (depth) 96.67Values in bold correspond to the
best overall score achieved
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Table 6 Correct classification
rates in the Florence3D dataset Classification rate

skeletal BoW 94.34
skeletal VLAD 91.51

Vemulapalli and Chellappa [34] 89.82

Vemulapalli et al. [35] 90.88

Anirudh et al. [3] 89.67Values in bold correspond to the
best overall score achieved

4.3 Florence3D dataset

Florence3D [28] is a dataset collected at the University of Florence and consists of 9 actions,
namely wave (wave), drink from a bottle (drink), answer phone (answer), clap (clap), tight
laces (laces), sit down (sitdown), stand up (standup), read watch (read), bow (bow). These
actions are performed by 10 subjects and each subject performs each action 2 or 3 times.
There are 215 sequences in total in this dataset. Sequences of half of the subjects were used
for training and the other half for testing. Classification rates for Florence3D can be seen
in Table 6. It should be noted that depth videos are not provided for this dataset, hence
classification rates refer only to the skeletal data.

As can be seen in this table, the proposed methods achieve higher classification rates
compared to those achieved by other methods that report results in this dataset. The BoW
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Fig. 7 Confusion matrix (9 classes / actions) for skeletal BoW approach with 94.34% overall correct
classification rate (Florence3D dataset)
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variant achieved the highest rates. The confusion matrix for this variant can be seen in Fig. 7.
6 out of 9 classes are classified with 100% classification rate. The action with the lowest
classification rate is drink and is confused with wave, answer and read.

4.4 Discussion

4.4.1 Effect of the number of clusters C in K-means

K-means is used in both frameworks (BOW and VLAD) for the evaluation of the codewords
that will be used for the representation of skeletal and depth features. An obvious question is
how the number of clusters (C) affects the performance of the proposed frameworks. Clas-
sification rates for various values of C for the MSR3D dataset and for the first experimental
setup can be seen in Fig. 8. As can be observed, with the exception of depth + BOW variant,
C has not strong impact to the classification rates achieved by the proposed methods.

4.4.2 Effect of parameters Y and q

A common step in both approaches (BOW and VLAD) is the soft encoding of the fea-
tures. A fuzzy vector quantization is used for the video features (4) and a voting scheme
is used for the skeletal features (7). Two parameters that can affect the classification rate
of the proposed methods are the fuzzification parameter q for the video features in (4) and
parameter Y in (7). The classification rate for various values of Y for the VLAD variant
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Fig. 8 Classification rates for various numbers of cluster centers C
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(when only skeletal features are used) can be seen in Fig. 9. Hard encoding (Y = 0) leads
to inferior results than soft encoding (Y > 0) for Y values up to 0.75. However the perfor-
mance increases only in the range 0 < Y ≤ 0.15 and then decreases, remaining above the
hard encoding performance up to Y = 0.75. Soft encoding utilizes information from more
cluster centers than the closest one, hence the increase of the classification rate is expected
since feature vectors can have high similarity with more than one cluster centers. But as Y

increases, information from less similar cluster centers is used in the encoding, thus the rep-
resentations are less distinct and the classification rate decreases. As a rule of thumb, values
in the range 0.05 ≤ Y ≤ 0.15 shall be used.

The effect of parameter q in the encoding of video features (4) for the VLAD variant
(when only depth video features are used) can be seen in Fig. 10. It is obvious that the
classification rate increases for 1.1 ≤ q ≤ 1.3 and then decreases. The explanation for
this behavior is similar to that given for parameter Y above. A small increase of q result to
increased classification rate since information from the more similar cluster centers is used.
However, by further increasing q, information from more distant cluster centers is used,
resulting to more noisy representations.

4.4.3 Effect of features combinations and SVM kernel

The two proposed variants, combine a number of different features through kernel addi-
tion. An interesting question is whether specific combinations of features lead to good
classification rates. Results for such combinations can be seen in Table 7.
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Fig. 9 Classification rates for various values of parameter Y , for the VLAD variant, when only skeletal
features are used (MSR3D dataset)
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Fig. 10 Classification rates for various values of parameter q, for the VLAD variant, when only video
features are used (MSR3D dataset)

One can observe that, the best classification rates are achieved when all depth and skeletal
features are taken into account, both for VLAD and BOW variants, thus verifying our deci-
sion to use all these features in the proposed approaches. Good results were also obtained
when combining the forward differences skeletal features with all or most of the depth fea-
tures. As a matter of fact, in the case of the VLAD variant, the combination of forward
differences with all depth features or just with MBHxy, HOG and HOF features provides
the same results as those obtained when using the full set of features. This can be perhaps
explained by the fact that forward differences capture the dynamics of human motion. On the

Table 7 Classification rates for
various combinations of features
(MSR3D dataset)

Features fused BOW VLAD

postures + trajectories 79.64% 80.36%

differences + HOG + HOF + MBHxy 93.45% 96.36%

postures + all depth features 90.91% 94.55%

differences + all depth features 93.54% 96.36%

MBHxy + all skeletal features 92.73% 94.55%

all features (depth and skeletal) 95.60% 96.36%Values in bold correspond to the
best overall score achieved
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Table 8 Classification rates for
various kernels (MSR3D dataset) Variant Kernel Classification rate

BOW Linear 90.54%

RBF 93.09%

χ2 95.60%

VLAD Linear 96%

RBF 96.36%Values in bold correspond to the
best overall score achieved

contrary, combinations that involve posture vectors of skeletal data provide inferior results,
which can be attributed to the lack of temporal /dynamic information in these features.

The SVM kernels used by the BOW and VLAD variants also affect the classification
rate. Classification rates observed when using χ2, RBF and Linear kernels can be seen in
Table 8. χ2 kernel is not favorably applicable in the case of VLAD due to the large size of
final feature vectors (having O × C dimensions).

As can be seen in this table, the best result for the BOW variant is achieved using χ2

kernels. This result is expected since this kernel provides very good results in the case of
codebook representations [46]. In the VLAD variant, RBF and Linear kernels achieve very
similar results, RBF being slightly better.

4.4.4 Computational complexity considerations

Another important characteristic of a classification method is the time needed for a sequence
to be classified. The classification time for an unknown sequence of length 60 frames (2 s)
can be seen in Table 9. The framework that was used for classification was trained with
200 and 250 cluster centers for skeletal and depth video data respectively (i.e., those that
achieved the best classification rates). The experiment ran on a PC with a quad-core proces-
sor and 8 GB of RAM. Dense Trajectories were computed using C++ under Linux (with

Table 9 Computational time (in
seconds) of the proposed
frameworks

Data Method component BoW VLAD

Skeletal Feature extraction 0.014

Feature encoding 0.087 0.144

Classification 0.333 1.927

Depth Feature extraction 15.41

Feature encoding 0.42 0.504

Classification 1.22 3.245

Skeletal + Depth Feature extraction 15.424

Feature encoding 0.507 0.648

Classification 1.55 5.172

Overall skeletal 0.434 2.084

Overall depth 17.05 19.16

Overall skeletal + Depth 17.48 21.24
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the code provided by [38]) and the rest of the computations were made using unoptimized
MatLab code under Windows.

As can be seen in this table, the BoW framework is faster than the VLAD one both in the
feature encoding and the classification step. This is easily explained since the dimensionality
of the encoded features is O × C in VLAD where O is the dimensionality of the feature
vector and C the number of the cluster centers and only C in BoW. It can also be seen that
the most time consuming step is the computation of the depth features (dense trajectories).
The single modality variant that uses skeletal data and BoW is the fastest one (0.42 s for
a sequence of 2 s duration) and, considering a time window for continuous classification,
this variant can be used in real time classification scenarios. The skeletal + VLAD variant
(2.08 s for a sequence of 2 s duration) is also suitable for real-time operation. The other
variants involving depth or multimodal data are significantly slower but given appropriate
hardware and optimized implementation, can also operate in real time.

A critical parameter for the computational complexity of the proposed methods is the
number of clusters C. C affects the classification and feature encoding steps, but, obviously,
not the feature extraction step. The effect of C in the computational complexity of the
classification step is shown in Fig. 11 since, as can be seen in Table 9, this step is more time
consuming than feature encoding. As can be observed, the time needed for classification for
the proposed methods is almost linear to the number of clusters and is larger and grows faster
for VLAD. However, according to Fig. 8, good classification results can be achieved even
with a small C. Hence, with a small sacrifice in classification rates, the overall classification
time can be kept fairly low.
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Fig. 11 Computational time (in seconds) for the classification step of the skeletal variants for different
numbers of clusters
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5 Conclusions

Two approaches for human action recognition that exploit both depth video data and skeletal
data are proposed in this paper. Different types of features are extracted from each modal-
ity and two frameworks (BoW and VLAD) are used to encode these features. A fuzzy
vector quantization is used for the encoding of the video features while a voting scheme
is used for the skeletal features. SVM is used for classification and the various represen-
tations extracted from the features are fused using kernel addition. Experiments showed
that the use of both depth and skeletal data leads to enhanced action recognition perfor-
mance compared to that achieved when data of only one type are used. The variants of
the method that fuse information from both depth and skeletal data outperform all but two
existing methods in the cross subject test of the MSR Action3D dataset. Moreover, they
achieve the best classification rate among competitors in the more fair and challenging 252-
fold cross validation test of the same dataset. The correct recognition rate in the MSRPairs
dataset is 100%. Finally, the variants that involve only skeletal data achieve the best clas-
sification rates among the compared methods in Florence3D skeletal dataset. In the future,
extension toward motion clustering, segmentation, indexing and retrieval will be consid-
ered. Moreover, the combination of both frameworks with weighted kernel addition will be
investigated.
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