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Abstract Well-organized restoration techniques for attenuating the impact of periodic/quasi-
periodic noise structures from digital images is one of the significant research fields in modern
days. These are encountered in various imagery applications like remote-sensing (satellite,
aerial), the digitization of canvas paintings, etc. In this paper, a novel spectral domain
algorithm for periodic/quasi-periodic de-noising has been presented where an Automated
Notch-Reject Filter (ANRF) is lucratively used to remove unwanted periodic patterns from
Gabor-transformed corrupted images. As an initial stage, the Low-Frequency Region (LFR)
has been conserved ingeniously by finding squared spectral difference after representing the
image spectrum as multiple populations. Thereafter, the contrast of any corrupted image
spectrum has been increased using Gabor transform for making the noisy components more
prominent. Then, an adaptive exponential thresholding procedure has been applied efficiently
for detecting those noisy components. The final stage of our proposed algorithm is to filter out
those noisy components properly where a novel adaptive notch-reject filter has been applied
along with an automated control of filtering profile in proportion to different noise spectrum
profile. The supremacy of our algorithm over other state-of-the-art algorithms has been
productively established with the help of experimental results in terms of visual and statistical
metrics.

Keywords Periodic/quasi-periodic noise .Multiplepopulations .Gabor transform .Exponential
thresholding . Noisy bitmap . Automated notch-reject filter
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1 Introduction

The research area, concerning to the restoration of digital images, corrupted with different
types of periodic/quasi-periodic noise patterns has immense significance in various imaging
fields [33, 42] since 1940 and was first introduced in [15].

Periodic/quasi-periodic noises may arise from thermal/electrical/electromechanical interfer-
ences [11] during image acquisition/transmission and also from electronic interferences like
electronic circuitry of the modern digital camera like Charge Coupled Device (CCD) or
Complementary Metal Oxide Semiconductor (CMOS) sensors etc. Periodic noises are gener-
ally categorized [5] as global, local and striping. Striping pattern [7] may generally occur due
to the sensitivity mismatch of the detectors in a multi-imaging system. Another type of
periodic noise pattern, known as Moiré [30], may often be generated from the entity itself
with some periodic patterns having small-scale details near the resolution limit of any digital
sensor. Faulty resolution of any scanner, scanning procedure of an electro-optical scanner and
an imaging system placed on vibrating holders (aircraft, helicopters, etc) or any moving
platforms may also likely to cause this phenomenon [40]. These kinds of noises are most
commonly visible in various real-time imagery applications such as medical [19, 23], micro-
scopic [12], remote sensing [6, 20, 31], television [32], planetary mission [29], halftone, raster
scanline, canvas contamination in painting artwork [8] etc.

Periodic noises are often represented by the unintended and the spurious repetitive patterns,
covering the entire image in the spatial domain. Conversely, these are by nature well-localized
in the corresponding Fourier domain image spectrum. To remove periodic noise [26] structures
from corrupted images efficiently, though the spatial domain filtering techniques confront
several troubles (blurred outputs/artifacts, etc.) due to its spatial dependency all over the image,
there are many spatial filters in the literature [17, 18]. On the contrary, noisy spectral
components can easily be notified by the Fourier domain based operations as periodic noises
confer spiky-peaks/star-shaped peak areas [14] in the corresponding image spectrum, thereby
providing superior restoration of the highly corrupted images.

A fundamental frequency and its corresponding harmonics [34] are responsible to create a
periodic noise pattern. Ideally, one single-frequency periodic noise can usually cause two sharp
spiky-peaks in the image spectrum with almost zero-bandwidth. The presence of several
fundamental frequencies, forming such quasi-periodic [13] patterns which is especially visible
in most of the non-synthetic dataset. At this point, it is worth mentioning that according to the
Gonzalez and Woods [14] also, the existence of numerous star-like zones in any corrupted
image spectrum designates the occurrence of more than one sinusoidal pattern i.e. a specific
noise structure gets constructed due to the multiple fundamental frequencies. Sharp truncation
of any periodic pattern by an image periphery may usually generate different shaped noisy
peak areas along with some non-zero bandwidth in the corresponding corrupted image
spectrum, depending on the orientation of that repeating pattern.

2 State-of-the-art approaches and their comparative study

Earlier filtering approaches in the spectral domain incorporate some suitable band-
selective filters like band-reject, notch-reject, etc. [25] for de-noising images, contam-
inated by periodic noise patterns. Appropriate determination of noise affected zones
centred on their fundamental peaks is quite tricky in these filters. The Procedure for
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detecting periodic noise frequencies is resolved to some extent in the spectral domain
MFSD1 [1], MFSD2 [2] and WGNF [3].

In Mean Filter in Spectral Domain (MFSD1) [1] method, a ratio of the considered spectral
components to the local masked mean value within a sliding and binary window is analyzed
with respect to a prefixed threshold value to check whether that spectral component is noisy/
non-noisy. In case of Median Filter in Spectral Domain (MFSD2) [2] approach, a noisy
component gets detected if the ratio of the spectral component under concern to the local
masked median within a scanning local window exceeds a hand-tuned threshold value. Both
MFSD1 and MFSD2 fail to achieve good restoration if the bandwidth of any periodic noise
increases. Early selection of two hand-tuned parameters such as threshold and filtering window
size by trial and error is cumbersome in these methods. Though computational complexity is
comparatively higher, MFSD2 is able to achieve a little bit better performances than MFSD1
especially in case of quasi-periodic noise structures.

A semi-automatic process for periodic denoising was proposed by Hudhud and Turner [16].
Immediately, after the detection of noisy peaks, square/elliptical shaped Region of Interest
(ROI) was determined. Then, those were filtered out using a weighted median filter. Though
the time complexity is slightly improved there by using ROI, still this filter suffers from the
similar problem as in the paper [2]. The Spike estimation process is not clearly described by
them as well as ROI determination is not at all automatic.

In the paper [3], an efficient semi-adaptive method, i.e. Windowed Gaussian Notch Filter
(WGNF) for periodic/quasi-periodic noise detection and filtration was demonstrated. In this
approach, noisy peaks were detected using a similar process as in the paper [2] and then
filtered out by a modified version of the ideal Gaussian notch-reject filter [14]. Due to the
usage of fixed window size and prefixed coefficients of this filter, this procedure is also not
capable of producing good restoration with upto the mark.

A pioneering semi-automatic software solution [22] in the spectral domain was suggested
for attenuating noisy peaks from dual energy images (such as X-ray mammography) using two
regions cross-shaped top-hat filters like Interpolation Notch-Reject Filter (INRF), Brickwall
Notch-Reject Filter (BNRF) and Gaussian Notch-Reject Filter (GNRF). The authors used such
fixed thresholding approach which may perform satisfactorily for a few special cases only.
Central 4 ∗ 4 fixed region was protected by them for restoring authentic image information
even for such natural images which have more dispersed central region.

A suitable notch-pass filter like Adaptive Optimum Notch Filter (AONF) [27] was applied
to the input corrupted image spectrum to extract the knowledge of corresponding repetitive
pattern in the spatial domain.

Gaussian Star Restoration Filter (GaSF) for periodic/quasi-periodic denoising from digital
images was presented in the paper [21]. Two orthogonal and elliptical Gaussian filtering
profiles for each noisy peak were utilized by the authors to design a star-shaped filter. For
designing this GaSF, usage of three kinds of hand-tuned threshold values and a few estimated
parameters may lead to a bad restoration.

In VSNR [12], at first, a new class of random process, approximating many real-life
stationary noises of numerous fields were proposed. Then the image was restored from the
contaminated one using a Bayesian method by interpreting this restoration technique as a
convex optimization problem which was solved numerically. The authors decomposed the
noise for certain advantages, but fail to handle the random Gaussian part of it. This restoration
process is a time consuming iterative procedure, applicable only for the certain types of stripe
noises which usually obey one specific hypothesis.
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In the paper [28], a novel Adaptive Gaussian Notch Filter (AGNF) was launched as the
scheme of reducing the impact of periodic noises efficiently. As compared to the rest other
existing methods, AGNF does not require any tuning and parameter adjustments. The proce-
dure for detecting LFR is not optimum and fit for every scenario in case of AGNF [28]. Also, it
uses a fixed Gaussian filtering profile irrespective of the filtering window size.

The authors [6] presented a process of de-striping of the multispectral remote sensing
images. They preserved spectral and spatial consistency of images by categorizing the stripes
and then removed the same by utilizing 3D total variation. They used the Split-Bregman
iteration for fast optimization of the de-striping model. They assumed that the image feature
gradient must be lesser than the stripe gradient. If it fails then there is a chance of losing the
edge information of the original image. As this technique is based on the optimization, the
iterative process demands more execution time.

Sur, Grediac [36] established an automated approach of removing quasi-periodic noise
structures from natural images. At first, a robust regression analysis was employed by fitting
the power-law to the input corrupted image power spectrum to get a flavour of expected noise-
free natural image power spectrum. The expected power spectrum was then compared with the
average power spectrum obtained from the set of regularly distributed patches to localize noisy
peaks. Finally, they applied an automated notch-reject filter to detect the method noise which
was eventually eradicated from the corrupted image in the spatial domain.

In the paper [35], the concept of Number of False Alarm (NFA) was exploited over the
uniform concentric rings to detect spurious noisy peaks. Minimum of power spectrum was
utilized to perform the same. It takes a large amount of execution time due to NFA calculation.
Both the works [35, 36] experience the fixed patch size problem, thus may not give the best
result for every image-noise combinations. As both of them follow a non-adaptive LFR
detection procedure, their performance for low-frequency noise removal is not at all acceptable.

The authors of the work Laplacian based Frequency Domain Filter (LFDF) [38] divided the
entire algorithm into two major stages: noisy component detection and correction. At first,
noisy regions were highlighted by convolving the corrupted image spectrum with the
Laplacian directional mask. Then, noisy peaks were found out by comparing each spectral
component with a non-adaptive threshold value which was a function of Euclidian distance
from the DC element. Finally, those noisy components were recursively restored using the
average of minimum and median values of nearest possible uncorrupted components.

Windowed Adaptive Switching Minimum Filter (WASMF) [39] is a slightly modified
version of LFDF [38]. They detected noisy peaks using such a thresholding approach which
differs from LFDF but still depends on the Euclidean distance from DC element. Once a peak
had been identified, the associated noisy areas were then recognized by comparing with
another threshold value which was dependent on local neighbourhood statistics. In the noise
attenuation phase, detected noisy frequencies were recursively replaced by the minimum value
of uncorrupted frequencies within a local neighbourhood. LFDF and WASMF used such fixed
thresholding approach which is not a function of the corrupted image itself. So, these
procedures cannot perform optimally for a large span of image-noise combinations. In both
LFDF andWASMF, time consumption is more than the notch filtering one due to the recursive
filtering procedure.

A recent technique of periodic/quasi-periodic noise fading i.e. Adaptive Threshold based
Frequency Domain Filter (ATFF) is well described in the paper [37]. As a pre-processing step,
they used Laplacian transform as described in [38] to make the corrupted image spectrum
more prominent, thereby suggesting an adaptive threshold based noise identification process.
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Hence, corrupted frequencies were attenuated using the minimum filter as in [39]. Their peak
detection method becomes uncertain unless the multiplicative parameter, used during
thresholding, gets optimized.

This paper presents a fully automated frequency domain denoising algorithm for digital
images, impaired by a wide range of periodic/quasi-periodic noise patterns by alleviating
the inadequacy of other existing frequency domain algorithms. It is capable of discrim-
inating noisy frequencies from the non-noisy ones effectively since it has the unique
ability to separately identify the noisy fundamental peak and its surrounding noisy
affected areas. Novelty of our proposed Gabor-based ANRF algorithm is bestowed at
our level best utilising some well-known mathematical theories or our own innovated
procedures in each of its several distinct steps (Fig. 1). To start with, our algorithm
preserves entire LFR, containing smooth image information, precisely by representing the
whole image spectrum as multiple populations where each population consists of several
spectral components. Here, squared spectral difference of each spectral component of
every population with respect to the median of the considered population is utilised for
LFR conservation. Thereafter, detecting the effective noisy spectral zone easily, remaining
image spectrum gets highlighted more prominently by using Gabor transform which is
the maiden usage so far. Though the idea of highlighting the whole image spectrum is

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 1 Propostion of Gabor-based ANRF Algorithm. Pictorial representation of the stages of our proposed
algorithm: a Standard image Lena, synthetically contaminated by combined noise (N1 +N2 +N3) as in Eq. 27 with
A = 0.7; b Corrupted image spectrum; c 3D plot of expected model of noise-free natural image; d LFR mask with
widened radius and angle; eContrast enhanced spectrum usingGabor Transform; fLFRMaskedGabor Transformed
Spectrum; g 3D plot of Threshold Surface; h Noisy Bitmap; i Restored image spectrum; j Restored image
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acquired from some of the latest existing works [37–39], their implementation approach
differs from us to a great extent. To perform the same, the works of [37–39] used
inherently inflexible Laplacian kernel as a pre-processing step before LFR preservation
whereas a more flexible Gabor profile is employed in our case after LFR preservation.
Unlike our work, the complexity of those works is greatly increased as the contrast
enhancement step is executed before preserving LFR contents. In accordance with this
step, the parameters involved in their subsequent steps must be adjusted vigorously if
there is a requirement of modifying Laplacian kernel of [37–39] to highlight the spectrum
for certain image noise combinations which may introduce extensive calculations. In our
case, after using a well-customised Gabor profile to make it more suitable for varying
image-noise combinations, an adaptively calculated novel threshold surface using an
exponential function is exploited to get the noisy bitmap. At last, a novel automated
notch-reject filter is proposed by us with an automated control of filtering profile in
accordance with the largest radial span of differently shaped noise spectrum profiles to
attenuate the effective noisy peak areas.

3 Proposition of Gabor-based ANRF algorithm

To start with, IM of size R ∗C is considered here as the origin shifted Fourier transformed
spectral domain representation of an image, corrupted with various kinds of periodic/quasi-
periodic noise patterns. It is noteworthy to mention that the position of any pixel/spectral
component of an image matrix can usually be represented by several conventions as given
below.

1. In the Cartesian method, (x, y) or (u, v) represents the corresponding row and column
position in the spatial/spectral domain respectively.

2. In Polar method, (r, θ) represents the radius from the DC element and the angular
displacement from the positive horizontal axis that passes through DC and

3. In single indexing method, i indicates the positional representation of an element in any
image matrix while row/column traversing.

One of the abovementioned specific methods for such representations can easily be
transferred to other by some simple numerical analysis. Hence, these representations
are utilized in this article for making our mathematical expressions more convenient.

3.1 Entire LFR preservation using mask formation

At this juncture, Power Spectrum of Corrupted Image (PIM) is regarded as a set of
concentric rings, centered on the DC value of IM. Naturally, each of the rings
corresponds to a population/collection of the power of spectral components of any
corrupted image. So, as a whole PIM can be considered as a combination of several
populations i.e. PL where each population (plj, where j is the positional index of PL)
contains the power of the spectral components, known as sample. In this sub-section,
our main motto is to preserve LFR appropriately in an automated way by applying a
rough thresholding to detect the outliers. Outliers of each population are detected
using a rough threshold value (τ) by finding the squared spectral difference between
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each sample of the jth no. population and the median of that corresponding popula-
tion. As LFR span cannot usually be exceeded by half of the Maximum Possible
Radius (MR), the total number of population must be limited by this.

OUTLIER ¼
[
j¼1

MR=2

r; θð Þ j; if pl jr;θ−Median pl j
� �h i2

> τ j ð1Þ

Where, τ j ¼ Mean pl jð ÞþMedian pl jð Þ½ �
2 , plj ∈ PL and (r, θ)j represents the collection of positions

of samples within the jth no. population. The procedure for finding Outlier Bitmap (ΟΒ) is
mathematically outlined in the following:

OB ¼ 1;∀ r; θð Þ∈ OUTLIER
0; otherwise

�
ð2Þ

LFR Mask (Ϻ) can then be accurately formed with the help of ΟΒ to keep LFR intact.

M ¼ 1; if οβr;θ ¼ 1
0; otherwise

�
ð3Þ

Where, οβr, θ ∈ ΟΒ
After formation of M, we update M by relaxing the mask a little bit around each and every

outlier on bitmap as there may be any noisy affected region which would be detected precisely
on the later part of the algorithm. Hence, radius and angle widening are incorporated to
perform the same as mathematically explained in Eq. (4a) and Eq. (4b) respectively.

M ¼ 1; if οβr1;θ ¼ 1& r1 < r OR r1 < r þ 5½ �� � ð4aÞ

M ¼ 1; if οβr;θ1 ¼ 1& θ−5° < θ1 < θþ 5°
� �� � ð4bÞ

Where, r1 and θ1 are temporary variables, indicating values of r and θ.

3.2 Adaptive thresholding using exponential surface

Suitable and proper thresholding is the most requisite process of detecting noisy fundamental
peaks along with their surrounding noise affected zones. Before applying an adaptive
thresholding procedure, at first, Gabor transform [9, 10] is applied to IM to make the spectrum
more prominent which in return leads to a contrast-enhanced version of IM, thereby making
noisy peaks along with their surrounding zones more distinguishable and clearly visible. Now,
it gets much easier to apply threshold surface to identify those noisy peaks along with their
noise affected zones. Gabor-Transformed Image Spectrum ĠSð Þ is found out by convolving Ġ
with IM as outlined in Eq. (5).

G˙ S ¼ G˙ ⊗IM ð5Þ
Where, Ġ is a Gaussian function modulated by sinusoid, together termed as Gabor

G˙ u;vð Þ ¼ 1

2πσ2
exp −

uϕ2 þ γvϕ2

2σ2

	 

* cos

2πuϕ
λ

þ φ

	 

ð6Þ

uϕ = u cos ϕ + v sin ϕ and vϕ = − u sin ϕ + v cos ϕ
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σ, λ, ϕ, γ andφ refer to the standard deviation of Ġ, wavelength of the sinusoids, orientation of
the normal to the parallel stripes of Ġ, spatial aspect ratio and phase offset respectively. In our case,
controlling parameters of Ġ are selected as: σ ¼ 1;λ ¼ 5;ϕ ¼ π

2 ; γ ¼ 0:5;φ ¼ 0. As most of

those chosen values are conventionally standard assumption, a standard Ġ is then obtained.
Moreover, all the values of those parameters bear some logical suitability criteria for our case. Any
Ġ having σ = 1 is a general assumption as it can cover the whole image quite satisfactorily for a
wide range of image sizes. The value of ϕ denotes the angle between horizontal and vertical axes
of Ġ. As the images are usually planar andwe need to apply any Ġ in a way such that its effect will
fall upon the whole images homogeneously, so the value of ϕ is appropriate enough to take as π/2.
Here, the value of the parameter φ is taken as 0 to make the peak of any Ġ perfectly aligned with
the spectral position of the DC value of the image so as to produce the best result. As any Ġ is
usually composed of an exponential function along with a sinusoid, we can say that the nature of
Ġ is similar to exponentially decreasing sinusoidal ripples. Whenever the wavelength of the
sinusoid increases, it creates fewer amounts of ripples with low frequency. To get the high contrast
enhancement, we would like to have such Ġ which contains high-frequency ripples. So, lower
value of λ is generally desirable for achieving the high contrast enhancement of an image. Our
algorithm is run for a wide range (1 − 20) of λ for various synthetic/non-synthetically corrupted
images.Within this range ofλ, the quality of restored images will be good enough in terms of both
statistical and visual, thereby achieving best results amongst others. In our case, λ is set at 1 as the
smallest suitable value of that wide range of λ. Now, Normalized LFR Masked Gabor Trans-
formed Spectrum (N) is established as given in the following:

Ν ¼ M∘ĠS
Max M∘ĠSÞð ð7Þ

Where, the operator ∘ belongs to Hadamard product operation. Now, for finding
out noisy bitmaps, an appropriate Threshold Surface (Ŧ) has to be created to act upon
any IM which is generally random in nature. So, the centre of such surface should be
perfectly aligned with the position of the DC value of any IM. In Eq. (8), a
generalized exponential surface is considered as Ŧ, containing two parameters Α and
Ѕ for controlling Amplitude and Slope of such exponential function based on which Ŧ
is created. Amongst many other non-linear functions, the exponential function is
preferred in our case as it is always handy because by controlling Α and Ѕ suitably,
we can easily approximate many random data sets.

In our case, Α is signified by the maximum amplitude of N which usually falls
after MR/2 upto image boundary as noisy components generally reside after LFR.

Α ¼ Max νr;θ
� �

where; r > MR=2ð Þ þ 1 and νr;θ ∈N ð9Þ

In Eq. (9), r represents the radial outward distance from the position of DC
element and θ denotes angle with respect to the positive horizontal axis that passes
through DC. For detecting the value of Ѕ, here N is considered as the combination of

(8)
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closely spaced Radial Vectors (Η), containing varying amplitudes of spectral coeffi-
cients, i.e. the distributions of different amplitudes. It is mathematically expressed as:

Hθ ¼
[
r¼1

MR

ηr;θ ð10Þ

Where, 0° ≤ θ ≤ 180° and ηr, θ ∈Η
Here, for determining the appropriate value of Ѕ for Ŧ, two ultimate Ηs i.e. ΗSMax and ΗSMin

are chosen among all Η s based on the maximum and the minimum values of the Standard
Deviation (Std). ΗSMax indicates such a particular Η which has the maximum amplitude
variation i.e. higher possibility of having noisy frequencies. For ΗSMin, the scenario is exactly
opposite.

In Eq. (11a) and (11b), θ1 indicates temporary variable, indicating the values of θ.
Now, the random amplitude distributions of ΗSMax and ΗSMin are made approximately
fit with a suitable exponential function by varying the values of Ѕ of that function.
Two extreme values of Ѕ i.e. ЅMax and ЅMin are subsequently calculated so that their
corresponding exponential functions can pass through the halfway of the maximum
amplitude span of the distributions of ΗSMax and ΗSMin.

ЅMax ¼ Min S; if ∑iηSMaxi−Α*exp
−S*i=MR

�
> 0

� �� �
=2

� ð12aÞ

ЅMin ¼ Min S; if ∑iηSMini−Α*exp
−S*i=MR

�
> 0

� �� �
=2

� ð12bÞ

Where, i is the positional index of the corresponding sets like ΗSMax and ΗSMin. Hence,
ηSMaxi ∈ΗSMax and ηSMini ∈ΗSMin. In Eq. (12a) and (12b), after several experimental observa-
tions, the range of S is sufficient enough to take as 1 ≤ S ≤ 10. ЅMax corresponds to that
exponential function which approximates the distribution of ΗSMax having higher possibility
of containing noisy peaks. Hence, if we select ЅMax solely as the value of Ѕ for thresholding
surface, then all noisy components may not be detected. That’s why, ЅMin and average of ЅMax

and ЅMin are used as two possible appropriate values of Ѕ i.e. Ѕ1 and Ѕ2 for finding two suitable
threshold surfaces i.e. T1 and T2.

Ѕ1 ¼ ЅMin and Ѕ2 ¼ ЅMax þ ЅMin

2

� �
ð13Þ

(11a)

(11b)
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At this juncture, in accordance with Ѕ1 and Ѕ2, the generalized T as expressed in Eq. (8) is
then customized into T1 and T2 as delineated below:

In Eq. (14a) and Eq. (14b), variable i denotes the distance of each spectral components’
position with respect to the DC value’s position of IM.

3.3 Noisy bitmap generation

After applying T1 and T2 to input IM, two Noisy Bitmaps (Ɓ1 and Ɓ2) are subsequently
obtained which mainly comprise of noisy fundamental peaks surrounded by their effective
noisy spectral zones.

B1 ¼ 1; if ηi≥T1i
0; otherwise

�
ð15aÞ

B2 ¼ 1; if ηi≥T2i
0; otherwise

�
ð15bÞ

Where, i ∈ {1, (R ∗C)} ⊂ℤ+

Now, all the closed contours are detected which actually refer to the different
shapes of various noisy spectral zones of the corresponding 1 and 2 respectively.
After that, positions of all the spectral components, bounded by each closed contour
are stored in Contour Map (C) sequentially. Thereby, positions of the fundamental
peaks of all the noisy contours correspond to 1 and 2 are detected, known as
Fundamental Peak Positions (Ƥ1 and Ƥ2) respectively.

In Eq. (16a) and Eq. (16b), imj, imk ∈ IM and j, k are the positional indexes of the
corresponding set IM. Now, we have to determine the Final Contour Map ( ) and
the Final Set of Fundamental Peak Positions (ƑƁ) corresponds to the Final Noisy
Bitmap (ƑƁ) which is much more suitable for a specific image-noise combination.
This is highly dependent on the number of noisy peaks detected in Ƥ1 and Ƥ2

(14a)

(14b)

(16a)

(16b)
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respectively. So, the difference between Cardinality (Card) of two sets i.e. Ƥ1 and Ƥ2
is exploited to do the same.

Diff ¼ Card P1ð Þ−Card P2ð Þ½ � ð17Þ

After that, for choosing F , the value of Diff is compared with a suitable function of the
difference between Ѕ1 and Ѕ2.

Diff lim ¼ C1* Ѕ2−Ѕ1ð Þ þ 1 ð18Þ
Where, C1 = 1.5 is considered typically after the experimental analysis. The decision about

the appropriate bitmap is taken as follows,

It is conferred from the above Eq. (19) that if there is a small difference between Ѕ2 and Ѕ1
along with the large values of Diff then we will take that bitmap as appropriate which is
corresponding to a larger value of Ѕ and vice-versa.

3.4 Automated notch filtration on effective noisy spectral zone

The final and most important step of any denoising algorithm is the filtering of any
effective noisy spectral zones centred on their fundamental peaks. Here, an Automated
Notch-Reject Filter (ANRF) is introduced with an adaptive control of filtering profile
(Fig. 2) in accordance with the different shapes of the noise spectrum profiles. This
phenomenon makes it superior to most of the existing works where filtering profile is
fixed in nature [3, 28]. For managing filtering profile in accordance with an effective

(19)

(a) (b) (c) (d)

(e)

Fig. 2 a Spectrum of real image Clown; b Close-up view of Noise Frequency in 3rd quadrant; c Noise Spectrum
Profile; d ProposedANRF profile; e 2DCharacteristics curve of our proposed ANRF profile for different values ofΧ
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noisy spectral zone, the slope of attenuation i.e. nothing but the profile of any filtering surface has
to be directly dependent on the maximum radial span of that zone. Hence, a linear relationship of
Profile Controlling Parameter (Χ) of our filtering surface is made with the Largest Radial Distance
(Ω) of the ith closed contour of centred on the corresponding fundamental peak.

Where,

Typically, C2 = 5 is regarded as the best-chosen value after various experimental observa-
tions and represents the Euclidean distance in the spectral domain. From Eq. (20), it can be
inferred that a high value of Χ is required to efficiently filter out any noisy spectral zone with
large radial span and the scenario is exactly opposite for small radial span. Hence, the
characteristics of our proposed filtering profile adapt the slope of attenuation of our filtering
surface in accordance with the radial span of any noise spectrum profile.

Generally, the maximum possible span of any noisy spectral zone can be limited by the half
of its Nearest Peak Distance (D) i.e. minimum of any considered peak from its nearest peak/
DC component. Here, half of the đi (where ) as the maximum Filtering Profile Window
(Wi ∗Wi) is considered to give freedom to the χi (where χi ∈Χ) for controlling the effective
filtering profile’s roll-off with respect to the span of the noise spectrum profile, referring to the
ith noisy peak. Hence, Wi ∗Wi can cover up the whole noisy spectral zone even in the case of

its maximum possible span i.e. . It is indispensible to efficiently restore the uncorrupted

spectral components as much as possible by using appropriate value of χi for effectively
rolling off the filtering profile in relation to the span of the noise spectrum profile, thereby
avoiding the chances of unwanted filtering. As the values of i varies from 1 to the cardinality of
the set , each corresponding values of is stored in a set D. The formation of the set D is
mathematically expressed as:

Where, the single argument in specifies the distance of the considered noisy peak from the
DC component. Finally, our proposed ANRF of size Wi ∗Wi, used for image restoration is
given by,

Where, Wi= and χi ∈Χ

(21)

(20)

(22)
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The whole procedure of our proposed ANRF denoising method is recapitulated in a
nutshell for making it more realizable using Algorithm 1 as demonstrated below:

4 Experimental results and discussion

This section explicitly illustrates that our proposed algorithm can restore digital images
adequately, impaired by various synthetic as well as non-synthetic periodic noise patterns.
To assess the quality of restored images, our proposed Gabor-based ANRF algorithm is
compared with other state-of-the-art approaches like MFSD1 [1], MFSD2 [2], SMF [17],
WGNF [3], BNRF [22], INRF [22], AONF [27], VSNR [12], GaSF [21], AGNF [28], ASSTV
[6], Sur, Grediac [36], A-contrario [35], LFDF [38], WASMF [39], ATFF [37]. These
algorithms are executed using Matlab 10.0 software in Intel(R) Core(TM) i5-3210 M CPU
@ 2.50 GHz processor. A few user-controlled parameters should be primarily adjusted by the
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experimental study to acquire the proper results for MFSD1, MFSD2 and WGNF. Thus, best-
preferred common threshold value of 10 and a window size of 9 ∗ 9 for different image-noise
combinations are considered in this article. Normalizing Divider used in MFSD1 is selected as
50. m ∗ n (corrected area) are both fixed at 7 for WGNF. Parameters of Gaussian surface, i.e. A
and B are fixed to 1.0 and 0.1 for WGNF and 1.0 and 0.01 for AGNF. The threshold value is
considered as 25,000 for BNRF and INRF. Fixed patch size is set at best-chosen value 64 or
128 for implementing Sur, Grediac [36] and A-contrario [35] algorithms.

4.1 Performance measurement attributes

The quantitative performance metrics like Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity (SSIM), Edge Accuracy (εa), Edge Precision (εp) and Time Complexity (TC) in
seconds are exploited in this article to assess the performance of our proposed algorithm.

4.1.1 Peak Signal-to-Noise Ratio (PSNR)

It [4] is the ratio of the maximum signal power to the power of noise that distorts the
original signal. PSNR of the Denoised Image ẑð Þ from the Original Image (z) is
defined by,

4.1.2 Structural similarity (SSIM)

It is a well-matched performance metric for comparing the quality of a restored image visually
and its mathematical expression are clearly outlined in [41].

Where, mz and mẑ refer to the mean brightness and σz and σẑ denotes the Standard
Deviation (Std) [24] of z and ẑ respectively. SSIM z; ẑð Þ ¼ 1, if and only if z ¼ ẑ. More
the value of SSIM approaches nearer to unity, betterment of de-noised image quality is.

4.1.3 Edge accuracy (εa) and Edge precision (εp)

The quality of a restored image can effectively be judged by the edge count, as most
of the periodic noises introduce some undesired edges to the uncorrupted images. εa
and εp are the two such parameters which measure the similarity between the
Restored Edge-Map (εr) and the Original Edge Map (εo). Here, canny edge detection
is used for finding the edge map.

εa ¼ ∑M
x¼1∑

N
y¼1 T εð Þ þ Tnεð Þ½ �

M*N
and εp ¼ ∑M

x¼1∑
N
y¼1 T εð Þ½ �

∑M
x¼1∑

N
y¼1 T εð Þ þ Fεð Þ½ � ð25Þ

(23)

(24)
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Where, True Edge (Tε), True Non_Edge (Tnε) and Flase Edge Points (Fε) are given by,

4.2 Synthetic dataset

Likewise, other algorithms [1–3, 16, 21, 22, 27, 28, 35–39] in the literature, 10 nos. of standard
noise-free natural images (Child, Woman, Lake, Lena, Cameraman, Barbara, Boats, House,
Mandrill, Pepper, etc.) of size 256∗ 256, instigated by different periodic/quasi-periodic synthetic

Table 2 Performance comparison amongst different restoration filtering algorithms in terms of PSNR, SSIM, εp
and TC (in sec) for a standard noise-free image Pepper, impaired by various quasi-periodic noise patterns

Existing Filters N1 with A = 0.8 N2 with A = 0.6 N3 with A = 0.7

PSNR SSIM εp TC PSNR SSIM εp TC PSNR SSIM εp TC

MFSD1 [1] 2.62 0.137 0.116 0.468 10.48 0.496 0.623 0.459 12.92 0.635 0.123 0.471
SMF [17] 8.28 0.338 0.195 1.402 20.14 0.887 0.845 1.322 8.531 0.361 0.101 1.256
BNRF [22] 15.40 0.783 0.465 3.451 19.63 0.882 0.840 3.219 22.14 0.930 0.446 3.320
GaSF [21] 13.53 0.689 0.392 2.077 17.52 0.837 0.836 2.146 15.66 0.834 0.582 2.308
AGNF [28] 4.31 0.190 0.329 0.440 16.73 0.803 0.835 0.449 18.47 0.862 0.384 0.439
Sur, Grediac

[36]
14.55 0.713 0.508 0.395 23.19 0.947 0.868 0.410 18.59 0.864 0.393 0.389

A-contrario
[35]

15.23 0.737 0.475 9.157 24.26 0.956 0.877 9.342 22.52 0.937 0.459 8.798

LFDF [38] 14.50 0.708 0.431 0.697 8.450 0.385 0.799 0.725 24.42 0.961 0.595 0.638
WASMF [39] 2.05 0.122 0.104 0.607 7.403 0.326 0.778 0.581 25.06 0.962 0.615 0.632
ATFF [37] 17.32 0.821 0.485 3.112 16.14 0.782 0.810 3.373 25.47 0.969 0.632 3.650
ANRF 18.18 0.849 0.562 0.429 27.42 0.979 0.898 0.438 25.85 0.975 0.678 0.425

Table 3 Performance comparison amongst different restoration filtering algorithms in terms of PSNR, SSIM, εp
and TC (in sec) for a sample image Barbara, impaired by various quasi-periodic noise patterns

Existing
Filters

N4 with A = 0.9 N5 with A = 0.5 N1 +N2 +N3 with A = 0.8

PSNR SSIM εp TC PSNR SSIM εp TC PSNR SSIM εp TC

MFSD2 [2] 8.352 0.392 0.141 1.120 18.22 0.842 0.271 1.075 5.314 0.242 0.148 1.084
WGNF [3] 10.93 0.539 0.251 1.096 18.65 0.874 0.386 1.009 7.961 0.372 0.185 1.019
INRF [22] 18.51 0.861 0.463 3.708 22.43 0.951 0.510 3.446 10.65 0.498 0.105 3.616
AONF [27] 11.09 0.538 0.311 0.458 18.45 0.863 0.393 0.455 10.94 0.502 0.087 0.469
AGNF [28] 11.15 0.548 0.321 0.443 19.15 0.880 0.395 0.438 3.275 0.167 0.262 0.444
Sur, Grediac

[36]
16.77 0.801 0.412 0.411 21.07 0919 0.407 0.398 13.23 0.655 0.420 0.421

A-contrario
[35]

17.70 0.839 0.419 8.875 21.28 0.922 0.442 9.118 15.65 0.765 0.462 9.026

LFDF [38] 18.13 0.856 0.458 0.532 24.13 0.960 0.623 0.803 5.922 0.268 0.161 0.788
WASMF

[39]
4.026 0.191 0.115 0.650 24.38 0.965 0.601 0.648 2.351 0.129 0.090 0.628

ATFF [37] 19.16 0.884 0.482 3.235 24.71 0.971 0.623 3.179 13.51 0.677 0.459 3.402
ANRF 19.66 0.896 0.554 0.430 27.22 0.980 0.678 0.435 18.83 0.866 0.594 0.436
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sinusoidal noisy patterns are experimentally analysed in our article. Amongst them, Lena, Woman,
Pepper, and Barbara are presented here. In Table 1, low and high-frequency periodic noise
structures with Noise Strength (A) are considered as the noise source as in Eq. (26a) and (26b):

NL x; yð Þ ¼ A* sin
x
3
þ y

5


 �h i
ð26aÞ

NH x; yð Þ ¼ A* sin xþ yð Þ½ � ð26bÞ

Table 1 explicitly exemplifies that our proposed Gabor-based ANRF algorithm outperforms
all other existing algorithms for a sample image Woman of size (256 ∗ 256) with proficient TC
for impulsive-diagonal, NL and NH periodic noise patterns in terms of PSNR, SSIM and εa in a
fully adaptive way.

The suppression of multi-frequency periodic noises from images, generated by sinusoidal
functions is a challenging problem in comparison to any single-frequency periodic noise
pattern where usually almost all compared restoration algorithms can perform well. Therefore,
in this article, five artificially generated multi-frequency periodic/quasi-periodic noise models

(a) (b) (c)

(f) (g)

(d)

(e) (h)

Fig. 3 a Standard noise-free image Barbara, contaminated by combined noise N1 +N2 +N3with A = 0.7; de-
noised images with b WGNF; c AGNF; d Sur, Grediac; e A-contrario; f WASMF; g ATFF; h ANRF

(b)(a)

Fig. 4 Performance comparisons of 16 different images, contaminated by N4 with A = 0.9 w. r. t. a SSIM; Plot of
b PSNR versus varying noise amplitudes (A) for N2 as in Eq. (27b)
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(N1,N2,N3,N4,N5) are considered for testing the restoration capability of different algorithms.

N 1 x; yð Þ ¼ A* sin 2xþ 2yð Þ þ sin 0:5xþ 0:5yð Þ þ sin 3xð Þ þ sin 4yð Þ½ � ð27aÞ
N2 x; yð Þ ¼ A* 3:25 sin xð Þ þ 8:65 sin yð Þ½ � ð27bÞ

N 3 x; yð Þ ¼ A* sin 8yð Þ þ sin 8xð Þ þ sin 5:25xþ 5:25yð Þ þ sin xþ 5:25yð Þ½ � ð27cÞ
N 4 x; yð Þ ¼ A* sin 0:5x−0:5yð Þ þ sin 1:5x−1:5yð Þ þ sin 2:5x−2:5yð Þ½ � ð27dÞ

N5 x; yð Þ ¼ A* sin 1:1xþ 1:1yð Þ þ sin 1:5xð Þ þ sin 1:5yð Þ þ sin 1:1x−1:1yð Þ½ � ð27eÞ

(a) (b) (c) (d)

(e) (f) (g)

Fig. 5 a Non-synthetically corrupted image Man; de-noised images with b WGNF; c GaSF; d AGNF; e A-
contrario; f WASMF; g ANRF

(a) (b) (c)

(d) (e) (f)

Fig. 6 a Close-up view of non-synthetically corrupted image Television; de-noised images with bWGNF; c Sur,
Grediac; d WASMF; e ATFF; f ANRF
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Tables 2 and 3 and Fig. 3 clearly illustrate that our proposed Gabor-based ANRF algorithm
is always able to attain higher performances both quantitative and qualitatively than other
competing algorithms while restoring digital images for various synthetically generated quasi-
periodic noise structures with considerable TC.

In Fig. 4a, it is graphically depicted that our proposed Gabor-based ANRF algorithm
outshines all other existing algorithms for 16 numbers of synthetically corrupted images in
terms of SSIM. For our algorithm, SSIM always approaches towards unity. From Fig. 4b, it is
clear that the performance of our proposed algorithm is the best among other existing
algorithms in terms of PSNR for a sample image Pepper with varying noise
amplitudes (A = 0.1 to 1).

(a) (b) (c) (d)

(e) (f) (g)

Fig. 7 a Non-synthetically corrupted image Clown; de-noised images with b WGNF; c GaSF; d AGNF; e Sur,
Grediac; f WASMF; g ANRF

(a) (b) (c) (d)

(e) (f)

Fig. 8 a Close-up view of astronomical mission image Lunar Orbiter 2, impaired by non-synthetic periodic
noise pattern; de-noised images with b WGNF; c AONF; d Sur, Grediac; e LFDF; f ANRF
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4.3 Non-synthetic dataset in real-time imaging applications

A series of non-synthetic dataset from a wide range of realistic scenarios are now presented as an
example to demonstrate the restoration capability of our proposed approach. As the original image is

(a) (b) (c)

(e) (f)(d)

Fig. 9 a Close-up view of astronomical mission image Vicking Orbiter, impaired by non-synthetic vertical
periodic striping noise pattern; de-noised images with b AGNF; c Sur, Grediac; d ASSTV; e WASMF; f ANRF

(a) (b) (c)

(d) (e) (f)

Fig. 10 a Close-up view of astronomical mission image Lunar Orbiter 4, impaired by non-synthetic horizontal
striping noise pattern; de-noised images with b VSNR; c AGNF; d ASSTV; e A-Contrario; f ANRF

1776 Multimed Tools Appl (2019) 78:1757–1783



not within the reach, the quantitative performance evaluation cannot be computed for non-synthetic
dataset. 25 numbers of non-synthetically corrupted images from various fields are examined by us as
a benchmark. Here, a few of them are presented from Figs. 5, 6 and 7, thereby proving that our
algorithm outperforms other most recent state-of-the-art algorithms for a few non-synthetically
corrupted images like Man, Television and Clown in realistic situations.

The visual inspection of Figs. 8, 9, 10 and 11 establishes the superiority of our proposed
Gabor-based ANRF algorithm as it produces better-restored images in comparison to recent
similar kind of algorithms for various non-synthetically corrupted images taken from the

(e) (f)

(a) (b) (c) (d)

Fig. 11 a Close-up view of non-synthetically corrupted image Apollo, impaired by periodic noise pattern;
restored images with b A-contrario; c LFDF; d WASMF; e ATFF; f ANRF

(a) (b) (c)

(d) (e) (f)

Fig. 12 a Close-up view of naturally corrupted halftone image Lady-Man, de-noised images with b WGNF; c
AGNF; d Sur, Grediac; e LFDF; f ANRF
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(a) (b) (c)

(d) (e) (f)

Fig. 13 a Close-up view of naturally corrupted halftone image Halftone-eye, de-noised images with bWGNF; c
AONF; d Sur, Grediac; e LFDF; f ANRF

(a) (b) (c)

(d) (e) (f)

Fig. 14 a Close-up view of Scanline image, impaired by non-synthetic periodic noise pattern; de-noised images
with b AONF; c A-Contrario; d WASMF; e ATFF; f ANRF
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astronomical mission (orbiter/landing) image gallery, conducted by American space agency
(NASA: National Aeronautics and Space Administration).

Quasi-periodic structures can also be generated through a certain specific types of repro-
graphic methods such as halftone printing (generates a continuous toned gradient-like imagery
through the use of varying dots either in size/in space) and visible raster scan line in Cathode
Ray Tube (CRT) monitors. Here, the performance of our Gabor-based ANRF algorithm for a
few non-synthetically corrupted images (Figs. 12, 13 and 14), produced by any reprographic
technique is evaluated with few other competent algorithms.

(a)

(d)(c)

(b)

Fig. 15 Non-synthetically corrupted images: close-up view of a Rockwell - Carry On - 002; b Rockwell - Our
Heritage - 002; Outputs using our proposed ANRF approach c de-noised Rockwell - Carry On - 002 image; d de-
noised Rockwell - Our Heritage - 002 image

(c) (d)

(a) (b)

Fig. 16 Real images, contaminated by non-synthetic moiré pattern: a Moiré 1; b Moiré 2; Outputs using our
ANRF algorithm c de-noised image of Moiré 1; d de-noised image of Moiré 2
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Applicability of our algorithm is also investigated for removing canvas contamination in
digital images of painting artwork (Fig. 15) where periodic plane of the support weave can be
regarded as noise.

Figure 16 depicts the qualitative performance of the restored images using our proposed
algorithm for two natural images, corrupted with a special kind of non-synthetic periodic
pattern i.e. Moiré in case of realistic circumstances.

5 Conclusion

An ingenious spectral domain de-noising algorithm for periodically corrupted images
of various real-time imagery systems has been demonstrated in this paper. A few
initial steps of our proposed algorithm illustrate the preservation mechanism of the
most informative LFR region followed by the contrast enhancement of LFR preserved
image spectrum by using Gabor transform to highlight all the noisy regions outstand-
ingly. Then, those noisy regions are properly detected using our proposed adaptive
exponential thresholding procedure. After that, those noisy components are filtered out
using our proposed adaptive notch-reject filter with an automated control of filtering
profile in accordance with the radial span of different kinds of noise spectrum
profiles. Experimental results for both synthetic and non-synthetically corrupted im-
ages proved that our proposed Gabor-based ANRF algorithm outperforms other
popular exiting algorithms both qualitatively and quantitatively. The time consumption
of our algorithm is also found to be effective while comparing with the literature.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.
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