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Abstract A machine cannot easily understand and interpret three-dimensional (3D) data.
In this study, we propose the use of graph matching (GM) to enable 3D motion capture
for Indian sign language recognition. The sign classification and recognition problem for
interpreting 3D motion signs is considered an adaptive GM (AGM) problem. However,
the current models for solving an AGM problem have two major drawbacks. First, spatial
matching can be performed on a fixed set of frames with a fixed number of nodes. Second,
temporal matching divides the entire 3D dataset into a fixed number of pyramids. The pro-
posed approach solves these problems by employing interframe GM for performing spatial
matching and employing multiple intraframe GM for performing temporal matching. To test
the proposed model, a 3D sign language dataset is created that involves 200 continuous sen-
tences in the sign language through a motion capture setup with eight cameras.The method
is also validated on 3D motion capture benchmark action dataset HDM05 and CMU. We
demonstrated that our approach increases the accuracy of recognizing signs in continuous
sentences.
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1 Introduction

Motion capture has penetrated fields that involve human actions such as movies, animation,
medicine, and sports to capture complex human motions in a three-dimensional (3D) space.
The motion capture setup is a complex technology that produces 3D spatial points and time-
varying 3D skeleton models for analysis. 3D trajectories and velocities of the 3D skeleton
points provide an approximately accurate model of human actions in real time. However,
many processing levels are required in the physical and virtual pre- and post-processing
methods to generate usable data.

The sign language involves a complex and nonlinear motion of hands and fingers. More-
over, at times, the head and torso are referred to for explaining a particular sign. Machine
translation of the sign language is researched extensively in two aspects—instrumentation
and signal processing, and computer vision. For the first aspect, the instrument used is a
pair of sensor gloves; the finger movements produce one-dimensional (1D) vectors for clas-
sification by using the sensor gloves. The second aspect involves a two-dimensional (2D)
camera sensor. We believe that 2D time-varying approaches produce superior processing
performance compared with 1D approaches. Sign language is known as a visual language
model because it involves hand shapes and movements with involving the head, face, and
torso. However, the sensor-glove-based approach cannot recognize the signs that involve
hand movements with respect to the head, face, and torso.

The sign recognition problems of using 2D video approaches are still being researched
extensively. In our previous study that involved the use of these approaches, we noted prob-
lems pertaining to the camera sensor resolution, blur camera focus, variation in lighting
conditions, changes in the background, use of non-contrasting colors, occlusions, and move-
ment emptiness. A 3D-based approach can eliminate most of these drawbacks that influence
machine interpretation for sign language recognition (SLR). In this study, we demonstrated
the use of a 3D motion capture technology to recognize gestures of the Indian sign language.

Graphs are a powerful tool for representing structured 3D data. However, graph con-
struction from 3D data is complex for tasks such as human motion retrieval. The complexity
pertains to the spatial characterization of the joint pairs in motion to form similarity metrics
on the vertex and edge pairs in two consecutive motion sequences. This study focuses on
recognizing signs from a continuous dataset containing a sequence of signs exploiting the
above characterizations.

The continuous 3D dataset is recorded using a Vicon motion capture setup with eight
cameras and a video camera involving the RGB color model. The 3D dataset contains 200
signs that form meaningful sentences known as continuous sign frames (CSFs). Each frame
in the sentence dataset is represented with a graph of 57 spatial points known as vertices
and 56 joint pairs known as edges. The intergraph matching algorithm (IGM) is applied on
two consecutive frames, and a threshold is set to extract high-motion sequences from sign
videos. The same process is applied for query sign frames (QSFs) for enabling motion frame
separation. QSFs are the testing input 3D sign video sequence.

An adaptive graph matching (AGM) algorithm is proposed for obtaining the QSFs in the
CSFs. IGM calculates the similarity between corresponding vertices and edges for consecu-
tive QSFs and CSFs. However, for sign language 3D data, the IGM model produces negative
matching because of the small variations between signs in most of the cases. This problem
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is solved by using an AGM model. In this model, each vertex and edge in a QSF and CSF
are matched both spatially and temporally.

First, temporal matching is conducted for finding the signs in the CSF dataset. AGM is
applied on the first three frames and last three frames of the QSF and the entire CSF dataset.
This provides match locations in the CSF dataset. These locations contain a start frame and
end frame to be matched in the CSF dataset. We can obtain multiple start and end frames on
the basis of the number of times the QSF might appear in the CSF dataset. These multiple
CSF’s are grouped to form a group CSF (GCSF) with which the QSF is matched by using a
spatial AGM.

Each spatial graph of the QSF is matched on the basis of both vertex and edge with every
graph’s vertex and edge in the GCSF. This makes our proposed spatial AGM independent
of the number of frames in the QSF and GCSF.

2 Literature review

Last few years saw a surge in research findings related to Human action recognition. The
early days of human action recognition is burdened by computing power, database unavail-
ability and complex algorithms for extracting humans from 2D videos [36]. Few approaches
used spatial and temporal tracking information as a feature for classification along with
spatial shape features [14]. However, 3D model based approaches have reported good recog-
nition rates [21]. The models used were hand build in 3D animation and inducing real
action information to the models is a difficult task. Moreover, it is not possible to define
all action class models beforehand and develop a regression model to match real time 2D
object movements to 3D models [44].

Hence, sensor based approaches [32] are gaining ground with the availability of low cost
sensors such as accelerometers. In [34], mobile based accelerometer data is used to detect
human actions such as walking, running, jumping, jogging etc. Further, in [33], human
activities such as walking up, down, climbing etc are recognized using a dataset of 30 sub-
jects. The activities are performed by wearing a smart phone on the human body. Various
data modelling methods such as probabilistic interval based models [31] and data fusion
models [11] are popular and are considered state–of–the–art.

SLR has transformed with technology from 1D and 2D to 3D models in the last two
decades. The 1D SLR is based on 1D signals acquired from hand gloves [26] and classi-
fied using signal processing methods [24, 25]. Recently, researchers started using the leap
motion sensor [35] to extract 1D signals of finger movements and estimate the related
gestures of the sign language using the hidden Markov models (HMMs).

The faster 1D models produce superior recognition rates when the emphasis is only on
the signs involving the hand movement. However, the sign language involves signs involving
the head, torso, and facial expressions with the hand movements and shapes [39]. 2D video
data of signs produces relatively more information compared with 1D data gloves. By using
2D SLR methods, one can obtain all the elements of a visual language with a constraint
on speed and classification accuracy. Moreover, for 2D SLR, HMMs are the most widely
researched classifiers for continuous and discrete versions of the sign language [6]. Further
studies on 2D SLR models, and the corresponding research challenges can be found in [28,
41, 43]. The other challenge encountered by researchers is the conversion of the detected
signs into meaningful sentences [41]. Figure 1 displays the challenging problems in 2D
SLR, such as hand tracking, occlusions on hands and face, background lighting, varying
signer backgrounds, and camera sensor dynamics for processing.
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Fig. 1 Challenges in 2D SLR processing and elimination of the problems by using in 3D SLR methods

The 3D SLR model solves all the problems observed during 2D SLR. However, using
the 3D SLR model induces new challenges such as large data sets, 2D–3D integration, sign
and non-sign differentiation, 3D shape analysis, and 3D point classification. Due to the
availability of 3D depth sensors in the previous decade such as Microsoft Kinect and similar
RGB-D sensors, SLR has evolved to a new level.

Kinect sensors capture 3D depth images that are sometimes combined with RGB color
video data to form RGB-D video images. Recently, the 3D SLR [1, 3, 30, 42] is explored
to a considerable extent by using these sensors. Moreover, 3D data from Kinect sensors
consists of hand trajectories [10], orientations, and velocities [13] of a single depth image.
Features such as 3D body joint locations [37] and Finger-Earth Mover’s Distance (FEMD)
[49] are used for sign classification.

The features from 3D gestures are classified using HMMs [24], deep convolutional neu-
ral networks [12], weighted dynamic time warping [19], and Euclidian distance measures
[4]. The discriminative exemplar coding by using 3D Kinect data classifies sign videos on
the basis of exemplars learned from the discrimination at the frame level and individual
video level [42]. The experiment employed a set of 2000 American sign language videos
with features such as color, depth, and skeleton information. However, this model cannot
appropriately select the exemplar sign frames from the background clutter.

Literature suggests the extensive use of Kinect for SLR with optimal accuracies for
detecting signs. However, Kinect sensors still has problems with occlusions, cannot accu-
rately perform multi-object sensing, and is signer dependent. The 3D motion capture
technology (3D Mocap) [40] eliminates most of the capture related problems such as
background motion, multiple movements, lighting changes, and occlusions [16].

3D motion capture data analytics is a currently emerging research field, and most
researches use the analytics as a validation tool rather than an analysis tool. In the last few
years, research on analytics is picking pace, and 3D data analytics is the most challenging
problem [47]. Motion features such as trajectories, velocities, and angles between markers
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are used for the classification of human motion [8]. The analysis uses a limited 3D dataset
for classifying less than 10 motions from a large set of features generated. A large dataset
of 3D human motions for use in applications such as sports, dance, and gait can be found
in a previous study [48]. For 3D SLR, the shapes, trajectories, and angles change abruptly
with less scope for periodicity in the motions.

Utilizing geometric relationships between 3D motion data to identify motions in a 3D
video sequence [2, 17, 38] is by far the most successful analytical model technique. How-
ever, these models use static data for finding the geometric relationship in marker joint
spatial data. 3D motion capture produces spatiotemporal joint data [29] for analysis and
requires a model to define this relationship among joints in the sequence of frames.

Human motion recognition method specified in [29] is recognized by representing 3D
human joint data by using undirected graphs g (v, e), where v represents the vertex and e is
the edge that represents the path between two consecutive vertices. This model was used in
the present study on SLR by using 3D motion capture. Computer vision researchers discov-
ered the efficient use of graphs in representing image objects for shape matching and motion
segmentation on both 2D and 3D data sequences [18]. In [7], the human motion in each
frame is represented by a graph, and the matching similarity is calculated between train-
ing and testing data. In [45], a hyper-graph matching (GM) algorithm recognizes human
motions from by using the spatiotemporal features extracted from graphs. Graph-based
techniques are researched using adaptive graph kernels (AGK) in [29]; these techniques
include the Kuhn–Munkres GM algorithm [46] and dynamic programing [9] for 3D human
motion matching. Graph kernels have received extensive appreciation from researchers for
3D continuous data [15].

The 3D motion retrieval problems are accurately addressed using AGM, as discussed
above. However, most of the researches address problems in the temporal domain by using
temporal pyramid structures. The problems pertaining to the use of temporal pyramids for
SLR are related to the video length of a sign. Each sign video in the QSF has a different
length from the same sign in the CSF dataset. Moreover, the use of fixed length windows for
temporal pyramid construction provides negative results for 3D SLR. Hence, we designed
a sign location identification algorithm and multiple frame matching between QSFs and the
CSF datasets for improving sign extraction. Compared with the temporal pyramid model,
the sign recall accuracy has improved when the aforementioned methods are used. Figure 2
displays the flowchart of the proposed 3D SLR process.

3 3D GM for SLR

3.1 Preparing 3D sign graphs

A graph g (v, e) is a set of connected points in 3D space v → R (x, y, z). Moreover, e →
R = d

(
xi, yj , zk

)
represents the pair-wise distances of vertices, where i, j, k → I identify

joint vertex pairs. The 3D motion capture environment offers a natural inclination toward
graph theoretical analysis. A graph with 3D data is denoted with a two-tuple g = {v, e}.
The features for vertices and edges are quantified by v = [v1, v2, ...., vn] ∈ Rdv×nand
e = [e1, e2, ...., en] ∈ Rde×(n−1), respectively. Here, dv and de are dimensionalities of
vertices and edges in a graph g, respectively, and n denotes the number of vertices in a
graph.

For the sign language representation, we designed a 3D model by using a set of 57
marker points, as shown in Fig. 3. The 57 markers cover 98% of the movements involved
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Fig. 2 Flowchart for the proposed 3D SLR process
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Fig. 3 Signer’s representation in 3D motion capture

in sign language. Each marker is labeled and is represented as a vertex or node of a graph.
Edges are defined as distance between two adjacent marker points. Thus, graphs for the 3D
sign language are represented using 57 vertices and 56 edges. The current study focused on
representing 3D points as a symmetrical graph, where edge features are symmetrical with
respect to the horizontal axis of the graph. This notation for graphs representing 3D data
can be used for both undirected and directed graphs.
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Signs in a sign language represent non-static, nonlinear movements of human hands and
fingers and sometimes involve the head, face, and torso. 3D trajectories that are represented
by T t = (xi, yi, zi)t → vi

t form the features of the vertex in t th frame and ith vertex. An
edge in the t th frame is a distance feature that is computed between two adjacent ith and
j th vertex in a graph.

e
ij
t = ∀

i,j

∥
∥vi − vj

∥
∥2

2 (1)

Each frame in the 3D sign video is represented with the same features. Signs are a combi-
nation of time-varying spatial relations between the features in a single frame graph. Hence,
the 3D graphs for representing signs are a set of adaptive graphs, as shown in Fig. 3. with
labeled vertices.

3.2 3D sign AGM

A 3D adaptive graph g (v, e, t), where t is the frame rate, for a sign, is an entity that adapts
non-linearly in accordance with the movement of the 57 marker points on the signer. A sign
is represented as a set of t frames of spatial deformations on an adaptive graph g. Given
a pair of adaptive sign graphs SD and SQ from the CSF datasets and QSFs of the input
query video, respectively, the AGM is defined as a similarity measure between each ver-
tex and edge pair. For the sign graph from the CSF dataset, SD = {

V D
d ,ED

d ,GD, HD
}
,

and query sign graph from the QSFs, SQ =
{
V

Q
d , E

Q
d ,GQ,HQ

}
, we compute two match-

ing matrices MV ∈ Rn1×n2 and ME ∈ Rn1×n2 for matching the vertex and edge pairs
of the two sign graphs. Here, GD,HD,GQ, HQ contain the encoded topology informa-
tion of the two vertex–edge pairs in a graph, and GD,HD,GQ, HQ ∈ {0, 1}n×m. For
the kth edge, ek starts at the ith vertex and ends at the j th vertex, and thus, Gik =
Hjk = 1. These additional parameters are applicable to the graph if the matching is
being initiated for an asymmetric graph. For SLR, we consider symmetric graphs, where
Gik = Hjk = 1. The parameter d gives the dimensionality of the vertex V and edge E

features.
The similarity measures between ith1 and ith2 nodes of SD and SQ is decided by comput-

ing the equations mv
i1,i2

= �
min

{
vD
i1

, v
Q
i2

}
during vertex matching and me

i1,i2
= �

min

{
eD
i1

, e
Q
i2

}

during edge matching. The sign matching between the dataset and input query is defined as
the vertex and edge matching score and is formulated as

mS =
⎧
⎨

⎩

mv
i,j if ivn = jvn , n − no. of vertices

me
i,j if ivn �= jvn , and Gik, Hjk = 1
0 Otherwise

(2)

where the diagonal elements provide the vertex and edge matches and the non-diagonal ele-
ments provide the non-matches in the matrix mS . However, few implementation problems
are associated with this model for 3D SLR. The first is the number of frames in the 3D sign
dataset. The 3D sign dataset is a continuous set of signs that constitute meaningful sentences
that are used in daily life. These sentences are concatenated to form a complete CSF dataset
having 121 sentences of varying lengths in a sequential format. The total frame count of
the of 3D dataset after combining the signs together is 48572. Due to the concatenation,
the dataset developed redundancy in the form of non-sign frames, that is, non-motion or
less-motion frames. In the next section, we discuss the process of removing the motionless
redundant frames in the dataset.
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3.3 IntraGM for motion frames extraction

Figure 4 displays a frame view of the sign “Good Morning” in the CSF dataset. The intraGM
performed on the entire 3D dataset causes the motion segmentation problem in the 3D spa-
tial domain. This section describes the deformable spatial GM (DSGM) method to extract
motion vertices from less-changing or static vertices. This retains the motion intensive sign
frames only.

Fig. 4 “Good Morning” sign recorded in 600 frames with the intermediate rigid and changing frames with
frame numbers
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In 3D motion capture, {x, y, z} ∈ R, and the trajectories of the markers on a signer’s body
are obtained. Subsequently, vertex features of each graph denoted as SD

t = {V,E,G,H }
are assigned as the vertex trajectories, V = [v1, v2....., vn] ∈ Rd×nt , where d is the
feature dimension and nt is the number of features per frame t . Similarly, the l2 norm
calculation of position vectors for 3D markers presented in (1) represent the edge fea-
tures E = [

e1, e2, ...., en−1
] ∈ Rd×nt . Here, Gik = Hjk = 1 because the graph is fully

symmetrical.
For any two consecutive frames in the dataset represented by graphs SDt and SDt−1 and

a geometrical trancajectories by T (•), we computed the vertex matching score MV (T ) ∈
Rn×n and edge matching score ME (T ) ∈ R(n−1)×(n−1) with the Euclidean distance
function defined as

mv
i1,i

′
1
(T ) =

∥
∥
∥vt

i1
− vt−1

i′1

∥
∥
∥

2

2
(3)

me
(i1,j1),(i

′
1,j

′
1)

(T ) =
∥
∥
∥vt

i1
− vt−1

i′1

∥
∥
∥

2

2
−

∥
∥
∥T (vt

j1
) − T (vt−1

j ′
1

)

∥
∥
∥

2

2
(4)

where
{
i1, i

′
1

} ∈ R and i1 and i2 are the vertices in corresponding frames t and t – 1, respec-
tively. The goal of using DSGM for solving the sign dataset motion segmentation problem
is to retain frames that have high-motion content without re-ordering the sign frames. For
example, in Fig. 3, we have n T (= 602) frames that represent the “Good Morning” sign.
The role of DSGM is to optimize the number of frames from n T to n T′ by removing the
rigid frames and retaining the high-motion content frames in the same order for appropri-
ately representing the sign. The motion frame index (MFI) n′

T is defined as follows by using
the vertex features:

n′v
T = arg

i1,i
′
1∈Rn×n

mv
i1,i

′
1

≥ mv
tr (5)

where the threshold of the vertices for all the common vertex points is defined as

mv
tr = arg max

i1, i
′
1 ∈ R∀i1 = i′1

t ∈ (1 − T )

(
mv

)
(6)

Similarly, the MFI between two consecutive frames with edge features is defined as

n′e
T = arg

i1,j1,i
′
1,j

′
1∈R(n−1)×(n−1)

me
i1,j1,i

′
1,j

′
1

≥ me
tr (7)

with an edge threshold of the following:

me
tr = arg max

i1, j1, i
′
1, j

′
1 ∈ R∀i1 = i′1, j1 = j ′

1
t ∈ (1 − T )

(
me

)
(8)

The sign frame is a motion frame; if both the vertex and edge frame indices are high, then a
maximum real-value number is obtained. Otherwise, the frame is discarded.

n′
T = n

′v
T

⋂
n

′e
T ∈ max (R) (9)

The variable “arg” in (5) and (7) represents the extracted frame from a sequence of frames
in the dataset. The motion segmented sign 3D frames in the dataset are represented as SD .
Moreover, SD forms the dataset for testing the input sign. The input 3D video QSFs also
undergo the same process and are represented by a graph through SQ. AGM between SQ

and SD will provides 3D sign recognition.
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3.4 InterAGM for sign motion extraction

A sign in the sign language contains hand shapes and motions that involve the head, face,
or torso. The objective of SLR in this study is to match the motion components from the
3D features obtained using the motion capture setup with a 3D sign database. The matching
is between the trajectories of the moving body parts represented as graphs in the 3D sign
dataset SD and query sign input SQ. For effective matching between SQ and SD , a two-step
matching is proposed in this study.

In the first step, to avoid matching between all frames in the input query and the CSF
dataset, we match the first three and last three frames of SQ with the entire CSF dataset.
This provides a set of multiple instances that have the same starting and ending frames in
the CSF dataset as that of the input QSFs that are matched. This process is not sufficient for
the sign matching because the number of three frame matchings between CSF and QSF can
be more than one.

However, in the second step, we match each vertex and each edge in the query graph
SQ′

with each vertex and edge in the instantaneous sign dataset SD′
graph. All vertex and

edge matching will model similarity in hand motion and shape with respect to head, face
and torso recognizing sign in the dataset perfectly. Figure 5. displays the GM process used
in this study.

Fig. 5 AGM visualization for sign similarity matching
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3.4.1 Segmenting signs in dataset SD′ → SD∗
γ

The objective of this process is to identify and extract the first and last three frames in the

query dataset SQ′ =
{
V

Q′
d , E

Q′
d ,GQ′

, HQ′}
by referring to the indices bookmarked in the

start and end frames of the CSF dataset SD′ =
{
V D′

d , ED′
d ,GD′

, HD′}
. The first three and

last three frames in the query sign are represented as SQ i ∀ i = 1, 2, 3, tQ −2, tQ −1, tQ,
where tQ gives the number of frames in the query sign video. Matching similarity between
vertex components of the graphs SQ i and SD′

is computed as

mv
i1,{i1,i2,....,in} (T ) =

∥
∥
∥
∥v

tiQ
il

− v
tD{i1,i2,....,in}

∥
∥
∥
∥

2

2
∈ Rn×n ∀ l = 1, 2, ...n (10)

The matching variable is computed for each frame t and for n vertices in both the graphs.
Each vertex in a graph is matched to all n vertices in another graph; thus, a vertex similarity
matrix mv

i1,{i1,i2,....,in} (T ) of size n × n is obtained. In some cases, the number of vertices
is different due to the loss of markers in motion. This occurs in less than 5% of the cases
during capturing the signs. To solve this problem, we use the edge matching similarity when
vertices in graphs are different after computation as follows:

me
(i1,j1),(i

′
l ,j

′
l )

(T ) =
∥∥∥
∥v

tiQ
i1

− v
tD
i′1

∥∥∥
∥

2

2
−

∥∥∥
∥T (v

tiQ
j1

) − T (v
tD
j ′

1
)

∥∥∥
∥

2

2
∈ R(n−1)×(n−1) ∀ l = n − 1

(11)
Similar calculations are performed for the last three frames of the input query sign. The
start frame and end frame indices are computed using the expression and by extracting the
maximum vertex–edge match index.

f D′
s = arg

SD′
min

tQ=1,2,3

(
n∑

i=1

diag
(
mv

i ,m
e
i

)
)

(12)

and the new dataset start frame is

SD′
1 = SD′ (

f D′
s

)
(13)

The end frame in the input video QSF dataset is

f D′
e = arg

SD′
min

tQ=n−2,n−1,n

(
n∑

i=1

diag
(
mv

i ,m
e
i

)
)

(14)

and the end bookmark in the dataset is

SD′
2 = SD′ (

f D′
e

)
(15)

However, there are multiple sentences in the CSF dataset SD′
that contain same words that

have the same sign, such as “Good Morning, how are you today?; My wife looks good; My
life now is in good shape.” Now the process detects each of these “good” signs in the dataset
and generates multiple start and end frames in the dataset. These are stored as GCFSs and
are given by

SD∗
γ = arg

γ

f D′
e⋃

f D′
s

{
SD′

1 , SD′
2

}
(16)
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where γ is the number of GCFSs pertaining to the start and end frames of the input QSF
dataset. The group may or may not contain the sign in the query. By matching the first few
frames in the QSF dataset, we cannot decide whether the same sign being clustered in the
sign group. Hence, in the next process, we match each frame of the QSF dataset SQ′

and
the GCFSs SD∗

γ .
Due to false matching or the same movement between signs, there can be two different

signs grouped into same the sign group. This can be solved by using the algorithm in the
next section. The proposed matching model is visualized in Fig. 5.

3.4.2 Sign recognition with AGM

The AGM is used to recognize the query sign and convert it into text or voice. The motion
of hands with respect to the head or torso is defined by the Euclidian distance between
the vertices on the signer’s hand and the other parts of the body. Similarly, the hand shape
is defined by distances within the hand group. The Euclidian distance is minimum when
the vertices on the tips of all fingers come close to each other; this indicates that the hand
is in the closed shape. If all the fingers are away, the distances between the vertices on
the tips of fingers are large; this implies an open palm. Hence, we estimate the vertex
and edge match for the input signed query SQ′

and extracted sign group SD∗
γ from the

dataset.
The vertex matching similarity index is calculated using the following expression:

mv
S (T ) =

tQ⋃

i=1

∥∥∥v
Qi

il
− v

D∗
i{i1,i2,....,in}

∥∥∥
2

2
∀ l = 1 : n ∈ Rn×n×tQ×tD∗ (17)

A 4D matrix of size n × n × tQ × tD∗ is obtained, which indicates that all nodes in one
frame are matched with the nodes in all the other video frames and the process continuous
for all the frames in the first set. This 4D matrix is a matching matrix between the signs. The
formula to calculate the sign similarity match index for identifying the sign in the frames
can be given as follows:

me
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i=1

∑n
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v
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n2
∈ RtQ×tD∗ (18)

where tD∗ is the number of frames in the dataset sign group γ . The matrix m
γ
s is a non-

diagonal matrix that indicates the matches between frames in the query sign and dataset
group. To find the best match or matches for the query sign in the dataset sign group, we
must compute the edge similarity index between the query sign graph and dataset sign graph.
Because 3D hand shapes are accurately represented using edges, the edge similarity index
is calculated as
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(19)
For each dataset group,
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Finally, to identify the correct sign group, we conduct sign similarity matching on each
group vertex and edge similarity matrices as follows:

S
γ
s =

g∏

jj=1

mv
γ (jj)me

γ (jj) (21)

S
γ
s provides the diagonal similarity matrix that displays matching between the query sign

and sign groups. The maximum matching coefficient obtained after matches the query sign
index and the dataset index is used to decode the text and speech component for the input
query sign.

The following algorithm was experimentally tested on the Indian sign language dataset
that comprises 200 signs in the form of continuous sentences.

4 Experimental results with discussion

In this section, the experimental results obtained after testing the proposed AGM method on
the Indian sign language 3D datasets are proposed. Moreover, the results are compared with
other state-of-art GM techniques that involve the use of temporal pyramids, spectral match-
ing, and AGK. We test the performance of our AGM method by using the word recognition
frequency (WRF) given by the following expression:

Rwmf =
g∏

i=1

N
(
Si

s

)

N
(
Sg

) × 100 (22)

where N
(
Si

s

)
is number of times a sign in the QSF matches a sign in the CSF dataset in the

group and N
(
Sγ

)
represents the number of signs in the group.

4.1 Indian sign language 3D dataset

The experiments were performed on a 3D Indian sign language dataset created at the Biome-
chanics and Vision Computing research lab, K. L. E. F (Deemed-to-be-University), India.
The optical 3D motion setup comprised eight infrared cameras and one RGB video cam-
era to capture the signs. Figure 6 displays the setup with the camera and marker positions
designed for the capturing the signs.

The cameras were adjusted in height, focus, and viewing angle for minimizing data loss
during movements. Each optical camera captures the movement of the markers at 120 fps.
The major problem encountered during 3D motion capture of ISL is in the marker design.
Markers on hands are difficult to capture when the hands are moving in all directions. The
3D template consists of 57 markers that are categorized as 18 left hand, 18 right hand, two
shoulder, one chest, two arm, 12 face, and four head markers. The template in Fig. 3 is
obtained after testing different marker positions. The selected model template produced the
best capture information for the 200 signs [22, 23].

A continuous meaningful sentence is captured to represent the 3D dataset in ISL as CSF.
The paragraph has 200 signs, and 24 signs are repeated more than once in the dataset. Few
examples of the sentences are presented as follows: “Hi, Good, I am good. Hope you all
are doing well. Drink tea and eat biscuits. Women are beautiful, and men are handsome. I
welcome you all. My name is A N I L K U M A R. My father’s name is R A M A R A O.
My mother’s name is R A M Y A. I am the only child born in my family. How are you. I am
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Fig. 6 3D motion capture setup with the camera and marker positions

good. My wife is beautiful. Her sister is a good woman. I have a son and a daughter. They
go to good school. What is that product? I am the hardest working person in my office, and
I enjoy work. Mornings are happy, afternoons are good, and evenings are sad. I am the head
of the product design group at K. L. University. Currently, design is an important phase of
engineering process development. In this short communication, we will learn how to design
sign language modules for automatic SLR. We focus on a video-based sign language model.
This sign language project was stationed in the year 2016 as part of the technology for the
disabled and elderly program by the department of science and technology, government of
India. The principle investigator is Dr. P. V. V. Kishore.”

The aforementioned sentences are formed such that a particular word is repeated multiple
times, as it happens during verbal conversations. The words “good,” “I,” and “my” appears
four, five, and six times, respectively, in the dataset.

For testing, we a database with different sentences by using the repeated words “good,”
“I,” and “my” as follows: “Good afternoon, I am A N I L. I am the only child to father and
mother. I and my wife enjoy work. We buy products in the evening.” The repeated words are
the same in the training and testing sentences conveying a different meaning. This model of
training and testing provides faster outputs compared with the word to word matching of the
signs. In this study, we propose sentence to sentence matching on the basis of four cases: (i)
same training and query datasets with signs stored in the same order, (ii) same training and
query datasets with signs stored in a different order, (iii) different testing dataset with the
same words, and (iv) different testing dataset by involving words from the testing dataset
mixed with new words whose sign movements or shapes are similar to the old words.

Performance of the AGM algorithm was tested on 200 words by using two parameters.
True WRF (TWRF) refers to the signs that exactly match the signs in the dataset. However,
false WRF (FWRF) is calculated for the signs that match signs of other words in the dataset.
Both performance measures are calculated by using (22).

The transformation in the vertex and edge (T ) is set to one. This is due to minute trans-
formations in the adjacent graph topologies while performing a sign. The graphs generated
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from the CSF dataset and QSFs are fully un-connected non-directional graphs. The vertices
and edges of the graph are reconstructed effectively to represent the 57 marker points by
using the nexus software, thus eliminating the scope for noisy measurements.

4.2 AGM conducted by using the same dataset for training and testing
in sequence

The first experiment tests the performance of the AGM algorithm on a continuous sign
sequence that involves 200 words to form meaningful sentences, as presented in the previous
section. Consider the sentences Hi, Good Morning, I am good. Hope you all are doing well.
Drink tea and eat biscuits. Women are beautiful, and men are handsome. The sentences
have multiple repeated words, which have the same sign and is a common feature during
communication.

This experiment tests the AGM model by using the same training and testing data in
the same sequence. We use the same 200-word sentences in the same order for testing and
training. The results for a few aforementioned sentences are shown below. The confusion
matrix obtained after the vertex matching by using (18) is shown in Fig. 7.

By using (22), the TWRF value is estimated to be approximately 100% and the FWRF
is 45%. On the basis of the standards of SLR, the obtained FWRF value is high. The high
FWRF is due to the similar hand movements in the signer’s space for every sign. Hand
movements in a continuous video sequence encounter a similar point space for closely
matched signs.

To overcome this difficulty, edge matching is performed using (20) on the dataset that
produces a TWRF of 100% and FWRF of 85%. Edges are links between two joints, and the
joint noise while performing the signs is higher compared with the vertex noise.

Fig. 7 Vertex GM confusion matrix
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The noise term is used to indicate similar joints for two or more signs. This fact can
be observed in the edge confusion matrix for the same testing sentences, as displayed in
Fig. 8.

Figure 8 displays optimal matching with edges with almost 100 percentage of true match-
ing but false matchings of the signs also increase proportionally. It is crucial to make the
system independent of the 45% FWRF in the vertex matching and 85% FWRF in the edge
matching. Therefore, (21) is employed, which is the product of the vertex and edge match-
ing matrices. The confusion matrix generated using (21) is shown in Fig. 9. The small,
but effective, matching that occurred for each sign with the adjacent signs was eliminated
because the error value increased due to multiplication.

By analyzing the confusion matrices displayed in Figs. 7, 8, and 9, we observe that the
TWRF value is 100%, whereas the FWRF value is considerably decreased to 12.55%. The
matrices in these figures are obtained using (22). For example, the query sign “Hi” matches
perfectly with the sign for “Hi” in the stored database. The “Hi” sign has a video dynamic
range of 1–56 3D frames. There is a strong adjacency effect as the algorithm matches all
vertices with all other vertices in the same frame.

The presence of the adjacency effect can be seen in all figures. However, this does not
show any effect on the recognition rate. The sign “Good” required 57 to 111 frames, and
the matching of this sign is perfect with the same sign in the testing sequence. However,
because we have considered marker trajectories in this study, the hand location for the sign
“Hi” and “Good” are similar. This can be observed in Fig. 10 that displays a set of five
frames that are randomly picked from the sequence.

The dark regions in the confusion matrix have an approximate value of zero, thus imply-
ing a perfect match. The yellow region represents large numerical error values. The signs
“Hi” and “Good” show some resemblance with the sign “beautiful.” The sign beautiful is

Fig. 8 Edge GM confusion matrix
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Fig. 9 Confusion matrix obtained using (21) for the testing sentences in ISL

Fig. 10 3D motion captured sign frames for the words a “hi” and b “good”
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timed between frames 719–833. Figure 11 shows the 3D skeleton of the signs “hi,” “good,”
and “beautiful” in the four frames. The trajectories of the markers in all the three signs are
closely related; hence, a small false recognition appears for these signs. However, the error
values are not exactly zero; hence, these false matching do not hinder the performance of the
algorithm. These problems are common in 2D-data-based SLR, otherwise are fully rectified
in 3D.

For the word sign groups in which similar words appear multiple times in a conversation,
AGM algorithm is the best algorithm for identifying the word sign groups. This conclusion
can be arrived at by analyzing Fig. 9. The following model is used to the find p word sign
groups of similar signs in a continuous sentence:

p = d
(
S

γ
s

)

dSt
(23)

These p groups are clustered into a word sign group such as “are” in the test sentence and
can be seen in Fig. 9.

The word sign appears thrice, and these “are” signs are grouped together into one set.
This process will speed up the system during testing by using the query sequence, where the
algorithm identifies that there are three “are” sign groups in the test sequence. The query
“are” matches at least three locations, which eliminates the multiple indexing problems for
multiple instances of the sign words.

Fig. 11 Hand position similarity in the signs a “hi,” b “good,” and c “beautiful”
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4.3 AGM by using the same dataset for training and testing with words not
in sequence

In experiment 2, we supply a query set that consists of the same words but are arranged in a
different sequence. Consider the query sentences “Hello, I am good. Hope that the morning
biscuits you eat are good. Beautiful women are doing well. Handsome men drink tea.” The
resulting confusion matrix for the QSF is shown in Fig. 12.

The TWRF value is 100%, as shown in Fig. 12. The FWRF value is very small and
is in the range of 6%–8%. Multiple changes in sequences are tested, and the AGM algo-
rithm classified each sign with 100% accuracy. When grouping is initiated after the first
testing is completed, all the similar signs were grouped under two labels. One label is
the sign and other is the starting and ending frames of the signs in the group. During the
second testing round, the same word appears multiple times such as the sign for “are”
excludes the motion extraction phase and extracts the labeled sign from the CSF dataset.
In the experiment 3, we propose using the same CSF and QSF dataset by using a different
signer.

4.4 AGM conducted by using different dataset for training and testing
in sequence

To check the robustness of the proposed AGM algorithm for sign matching on different
human signers, the experiment 3 was designed. Here, the QSF dataset is captured by using
a different signer. The body dynamics change when the signer changes. Therefore, handling
the variations in the trajectories or the locations of markers in a frame is a challenging task.

Fig. 12 Confusion matrix for experiment 2 by using AGM out-of-sequence QSFs
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Fig. 13. displays the confusion matrix obtained by using different signers to generate the
CSF and QSF databases.

The matching pixels in the confusion matrix are not too dark. This indicates that the
Euclidian distance function does not produce a zero value for similar signs. The normalized
distance error is in the range of 0.098–0.155 for the tested signs. However, the TWRF value
calculated from (22) is 100%. There are no signs that the system failed to reproduce during
the recognition phase. However, there are instances when false matching occurred due to
the reasons discussed in the previous sections. In this case, the FWRF value was 10.25%
due to the overlapping in the sign trajectories. The final experiment pertains to matching
signs that are unknown or are similar to the known signs. This experiment was conducted
by using different signers.

4.5 AGM conducted by using different datasets for training and testing words
that are not in sequence

The experiment 4 tests the system’s recall rate when the QSFs is packed with different
words that are closely related to the words in the CSF database. Some of the new words in
the QSFs are “Water,” “Evening,” “My,” “Due to,” “From,” and “in.” Some interesting facts
were identified during this matching process. Figure 14. displays the resulting confusion
matrix.

By close observation, we can see that the “morning” and “evening” sign match has
an FWRF value of 93.45%. However, it can be interpreted as negative FWRF, as shown
in Fig. 14. The signs of both words contain the same hand shapes; however, the hand

Fig. 13 Confusion matrix of experiment 3 obtained by using different signers to generate the CSF and QSF
databases for an out-of-sequence 3D sign video
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Fig. 14 Confusion matrix of experiment 4 obtained when the CSF database and mixed QSFs comprise
known and unknown signs that are used in the CSF database

trajectories for the words are in the reverse direction. Therefore, the matching numbers are
in the reverse order. Similarly, the words “beautiful” and “handsome,” “drink” and “water,”
“you” and “your,” and “me” and “I” or “I am” have similar signs and show a 100% TWRF.
The word “well” has the least TWRF value of 66.4%.

4.6 Performance testing

The confusion matrices presented above are designed on a frame to frame basis. Inter-
estingly, the experimental results are obtained by using two techniques of GM that are
presented in [29] and [18] for the sample 3D sentence. In [29], GM is conducted on 3D data
by using a temporal pyramid structure. In [18], spectral GM is used for 3D data classifica-
tion. The objective of the sign language recognizer is to retrieve similar signs that belong
to a class of QSFs. Given a QSF sentence, the retrieval accuracy of the proposed method is
estimated by computing the TWRF ratio. Moreover, the accuracy of the proposed method is
compared with those of [29] and [18]. Figure 15 shows the TWRF for an individual set of
words by using the proposed AGM, GM with temporal pyramids, spectral GM, and the pro-
posed AGM on 2D data. The average TWRF over the entire range of signs for the proposed
method, [18, 29], and 2D data are 98.32%, 94%, 86%, and 59.36%.

The ability of the algorithm in recalling QSFs with high accuracy decides the real-time
recognition capabilities of the algorithm. Here, accuracy is the ratio of retrieving a sign
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Fig. 15 TWRF of the proposed method and other methods in [18, 29], and that using 2D data

correctly to the total number of signs retrieved. Recall is the ratio of correctly retrieved sign
and total number of retrieved signs. Figure 16 displays the comparison of the three GM
models for five different signers with the 200-word dataset by using the four aforementioned
cases. The proposed model displayed an optimal matching accuracy and recall compared
with those provided by the methods in [29] and [18].

The proposed method is faster and independent of number of frames in the query video
and database video signs. This gives an undue advantage to the human signer to perform the
action sign at his or her own pace. When compared to similar graph matching algorithms
on our sign language data, we found them as slower and frame dependent. The slowness in
the algorithms is caused due to frame to frame similarity checking in query and database
videos. The uneven frames in query and database videos is handled with pyramid model,
which is based on manual considerations of pyramid sizes. Unfortunately, our proposed
method is computationally intense during the sign identification phase from the continuous
database.

The proposed AGM model is validated on benchmark action datasets HDM05 and CMU,
which are captured with 3D motion captured technology. We used 20 actions with 10 sub-
jects from both datasets spanning over 200 videos. Table 1, records the recognition rates for
our sign dataset and two benchmark datasets HDM05 and CMU for same subject and cross
subject matching. The recognition rates are averaged with respect to number of samples in
the datasets. The success of the proposed method is attributed to one to many matchings
between the graph vertices and edges as opposed to one to one matching or global matching
proposed by other algorithms in the table. Our algorithm uses product of edge and vertex
matching for recognition, whereas any one matching is used for recognition in all other
methods. Moreover, the cross subject performance of the proposed algorithm is superior to
other algorithms, due to one to many adaptive graph matching.

In future, the 3D sign language models will be used to build a augmented reality based
sign language recognition system for translating 2D video signs into voice or text.
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Fig. 16 Accuracy–recall comparison plots for a experiment 1: same testing and training data in sequence,
b experiment 2: same testing and training data that is not in sequence, c experiment 3: different testing and
training data in sequence, and d experiment 4: different testing and training data with closely matched new
words

Table 1 Performance comparison for the proposed and the state-of-the-art methods on the HDM05, CMU
and 3D Sign Datasets

Method HDM05 CMU 3D Sign

Same
Subject

Cross
Subject

Same
Subject

Cross
Subject

Same
Subject

Cross
Subject

Graph Matching Temporal Pyramid [29] 94.42 91.14 91.61 87.66 94.63 90.49

Spectral Graph Matching [18] 92.63 90.61 90.32 88.03 93.65 89.22

Histogram [5] 89.35 87.34 84.49 81.15 88.63 84.37

Weighted Graph Matching [46] 91.37 87.09 89.39 87.28 89.72 86.59

Dynamic Time Wraping [27] 88.01 82.01 85.06 78.69 86.42 83.91

Eigenvalues [20] 90.42 88.46 92.09 87.72 91.59 90.45

Our Proposed 98.99 97.78 97.68 96.96 99.35 98.21
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5 Conclusion

In this study, we proposed sign language automation, which is a challenging task. A database
involving 3D signs from the Indian sign language is created. 3D position trajectories are
used as features for creating and representing signs in the form of undirected graphs. The
process was initiated by developing a 3D template design for the signer’s that can fully
capture all the signs in the Indian sign language. Motion segmentation and AGM models
are utilized on the sign data to recognize the signs and convert them to text. The proposed
AGM for the sign language has two improvements over the previously proposed GM mod-
els that pertain to shape extraction and relative frame extraction with high precision. This
significantly improves the accuracy of matching in continuous videos for simultaneous sign
identification and recognition. The TWRF is approximately 100% for the signs that are
tested by us using AGM on 3D motion capture data. However, the computations required
by the proposed model must be decreased to enable a real-time recognition. The 3D motion
capture based sign language recognition forms a basis for producing a 3D model based
mobile sign language recognizer.
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