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Abstract Non-rigid point set registration is often encountered in meical image processing,
pattern recognition, and computer vision. This paper presents a new method for non-rigid
point set registration that can be used to recover the underlying coherent spatial mapping
(CSM). Firstly, putative correspondences between two point sets are established by using
feature descriptors. Secondly, each point is expressed as a weighted sum of several nearest
neighbors and the same relation holds after the transformation. Then, this local geometri-
cal constraint is combined with the global model, and the transformation problem is solved
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by minimizing an error function. These two steps of recovering point correspondences and
transformation are performed iteratively to obtained a promising result. Extensive experi-
ments on various synthetic and real data demonstrate that the proposed approach is robust
and outperforms the state-of-the-art methods.

Keywords Point set registration · Coherent spatial mapping · Local geometrical constraint

1 Introduction

Point set registration is a fundamental and challenging problem which has a wide range of
application in pattern recognition, medical image analysis, and computer vision [2, 4, 8,
10, 25, 27, 28]. Many tasks in these fields, including image fusing, shape matching, motion
tracking, stereo correspondence, and image mosaic, can be typically formulated as point
set registration problem, since point representations is simplest form of salient structure
[4]. With a shape contour represented by the edge points, or the point feature in a image
represented by the locations of interest points, the registration problem is to find the correct
correspondence between two sets of points extracted from the input data and recover the
underlying spatial mapping.

In order to match two point set accurately a small target, a variety of approaches have
been proposed for point set registration in the past few decades. These methods can be
classified into rigid or non-rigid registration, and the choice of them depends on the appli-
cation and different characteristics of the data. For rigid transformation includes only for
scaling, rotation, and translation, rigid registration is relatively easy and has reached some
maturity [2, 4, 11]. By contrast, solving the non-rigid registration problem is quite diffi-
cult, because the underlying non-rigid spatial mappings, which allow anisotropic skews and
scaling, are usually complex, unknown, and hard to model [8]. However, non-rigid regis-
tration is an issue of critical importance since it have been used in many real world tasks
including:medical image mosaic, shape recognition, hand-written character recognition, and
deformable motion tracking.

In this paper, we present a effective algorithm for non-rigid case. To solve this problem,
we have to solve two unknown variables: the correspondence and the underlying spatial
mapping. Because solving for either variable without information regarding the other tends
to be difficult to handle, an iterated optimization method can be used [6, 35]. In this iterative
process, the estimated transformation is used to refine the estimated correspondence, and
vice versa. Their performance degenerates quickly if there are errors in the correspondence
which occurs in many applications particularly if there are a significant number of outliers
in the data and/or the transformation is large [6, 20].

Many algorithms have been proposed to tackle the problem. The most popular point reg-
istration approach is the iterated closest point (ICP) algorithm [2] proposed by Besl and
McKay. They iteratively assign a binary correspondence based on the nearest-neighbor rela-
tionships and refine the rigid transformation by using the estimated correspondence. The
main drawback of this approach is that the correspondence is binary makes a lot of local
minimum. Its performance will degrade badly in the presence of outliers. Chui and Ran-
garajan [8] proposed a general framework for non-rigid point matching based on the optimal
correspondences between two points sets found by with soft-assignment and the non-rigid
spatial mapping modeled as thin-plate spline (TPS). The deterministic annealing technique
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is used to jointly solve the soft-assignment and the non-rigid spatial mapping. This method is
quite similar to the EM algorithm and perform better than ICP. In related work, a rich descrip-
tor called shape context (SC) for point set registration was proposed by Belongie et al. [1].
They attach a descriptor, which captures the distribution of the remaining points relative to
it, to each point. The correspondence problem is solved as a binary linear assignment prob-
lem. But these methods ignore robustness when they recover the transformation from the
correspondence.

To address the robust issue, Lian and Zhang [17] proposed to reduce the energy function
of the robust point matching (RPM) method [8] to a concave function after eliminating the
transformation variables and use concave optimization technique to minimize the resulting
energy function. Ma et al. [19, 21] proposed to solve for correspondence by interpolating
a vector field between the two point sets. Alternatively, the coherence point drift (CPD)
algorithm [29] uses probability density estimation to find the alignment of two point sets,
and it was shown to be robust and accurate performance with respect to outliers, noise and
missing points. Other related work includes the multi-Layer motion based method [22],
Gaussian mixture model based method [15], as well as Locally Linear Transforming based
method [23, 24].

The main contribution of our approach is to robustly estimate the transformations
from the contaminated correspondences. More precisely, the underlying transformation is
recovered by using the global and local geometrical constraint between a set of point corre-
spondences. Our approach jointly estimates the point correspondences and transformation
between two point sets. Firstly, we use feature descriptors such as shape context to find
correspondence between two point sets. Secondly, we estimate a coherent spatial mapping
fitting for the inlier as the transformation. To this end, we preserve the local geometry of
inlier point after transformation. Moreover, the spatial transformation is parameterized by
the thin-plate spline (TPS) [30].

The rest of the paper is organized as follows. Section 2 describes the proposed GLC
method for estimating TPS from point correspondences with global and local geometry con-
straints. In Section 3, we demonstrates our experimental results on various data. Section 4
concludes this paper.

2 Estimating coherent spatial mapping from correspondence

In this section, we consider the global spatial relationship and local geometrical constraint
between a set of point correspondences, and propose an efficient point matching method
which is able to establish accurate correspondences without hurting the correct matches.

2.1 Problem formulation

Given a set of point correspondences S = {(xn, yn)}Nn=1 which are typically perturbed by
noise and by outliers which undergo different transformations, our goal is to distinguish
inliers from the outliers by estimating a coherent spatial mapping f for the underlying inliers,
i.e., for an inlier correspondence (xn, yn), yn = f(xn).

Due to the existence of noise and outliers, it is desirable to have a robust estimation of f.
To make this problem tractable, we assume that, the noise on inliers is isotropic Gaussian
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with zero mean and uniform standard deviation σ ; the outlier distribution is to be uniform 1
a

with being a constant. Suppose there are two data in �, the observed input set X = {xn, n =
1, ·, N} with point xn = (xx

n, x
y
n, 1), and the observed output set y = {yn, n = 1, ·, N} with

point yn = (yx
n, y

y
n, 1) Thus, the likelihood is a mixture model given by

p(Y|X , θ) =
N∏

n=1

∑

zn

p(yn, zn|xn, θ)

=
N∏

n=1

(
γ

(2πσ 2)D/2
e
− ‖yn−f(xn)‖2

2σ2 + 1 − γ

a

)
, (1)

where θ = {f, σ 2, γ } includes a set of unknown parameters, and γ is the mixing coefficient
which specifies the marginal distribution over the latent variable, i.e., ∀zn, p(zn = 1) = γ .
zn ∈ {0, 1} is a latent variable of the n-th sample, where zn = 1 indicates a Gaussian
distribution and zn = 0 points to a uniform distribution.

It is worthy nothing that true parameter set θ can be estimated by maximizing likelihood
(1). A maximum likelihood estimation of θ , i.e. θ∗ = argmaxθ p(Y|X, θ), can be obtained
by seeking the minimal energy

E(θ) = −
N∑

n=1

ln
∑

zn

p(yn, zn|xn, θ). (2)

The coherent spatial mapping f will be directly obtained from the optimal solution θ∗.
In this work, the well known EM algorithm [9] is used to address the problem. It alter-

nates with two steps: an expectation step (E-step) and a maximization step (M-step). The
EM algorithm jointly estimates the responsibility indicating to what degree a correspon-
dence belonging to inlier under the given transformation f and updates f based on the
current estimate of the responsibility. Following standard notations [3], we omit some terms
that are independent of θ . Considering the negative log likelihood function, i.e. (2), the
complete-data log likelihood takes the following form:

Q(θ , θold) = − 1

2σ 2

N∑

n=1

pn‖yn − f(xn)‖2 − ln σ 2
N∑

n=1

pn

+ ln γ

N∑

n=1

pn + ln(1 − γ )

N∑

n=1

(1 − pn). (3)

where pn = P(zn = 1|xn, yn, θ
old) is a soft decision, which indicates to what degree being

inlier.

E-step: Denote P = diag(p1, . . . , pN) as a diagonal matrix. pn can be obtained based on
Bayes rule, i.e.,

pn = γ e
− ‖yn−f(xn)‖2

2σ2

γ e
− ‖yn−f(xn)‖2

2σ2 + 2πσ 2(1 − γ )/a

. (4)
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M-step: Reestimate the parameter set θnew as follows: θnew = argmaxθ Q(θ , θold). The
minimum solution σ 2 ofQ(θ) can be obtained by letting ∂Q(θ)

∂σ 2 = 0

σ 2 = (Y − V)TP(Y − V)

2 · tr(P)
, (5)

Similar to σ 2, the minimum solution γ is

γ = tr(P)/N, (6)

where V = (f(x1); · · · ; f(xN)), and tr(·) is the trace.
After the EM iteration converges, a correspondence (xn, yn) is considered as inlier if

pn > τ , otherwise it is a outlier, where τ is a predefined threshold. It is worth nothing that
the smaller the threshold τ , the higher the outlier rate and registration error are.

2.2 Global and local regularizations

Next we consider the minimization with respect to f. According to the complete negative
log-likelihood (3), the mapping f is estimated by minimizing a weighted empirical error

Q(f) = 1

2σ 2

N∑

n=1

pn ‖ yn − f(xn) ‖2 . (7)

This is in general ill-posed since f is not unique. To generate a smooth mapping fitting
for the point correspondences, we adopt the TPS for parametrization. The TPS is chosen
because it is a general purpose spline tool which can be cleanly decomposed into affine and
non-affine subspaces controlled by coefficients A andW respectively [30]:

f(x) = x · A + K̃(x) · W, (8)

where K̃(x) is a 1×N vector defined by the TPS kernel, i.e.K(r) = r2 log r , and each entry
K̃n(x) = K(|x− xn|). Define the kernel matrix KN×N = {Kij } where Kij = K(|xi − xj |).

To have a stable solution, a typical strategy is to impose regularization on f to control
the complexity of the hypothesis space. Here, we consider the standard TPS regularization
which is given by

φ(W) = tr(WTKW) (9)

which is the bending energy, and is independent on the linear component of the coherent
spatial mapping.

The TPS regularization is a global constraint, and it is useful to keep the overall spatial
connectivity of the point correspondences during registration. However, for point set regis-
tration, the local structures among neighboring points are also very strong and stable. This is
particularly beneficial when the motion between the two point sets is nonrigid. In this case,
a local geometrical constraint is desired to establish accurate correspondences. We preserve
the local neighborhood structure during registration.

In our problem, we hope that the local structures in Y could be preserved after the dis-
placement of X. Each point in X can be reconstructed by a weighted sum of the M nearest
neighbors

xi =
N∑

j=1

αijxj , with

N∑

j=1

αij = 1, (10)
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where the αij are homogeneous barycentric coordinates, and enforce αij = 0 if xj does not
belong to the set of neighbors of xi .

The same relation holds after the transformation f and we can also write

f(xi ) =
N∑

j=1

αij f(xj ). (11)

We then write the local geometry term as follows:

E(α) =
N∑

i=1

l‖f(xi ) −
N∑

j=1

αij f(xj )‖2 (12)

To preserve the local geometry of each inlier point after the transformation f, we combine
TPS regularization term in (9) and the local constraint in (12). This lets us express the
mapping f estimation as the following minimizing problem

	(f) = 1

2σ 2

N∑

n=1

pn ‖ yn − f(xn) ‖2 +λL

2

N∑

i=1

pi‖f(xi ) −
N∑

j=1

αij f(xj )‖2 + λG

2
tr(WTKW).

(13)
where the positive real numbers λG and λL control the tradeoff between data fitting and
global/local geometric preserving.

If we substitute (8) into the expression (13), the error function can be written in the form

	(f) = 1

2σ 2

N∑

n=1

pn‖yn − xnA − K̃(xn)W‖2

+λL

2

N∑

i=1

pi‖(xi −
N∑

j=1

αijxj )A + (K̃i −
N∑

j=1

αij K̃j )W‖2

+λG

2
tr(WTKW)

= 1

2σ 2

N∑

n=1

pn‖yn − xnA − K̃(xn)W‖2 + λL

2

N∑

i=1

pi‖xL
i A + KL

i W‖2

+λG

2
tr(WTKW). (14)

where xL
i = xi − ∑N

j=1 αijxj and KL
i = K̃i − ∑N

j=1 αij K̃j .
It is worthy noting that the (14) can be rewritten as follows

E(A,W) = 1

2σ 2
‖Ỹ − X̃A − P1/2KW‖2 + λL

2
‖X̃LA + PL1/2

KLW‖2 + λG

2
tr(WTKW). (15)

where X̃ = P1/2X, Ỹ = P1/2Y, and X̃L = PL1/2
XL. The third smoothness term is

the standard TPS regularization term. Thus, the local constraint term in (15) has the form
λL

2 ‖X̃LA + PL1/2
KLW‖2. As PL and KL are fixed during transformation estimation, the

local constraint term then becomes λL

2 ‖X̃LA+K̃LW‖2, where K̃L = PL1/2
KL is an N ×N

constant matrix. In this context, the local constraint term plays a role of regularization on the
transformation f , which ensures the well-posedness of the error function minimization, and

it is controlled by a locally linear constraint (i.e., λL

2 ‖X̃LA + K̃LW‖2). Figure 1 illustrates
the schematic of the local geometrical constraint.
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Fig. 1 Schematic of the local geometrical constraint. aModel point sets X (red circles) and target point sets
Y (blue pluses). The goal is to align X onto Y. b Registration result by the proposed method. c Set of putative
correspondences. d Assign neighbors to each point xi , e.g., the five solid pluses around xi . e Compute the
weights Wij that best linearly reconstruct xi from its neighbors. f Optimize the transformation f under the
constraint that each point xi can be reconstructed by its neighbors with weights Wij after the transformation

To solve the TPS parameter pair A andW, we use a QR decomposition [8, 30]

X̃ = [Q1 Q2]
[
R
0

]
, X̃L = [QL

1 QL
2 ]

[
RL

0

]
, (16)
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where Q1 and QL
1 are orthonormal matrices of sizes N × 3, Q2 and QL

2 are orthonormal
matrices of sizes N × (N − 3), and R and RL are upper triangular matrices of size 3 × 3.
With the QR decomposition in place, equation (15) becomes

E(A, �) = 1

2σ 2

(
‖QT

2 Ỹ − QT
2P

1/2KQ2�‖2 + ‖QT
1 Ỹ − RA − QT

1P
1/2KQ2�‖2

)

+λL

2

(
‖QL

2
T
PL1/2

KLQ2�‖ + ‖QL
1
T
PL1/2

KLQ2� + RLA‖
)

+λG

2
tr(�TQT

2KQ2�), (17)

where W = Q2� and � is a matrix of size (N − 3) × 3. Setting W = Q2� implies that
X̃TW = 0, which enables us to clearly separate the warping into affine and non-affine
subspaces [8].

Minimizing the energy function (17) with respect to � and A, we obtain

W = Q2�

= Q2(STS + λLσ 2SLT
SL + λGσ 2T + ε̃I)−1STQT

2 Ỹ, (18)

A = (RTR + λLσ 2RLTRL

)−1
[
RTQT

1 (Ỹ − P1/2KW)

−RLT
QL

1
T
PL1/2

KLW
]
. (19)

where S = QT
2P

1/2KQ2, SL = QL
2
T
PL1/2

KLQ2,T = QT
2KQ2, and ε̃I is used for numerical

stability. Thus we obtain the coherent spatial mapping f in (8).

2.3 Non-rigid point set registration

Point set registration aims to align two point sets {xm}Mm=1 (the model point set) and {yl}Ll=1
(the target point set). Typically, in the non-rigid case, it requires estimating a non-rigid
transformation f which warps the model point set to the target point set. Our approach iter-
atively recovers the point correspondences and estimates the transformation between two
point sets. In the first step of the iteration, feature descriptors are used to establish corre-
spondence. We use the shape context (SC) [1] descriptor proposed by Belongie, which is a
60-dimensional vector, to offer a globally discriminative characterization. The χ2 distance
was used to measure the difference of two points, and then the Hungarian method [5] is
applied to find the initial correspondences between {xm}Mm=1 and {yl}Ll=1. In the second step,
we adopt the proposed method to estimate a coherent spatial mapping fitting for the inlier
as the transformation.

The performance of point matching algorithms depends, typically, on the coordinate sys-
tem in which points are expressed. We use data normalization to control for this. In our
evaluation, we compute two similarity transformations Tx and Ty for the point sets {xn}
and {yn}, i.e. x̂n = Txxn, which ensure that point sets have zero means and average dis-
tance

√
2 to the origin [14]. The regularization parameters λG and λL control the trade-off

between the closeness to the data and the smoothness of the mapping. We set them to 500
in throughout our experiments. Moreover, the uniform distribution parameter a is set to be
5. We summarize the method in Algorithm 1.
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3 Experimental results

In this section we compare our algorithm to other state-of-the-art approaches such as SC
[1], TPS-RPM [8], CPD [29], and MR-RPM [26]. The stability and accuracy of registration
methods is evaluated using the average Euclidean distance between the transformed model
points and their template points.

3.1 Experiments with synthesized data

We first test our method on the synthesized data set by Chui and Rangarajan [8]. The data
have two different shape models: a fish and a Chinese character. The fish consists of 96
points. The Chinese character consists of 108 points. For each model, there are three sets
of data designed to measure the robustness of registration algorithms under deformation,
occlusion, and rotation. In each test, one of the above distortions is applied to a model set to
create a target set, and 100 samples are generated for each degradation level. Figure 2 shows
examples from the synthetic data used to evaluate our approach. We use the shape context as
the feature descriptor to establish initial correspondences. It is easy to make shape context
translation and scale invariant, and in some applications, the rotation invariant shape context
is used as in [35] if necessary.

Figure 3 illustrates the registration progress of the proposed method on fish point sets.
The columns show the iterative alignment progress, and each row provides a different type
of distortion. We align the model point set X (red circles) onto the observed data point set
Y (blue pluses). From Fig. 3, we can see that our method is robust and accurate, and it
typically converges in several iterations.
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Fig. 2 Examples of synthetic data used in the experiments. Top row: the shapes of the fish. Bottom row:
the shapes of the Chinese character. The left column: the template point sets. From the second to the right
column: examples of the target point sets for the deformation, occlusion, and rotation tests, respectively

Figures 4 and 5 show the registration results of our method with comparison to four
state-of-the-art methods: SC [1], TPS-RPM [8], CPD [29], and and MR-RPM [26], which
are implemented using publicly available codes. In the tests of rotation, we use the rotation

Initialization Iteration 1 Iteration 3 Iteration 5

Fig. 3 Illustration of registration progress of our method on fish point sets. The goal is to align X (red circles)
onto Y (blue pluses). From top to bottom: results on deformation, occlusion, and rotation tests, respectively.
The columns show the iterative alignment progress
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Point sets

SC

TPS-RPM

CPD

MR-RPM

Ours

Fig. 4 Registration examples by different methods on the fish shape. The goal is to align the model point
set (red circles) onto the target point set (blue pluses). Top row: template and target. From the second row to
the bottom row: registration results by SC, TPS-RPM, CPD, MR-RPM, and our method, respectively. From
left to right column: the deformation, occlusion, and rotation tests, respectively
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Point sets

SC

TPS-RPM

CPD

MR-RPM

Ours

Fig. 5 Registration examples by different methods on the Chinese character shape. The goal is to align
the model point set (red circles) onto the target point set (blue pluses). Top row: template and target. From
the second row to the bottom row: registration results by SC, TPS-RPM, CPD, MR-RPM, and our method,
respectively. From left to right column: the deformation, occlusion, and rotation tests, respectively
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Fig. 6 Comparison of the registration performance of our method with SC, TPS-RPM, and CPD on the
fish and Chinese character shapes [8]. Left column: the shape of fish. Right column: the shape of a Chinese
character. The error bars indicate the registration error means and standard deviations over 100 trials
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Fig. 7 The first sample in each category used as template

invariant shape context as the feature descriptor in our approach. As shown in the results, we
see that SC and CPD can only generate satisfactory alignments for the shapes with defor-
mation and occlusion, however, our method is able to produce an almost perfect alignment
in all experiments. Note that the other four algorithms are not robust to large rotation, as
shown in the right column of the figures. By contrast, our method is not affected by rotation
since we use a rotation invariant feature descriptor.

We further provide a quantitative comparison on the two shape models, and we test on
all the three sets. The registration error on a pair of shapes is quantified as the average
Euclidean distance between a point in the warped model and the corresponding point in the
target. Then the registration performance of each algorithm is compared by the mean and
standard deviation of the registration error of all the 100 samples. The performance of the
proposed method is compared with four state-of-the-art point matching methods, SC [1],
TPS-RPM [8], CPD [29], and MR-RPM [26]. The statistical results for each setting are
summarized in Fig. 6. The results for the shapes of fish and Chinese character with deforma-
tion are shown in Fig. 6a and b, respectively. For minor deformations, four methods behave
similarly. But our method performs best, especially for large deformations. Figure 6c and d
show the results for the shapes of fish and Chinese character with occlusion, respectively.
The error means of SC, CPD, MR-RPM, and our approach are nearly horizontal, showing
good robustness to occlusion. However, our approach performs best, and it consistently out-
performs CPD. Figures 6e and f show the results for the shapes of fish and Chinese character
with rotation, respectively. The best results are obtained by our method. These plots clearly
show the sensitivity of the CPD, and TPS-RPM to the rotation.

3.2 Experiments with MNIST handwritten digit database

In this section, we perform experiments on the MNIST handwritten digit database [16].
The database consists 10 categories corresponding to the 10 digits (from 0 to 9), where
each category has 1000 images. The size of each image is 28 × 28. Figure 7 shows the ten
templates. For each image, the 48 brightest points were sampled to represent a digit from
the Canny edges. The first sample in each category is used as template and the rest images
are used as the targets for registration test. The spatial mapping f between these two sets
of points is established by the proposed method. Then the estimated f is used to warp the
template shape.

We compare the proposed method with state-of-the-art point methods including SC [1],
TPS-RPM [8], CPD [29], andMR-RPM [26]. The registration error of a pair of digits, which
is quantified as the average Euclidean distance between a point in the warped template and

Table 1 Performance comparison on the MNIST database

SC TPS-RPM CPD MR-RPM Ours

Average error 0.0595 0.0511 0.0833 0.0275 0.0172

Bold emphasis are the best results
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Fig. 8 Articulated shape database. The dataset contains 40 images from 8 articulated objects. Each column
has 5 images from the same object

the corresponding point in the target, is used to quantify the accuracy of the registration
methods. Table 1 shows the average error of the evaluated methods. As shown in Table 1, our
method outperforms the other three algorithms. The average error of the proposed method
is 0.0172 and is less than 0.0595, 0.0511, 0.0833, and 0.0275 respectively, provided by the
SC, TPS-RPM, CPD, and MR-RPM methods.

3.3 Shape classification results

In this section we test our method on the articulated shape data set [18], which contains
40 images from 8 different objects with articulation, as shown in Fig. 8. Each object has 5
images articulated to different degrees. The dataset is extremely challenging due to the high
similarity between different objects. We compare our method to SC [1], CPD [29], and MR-
RPM [26]. In our evaluation, we first sampled two hundred points from the outer contours
of every shape, and run each point matching method to find the correspondence between
two shapes and use the correspondence to warp one of the shapes. We then use SC distance
to measure the similarity between the warped template shape and the target. For both shape
representations, the χ2 distance was used to compare the SC histograms and the Hungarian
method [13] is applied to compute distances between pairs of shapes.

For each image, the four most similar matches from other images in the dataset are
chosen to evaluate the retrieval results. Table 2 gives the number of 1st, 2nd, 3rd and 4th
most similar matches that come from the correct object. From Table 2, we can note that our
method outperforms the other methods. For these shapes, the SC does not work well since
a large deformation in the histogram is incured by the articulation.

Table 2 Retrieval results on the
articulated shapes dataset [18] Top 1 Top 2 Top 3 Top 4

SC 20/40 10/40 11/40 5/40

CPD 32/40 26/40 17/40 6/40

MR-RPM 35/40 25/40 18/40 12/40

Ours 36/40 26/40 19/40 17/40
Bold emphasis are the best results
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(a) (b)

(c) (d)

(e) (f)

Fig. 9 Comparison of the retinal image registration performance of our method with SM. a and b a pair
of retinal images taken at different times. c and d mosaic vessel image results by MS and our method,
respectively. e and f mosaic retinal image results by MS and our method, respectively
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Table 3 comparison of the Root Mean Squared Error(RMSE) of our method with SM on the vessel retinal
image in Fig. 9c and d

SM Ours

Average error 3.52 1.24

Bold emphasis are the best results

3.4 Retinal image registration results

In this section, we apply the proposed methods to the tasks of retinal image registration.
Given an retinal image, the ridge based vascular tree segmentation [12] is adopted to detect
the vascular trees. We use the structure-matching method (SM) [7] to establish the initial
correspondence. Then the proposed method is used to estimate the transformation for the
inlier. Figure 9a and b are a typical pair of retinal images taken at different times. Figure 9c
and d are the mosaic vessel image results by MS and our method,respectively. Figure 9e
and f are the mosaic retinal image results by MS and our method, respectively. From the
seams marked by the red rectangles in Fig. 9c, we can see that the vessel image pairs are
not accurately aligned. By contrast, the matching accuracy of our method is much higher,
as shown the seams marked by the red rectangles in Fig. 9c. A quantitative comparison of
our method with SM is reported in Table 3. As shown in Table 3, our method outperform
SM method. In conclusion, our method is robust for non-rigid registration.

4 Conclusion

In this paper, a new approach is proposed for non-rigid point set registration. The two steps
of estimating the point correspondences and transformation between two point sets are iter-
ated to obtained a reliable result. To this end, we preserve the local structures by expressing
each point as a weighted sum of several nearest neighbors. Experiments on various synthetic
and real data demonstrate that the proposed approach yields superior results to those of the
state-of-the-art methods. We have also presented a method for using the proposed approach
for retinal image registration. Since the matrix inversion and matrix multiplication opera-
tions in (18) and (19), the design of a more robust and efficient measure is required. It might
then be combined sparse approximation based methods or parallel based methods [31–34]
to reduce the time and space complexities.
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