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Abstract Despite many years of research, object tracking remains a challenging problem,
not only because of the variety of object appearances, but also because of the complexity
of surrounding environments. In this research, we present an algorithm for single object
tracking using a particle filter framework and color histograms. Particle filters are itera-
tive algorithms that perform predictions in each iteration using particles, which are samples
drawn from a statistical distribution. Color histograms are embedded in these particles, and
the distances between histograms are used to measure likelihood between targets and obser-
vations. One downside of color histograms is that they ignore spatial information, which
may produce tracking failure when objects appear that are similar in color. To overcome
this disadvantage, we propose a saliency-based weighting scheme for histogram calculation.
Given an image region, first its saliency map is generated. Next, its histogram is calculated
based on the generated saliency map. Pixels located in salient regions have higher weights
than those in others, which helps preserve the spatial information. Experimental results
showed the efficiency of the proposed appearance model in object tracking under various
conditions.
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1 Introduction

Object tracking is a highly attractive topic in computer vision because of its extensive prac-
tical use, playing important roles in many vision-based applications. With the advance of
image acquisition technologies [24] and methods [29], object tracking can be used in traffic
surveillance [30] or safety monitoring systems [9]. Recently, object tracking has also been
used in augmented reality [3], robot vision [15], and military purposes [21]. The aim of
object tracking algorithms is to produce a trajectory record of objects of interest over time
by locating their positions in image sequences.

However, despite several years of research and development, object tracking remains
a challenging problem. Specifically, maintaining high accuracy in practice is difficult for
object tracking techniques because of the inconsistency of target objects and their surround-
ing environments. Object appearances and illumination conditions may vary and non-target
objects may cause occlusions. The complexity of a tracking task increases when surround-
ing areas become more diverse or when target objects vary considerably in appearance.
Addressing these many difficulties simultaneously is a daunting task. Thus, object tracking
methods are usually designed to solve these specific tracking problems [27].

Several state-of-the-art tracking methods have been proposed to address these problems.
They can be categorized into two groups based on model construction, namely, generative
and discriminative methods [28]. Discriminative methods consider tracking as a classi-
fication task. They try to discriminate the visual appearance of target objects from the
background [4, 18]. By contrast, generative methods regard tracking as an optimization task.
They search for regions that are most similar to the target object [16, 17]. Comprehensive
reviews regarding object tracking are given in [27, 32, 33].

In this research, we use a particle filter as the main tracking framework. Particle filters
are generative methods used to estimate system states in state-space models; these sys-
tem states are observed over time. Particle filters solve the estimation problem by using
sequential Monte Carlo sampling, in which a set of samples called particles is used to
perform numerical approximation. Particle filters perform very well with nonlinear and non-
Gaussian estimation problems, proving their efficiency in dealing with various difficulties
related to object tracking [7].

In particle filter-based tracking algorithms, the appearance model of the target object is
essential because it directly affects the properties of particles. Since the invention of the
particle filter, several types of appearance models for this framework have been proposed,
including color [19], contour [13], edge [10], and saliency [26]. Among these, color-based
models are simple and effective. They have continued to be reliable even after several new
appearance models were later proposed [22]. The color of an object is affected mainly by
two physical elements: the spectral power distribution of the illuminant and the surface
properties of the object [33]. For these reasons, color-based models can fully capture the
appearance properties of target objects. However, a particle filter itself is a high complexity
algorithm because each particle must be processed separately. Complex models can dra-
matically increase the overall execution time of a particle filter framework, rendering it
useless in real-life applications. Therefore, not only effective but also simple models that
can be constructed easily are necessary. Color-based models are candidates that satisfy these
requirements.

Color-based models usually comprise a form of color distribution or color histogram.
One flaw with color histograms is that they ignore the spatial layouts of targets, which can
cause tracking failures when objects appear that are similar in color. To overcome this dis-
advantage, we propose a saliency-based weighting scheme for histogram calculation. In this
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method, saliency maps of target objects and particles are generated. Their weighted his-
tograms are then calculated based on these generated saliency maps. Pixels located in salient
regions have higher weights than in others, which helps preserve the spatial information of
image regions and increase the reliability of likelihood calculation.

There were several researches regarding object tracking that use saliency and color
information [26, 28, 34, 35]. In these studies, saliency and color information are used
separately to support each other. In our study, we introduce a simple but effective algo-
rithm for object tracking. Saliency information is used to create a new type of histogram
that can retain the details of spatial information. This study is divided into six parts. In
Section 2, we present the particle filter framework for object tracking. The saliency map
generation algorithm and weighted color histogram construction for observation likeli-
hood calculation are described in Section 3. Section 4 provides experimental results and
Section 5 discusses future work related to the proposed method. We conclude the study in
Section 6.

2 Particle filter for object tracking

Particle filters are derived from the Bayesian filter [5]. Both are probabilistic methods that
use noisy observations from a dynamic system to estimate the states of that system over
time. This is possible because object tracking can be regarded as an estimation problem, in
which the positions of objects in video frames are estimated from their observed positions
in previous frames. Let xt be the state of a given object (i.e., the center of the object region
in video frames at time t). In general, the motion of an object can be expressed as a discrete
dynamic system that takes the following form:

xt = ft−1(xt−1, wt−1), (1)

zt = gt (xt , w̃t ). (2)

where f, g are the transition and measurement functions, respectively. System and mea-
surement noises are denoted by wt and w̃t , respectively, and both have known distributions.
These two distributions are usually Gaussian, but they are not necessarily identical.

At each time step t , the evolution xt of the state xt−1 is calculated. Then, a series of
observations Zt = {z0, . . . , zt } is acquired. In practice, defining a dynamic system explicitly
is difficult, however it can be estimated from observations. At a given time step k, Bayesian
filter can recursively estimate the target state by performing state predictions and updates
using the following two equations, respectively:

p(xk|Zk−1) =
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1, (3)

p(xk|Zk) = p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
, (4)

where

p(zk|Zk−1) =
∫

p(zk|xk)p(xk|Zk−1)dxk. (5)

In other words, assuming that p(xk−1|Zk−1) is known at time k − 1, the prediction
p(xk|Zk−1) is calculated from the transition model p(xk|xk−1) and posterior density
p(xk−1|Zk−1). At time k, when the observation zk becomes available, the prior probability
density function p(xk|Zk−1) can be updated, producing p(xk|Zk).
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However, obtaining an explicit form of the integral operation in (3) is difficult. A par-
ticle filter solves this problem by using sequential Monte Carlo sampling, in which a set
of samples, which are also called particles, is used to perform numerical approximation.
In object tracking techniques based on particle filter frameworks, particles are usually in
the form of rectangular windows associated with encoded features of the image regions
inside those windows. Figure 1 illustrate a particle filter-based object tracking technique in
action.

Let St = {xi
t , ω

i
t | i = 1, . . . , N} be a set of N particles at time t . Each particle xi

t

is associated with a weight ωi
t , where

∑N
i=1 ωi

t = 1 for all t . The particle filter algo-
rithm is executed through iterations. At t = 0, S0 is initialized by randomly assigning
state and weight for each particle. When t = k > 0, at the beginning of the iteration,
each particle advances independently based on a predefined transition model. This pro-
duces an approximation of the a priori probability density function as given by the following
equation.

p(xk) = 1

N

N∑
i=1

δxi
k
(xk), (6)

where δ denotes the Dirac’s measure with support xi
k .

When the observation zk is acquired from the dynamic system, the update step (4) is
approximated using the following equation.

P(xk|Zk) =
N∑

i=1

ωi
kδxi

k
(xk), (7)

where

ωi
k ∝ p(zk|xi

k)∑N
j=1 p(zk|xj

k )ω
j

k−1

ωi
k−1. (8)

As shown in (8), the weight of each particle is also updated based on likelihood with the
target state. Particles that correspond to the most probable state will have a higher weight
than others. The probability p(zk|xi

k) is likelihood between the target state and the particles.
This represents a critical part of the particle filter algorithm. In object tracking problems, the

Fig. 1 Target object indicated by a green rectangle (left), and the particles at the current state indicated by
white rectangles (right)
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likelihood is usually measured by the distance between appearance models. The estimator
x̂k for the state of the target is then calculated by:

x̂k =
N∑

i=1

ωi
kx

i
k. (9)

At the end of each iteration, the particles are resampled, producing a new set of particles
for the next iteration. Without resampling, the whole weight will likely be accumulated at a
single particle after a few iterations. The new set of particles is generated by redistributing
all current particles based on their current weights. Particles with higher weights are more
likely to be selected. After being selected, each new particle is assigned a new weight, 1/N .
A review of resampling methods for particle filters is provided in [14].

The object tracking framework in this research is based on the condensation algorithm
[7], a well-known implementation of a particle filter. For the transition model, we use the
nearly constant velocity model [12]. The state transition equation is defined as:

xt = Ft−1xt−1 + Wt−1 (10)

xt−1 = [xt−1 yt−1 ẋt−1 ẏt−1] (11)

Ft−1 =

⎡
⎢⎢⎣

1 �t 0 0
0 1 0 0
0 0 1 �t

0 0 0 1

⎤
⎥⎥⎦ (12)

where (xt−1, yt−1) is the location of the center of the target region at time t −1; (ẋt−1, ẏt−1)

represents the motion of the state; �t is the time interval between video frames; and Wt−1
is the system noise, which has a Gaussian distribution. In the next section, we present the
algorithm for observation likelihood calculation, which is used to update particle weights.

3 Observation likelihood

As previously mentioned, the particle filter-based object tracker requires a similarity mea-
surement for the purpose of calculating the likelihood between particles and the target
object. Particle filters are high complexity algorithms. Thus, a simple feature descriptor is
required to maintain execution of the entire tracking algorithm at a reasonable time. For this
reason, a color histogram model and saliency map are used, as they can be easily calculated.
In our tracking method, the bounding box of the target object and particles are rectangular
regions in the video frames, similar to Fig. 1. The likelihood between target object and parti-
cles is calculated as follows. First, the saliency-based weighting maps are extracted from the
target and particles. Second, the weighted histograms of the target and particles are calcu-
lated using extracted weighting maps. Finally, Hellinger distance between the histograms of
the target object and of each particle is computed. Higher distances mean lower likelihood.
The details of each step are presented in the next two subsections.

3.1 Saliency-based weighting map extraction

A region is considered salient if its feature strength is stronger than that of its neighbors.
Saliency detection techniques are methods that produce saliency maps from given image
data. Several saliency detection techniques have been proposed [2], and can be classified
as two types of approaches: bottom-up, which uses basic features such as colors or edges;
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and top-down, which uses knowledge-driven properties. In our saliency-based weighting
scheme for histograms, we use the spectral residual method from [6]. This saliency model
is independent of features or prior knowledge. Moreover, the spectral residual method can
construct saliency maps in a short amount of time, which is suitable for a particle filter-based
object tracking method.

Given a rectangular image region I (of the target object or particles), a saliency map of
that region is generated using the spectral residual method [6]. First the image I is down-
sampled to 64 × 64 pixels, then its log spectrum is calculated as:

L(I) = log(�(F[I])) (13)

where F[·] represents two-dimensional (2D) Fourier transform operation, and the log spec-
trum is a logarithm of the real part of the transformation result. The spectral residual R(I)

of the image is defined as:
R(I) = L(I) − hn ∗ L(I) (14)

where hn is an n × n matrix defined by

hn = 1

n2

⎡
⎢⎢⎢⎣

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

⎤
⎥⎥⎥⎦ (15)

As suggested by the authors of this method, n equals 3. We then perform inverse 2D Fourier
transform and smoothing using a Gaussian filter.

S(I) = γ (·) ∗ F−1 [
exp(R(I) + P(I))

]2 (16)

where F−1 represents the inverse 2D Fourier transform operation, γ (·) is a Gaussian
smoothing kernel, and P(I) = �(F[I]). Finally, the image S(I) is resized to its original,
thereby producing the saliency map. The saliency map calculation is illustrated in Fig. 2.

This saliency map is then thresholded, producing two binary images. The thresholds are
calculated by using the multi-level Otsu method [20]. The idea of this step is that, by using

Fig. 2 Image region (left) and its
corresponding saliency map
calculated using the spectral
residual algorithm (right)
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(a) Low-value
saliency regions

(b) High-value
saliency regions

(c) Weighting map

Fig. 3 Binarized saliency maps from Fig. 2 and its weighting map for histogram calculation

multi-level thresholding, we can retain multiple levels of saliency. Figure 3a and b present
the binarized saliency maps of the image region shown in Fig. 2, and also indicate regions
that pass the low and high thresholds, respectively. Finally, two binary images are combined
to create the weighting map (Fig. 3c). This saliency-based weighting map is used in the next
step to create the weighted histogram.

3.2 Saliency-based weighted color histogram

In addition to physical properties, color features also depend on color models, in which
colors are represented in a mathematical manner as tuples of numbers. Several color mod-
els have been proposed for difference purposes, and red-green-blue (RGB) is the most
commonly used color model [1]. Currently, no color model exists that is suitable for all
vision-based applications. The selection of color models is based on the objectives of
the application. In this research, the RGB model is selected because of its robustness
against noise and occlusion. As such, the properties of particles are represented by three-
dimensional RGB histograms. However, normal color histograms ignore the spatial layout
of targets, which may lead to tracking failures when objects appear that are similar in color.

To overcome this disadvantage, we use the weighting map created previously (as illus-
trated in Fig. 3c). When we apply this weighting map to histogram construction, pixels in
the red regions are counted thrice, those in the white regions are counted twice, and oth-
ers are counted once. Therefore, given a pixel at location l in the rectangular region, the
weighting function is defined as:

k(l) =
⎧⎨
⎩

3 l ∈ red regions
2 l ∈ white regions
1 otherwise

(17)
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Let h(l) be the function that assigns a given color at location l to one of the M bins of the
histogram. The weighted 3D color histogram P = {Pu}u=1...M of an image region can be
formulated as:

Pu =
I∑
i

k(li )δ[h(li ) − u] (18)

where I is the number of pixels in the given image region and δ denotes the Kronecker
function. In this research, the 3D histograms are constructed in RGB space using 8 × 8 × 8
bins.

The saliency-based weighting function in (17) is applied for the purpose of retaining the
spatial information of image regions. As shown in Fig. 2 and 3, the saliency map exposes
the spatial structure of objects in an image region. The structure is then embedded into the
weighted histogram. Therefore, the saliency-based weighting scheme can capture the spatial
information of the image regions, which helps increase the reliability of the color-based
appearance model.

To illustrate the idea of this weighting scheme, we use a 3 × 3 image with three gray
levels (Fig. 4). In a normal histogram (Fig. 5a), the pixel count for all gray levels is 3. In a
weighted histogram (Fig. 5b), we have:

P0 = 1 × 1 + 1 × 1 + 1 × 1 = 3

P1 = 2 × 1 + 2 × 1 + 1 × 1 = 5 (19)

P2 = 3 × 1 + 2 × 1 + 1 × 1 = 6

Note that in the above equations we only include operands where δ[h(li ) − u] �= 0, and
the bins start from 0 to match the gray values. A comparison of the normal and weighted
histograms is given in Fig. 5.

After obtaining the weighted histograms, we calculate the distances between the two
color histograms using the Hellinger distance. This measure is also called the Bhattacharyya
distance because it is derived from the Bhattacharya coefficient. The Hellinger distance is
used because of its effectiveness in measuring differences between histograms [31]. Let
P = {Pu}u=1...M and Q = {Qu}u=1...M be the two weighted color histograms of the target
object and a particle, respectively, the Bhattacharya coefficient of these two histograms is
then given by:

BC(P,Q) =
M∑

u=1

√
PuQu. (20)

(a) Example 3-by-3
image

(b) Weighting map (c) Weighting map
applied to image

Fig. 4 Example using a 3 × 3 image with three gray levels
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(a) Normal histogram (b) Saliency-based weighted histogram

Fig. 5 Comparison of two types of histogram calculated from Fig. 4

The Bhattacharyya coefficient is a measurement of the amount of overlap between two
distributions. A higher coefficient value means that the two histograms are more similar to
each other, which yields a shorter distance between them. The Hellinger distance is then
defined as:

HD(P,Q) = √
1 − BC(P,Q). (21)

Finally, the weights of particles are calculated as:

ω ∝ 1√
2πσ

e
− HD

2σ2 (22)

4 Experimental results

4.1 Performance evaluation

We carried out several experiments with different conditions to evaluate the performance
of the particle filter-based object tracking framework and the proposed appearance model.
The hardware platform for our experiments was a desktop computer equipped with a quad-
core processor running at 3.0 GHz and 8 GB of RAM. The object tracking program was
implemented in C++ on a Linux operating system. OpenCV library was used to process the
video frames. We tested four video sequences that included various target appearances and
environmental conditions. The four video sequences were entitled Basketball, Bolt1, Girl,
and Iceskater1, all of which were obtained from [11]. In all experiments, the particle filter
framework was configured for execution with 300 particles.

In the image sequence named Girl, the color patterns of the target region were dis-
tinct from the background. This helped our proposed appearance model fully capture the
properties of the target, resulting in high tracking accuracy. As shown in Fig. 6, a full tem-
poral occlusion occurred at Frame 116 and lasted for several frames. When the occlusion
ended, the tracking algorithm successfully recovered, then continued producing high accu-
racy tracking results for the remainder of the image sequence despite several changes in
posture of the image subjects.

In the subsequent test, we used an image sequence name Iceskater1, which showed an
ice skater in action. Because of the nature of this sport, athletes in this sport typically
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(a) First frame (b) Frame 116

(c) Frame 150 (d) Frame 280

(e) Frame 423 (f) Frame 652

(g) Frame 772 (h) Frame 1500 (last)

Fig. 6 Tracking results from the sequence Girl
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have fast and complex movements. As shown in Fig. 7, in addition to complex move-
ments, the posture of the athlete constantly changes, as does the distance between the athlete
and camera. We noted that the color of the athlete’s outfit was rather similar to the back-
ground. However, the tracking algorithm produced accurate results until the last frame of the
video.

Finally, we evaluated the ability of the proposed appearance model to distinguish similar
regions. In this test, we used two image sequences: Bolt1 and Basketball. The sequences
in Bolt1 included a group of sprinters (Fig. 8), and that in Basketball included a basketball
match (Fig. 9). All athletes in both sequences had a similar appearance. Partial occlusions
also occurred in these sequences several times because of the movements of non-target

(a) First frame (b) Frame 078

(c) Frame 118 (d) Frame 210

(e) Frame 347 (f) Frame 391

(g) Frame 598 (h) Frame 661 (last)

Fig. 7 Tracking results from the sequence Iceskater1
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(a) First frame (b) Frame 087

(c) Frame 207 (d) Frame 350 (last)

Fig. 8 Tracking results from the sequence Bolt1

athletes. In this test, the tracking algorithm successfully tracked target regions during the
entire sequence for both Bolt1 and Basketball.

For a quantitative analysis, we evaluated the accuracy of the proposed tracking method
by calculating normalized center errors, which are normalized distances between the centers
of tracking and ground-truth windows (Fig. 10). Let Ct and Cg be the positions of the

(a) First frame (b) Frame 471

(c) Frame 622 (d) Frame 725 (last)

Fig. 9 Tracking results from the sequence Basketball
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Fig. 10 Tracking window
(green) and ground truth window
(red) with their corresponding
centers

centers of tracking and ground-truth windows, respectively. The normalized distance dnorm
is calculated by:

dnorm = d(Ct , Cg)√
V 2

w + V 2
h

(23)

where d(Ct , Cg) is the Euclidean distance between Ct and Cg , Vw and Vh are the width
and height of the video frame, respectively. As shown in Fig. 11, the errors of our tracking
algorithm were less than 5% most of the time for all four tested sequences. Significant errors
appeared in the sequence Iceskater1 in which the maximum observed error was 12.25%. In
this sequence, the target engaged in complex movements. However, high accuracy results
were achieved most of the time in this sequence.

4.2 Comparison with other algorithms

For a performance comparison, we tested three other object tracking techniques: incremen-
tal learning tracking (IVT) [23], distribution field tracking (DFT) [25], and adaptive struc-
tural local sparse appearance model tracking (ASLSAM) [8]. Similarly to our approach, the
authors of IVT and ASLSAM used a particle filter as a tracking framework with their pro-
posed appearance models. The authors of DFT considered object tracking as an optimization
problem.

The implementation of the three aforementioned algorithms were acquired from authors’
websites and configured for execution with default parameters. The image sequences used
for this comparison were the same as those described in the previous section (Basketball,
Bolt1, Girl, and Iceskater1). This experiment only covered tracking accuracy and did not
consider the processing time of algorithms.

In the image sequence Girl, IVT lost track of the target after Frame 60, when the girl
passed by another person (Fig. 12b). Because IVT only works with grayscale images, this
might explain the failure, as the target and non-target objects had similar appearances in
grayscale. DFT failed after Frame 111, when a short-time occlusion occurred and it could
not subsequently recover (Fig. 12h). ASLSAM also failed after Frame 111 because of
occlusion. However, it successfully recovered after the occlusion ended, then continued
producing accurate results until the end of the image sequence (Fig. 12l).

We used the sequence Iceskater1 in the next test. As previously mentioned, the athlete in
this image sequence had fast and complex movements. IVT failed after Frame 52, when the
tracking window shrunk to the size of a dot and jumped around the video frames (Fig. 13c).
DFT produced accurate tracking results in the first few seconds of the video, that is, until
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(a) Sequence Girl
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(b) Sequence Iceskater1
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(c) Sequence Bolt1
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(d) Sequence Basketball

Fig. 11 Normalized center errors from tested sequences
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(a) First frame (b) Frame 60 (c) Frame 111 (d) Frame 165

(e) First frame (f) Frame 70 (g) Frame 111 (h) Frame 162

(i) First frame (j) Frame 111 (k) Frame 130 (l) Frame 330

Fig. 12 Tracking results from the sequence Girl. First row: IVT; second row: DFT; third row: ASLSAM

Frame 98. From Frame 99 and onward (Fig. 13g and h), the tracking window remained
stuck at the bottom of the screen. ASLSAM also successfully tracked the target until Frame
130. At this point, the athlete jumped suddenly to perform a spin (Fig. 13j), ASLSAM could
not follow this movement and was unable to recover from this tracking failure (Fig. 13k).

(a) First frame (b) Frame 52 (c) Frame 342 (d) Frame 377

(e) First frame (f) Frame 98 (g) Frame 99 (h) Frame 660

(i) First frame (j) Frame 130 (k) Frame 150 (l) Frame 255

Fig. 13 Tracking results from the sequence Iceskater1. First row: IVT; second row: DFT; third row:
ASLSAM
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Finally, we evaluated the ability of the tracking algorithms to distinguish similar regions.
In this test, two image sequences Bolt1 and Basketball were used. In Bolt1, all three tracking
algorithms failed after the first few frames of the sequence because the target object moved
very fast, and several regions were present whose appearance was similar to that of the tar-
get object (Fig. 14). In the image sequence Basketball, all athletes had a similar appearance
because of the team outfit. The tracking window of IVT shrunk to the size of a dot after a
few frames. However, this small tracking window successfully tracked the target most of the
time in this sequence (Fig. 15c). In the final seconds, the tracking window jumped to a non-
target athlete that had a similar appearance as that of the target (Fig. 15d). DFT produced
moderate results until Frame 79 (Fig. 15g), after which the tracking window remained stuck
at the right edge of the video frame (Fig. 15h). ASLSAM also produced accurate track-
ing results. However, the tracking window could not handle partial occlusion between two
similar objects (Fig. 15k and l), and then the tracking window jumped to a non-target object.

For quantitative analysis, we compared normalized center errors of our proposed method
with those of IVT, DFT, and ASLSAM. As shown in Fig. 16, the errors of our tracking
algorithm are significantly lower than those of other methods. For the sequence Girl, our
proposed method produced highly accurate results during the course of the entire video,
ASLSAM successfully recovered from full occlusion but considerable time was spent in
this recovery. IVT and DFT produced high error rates. For the sequence Iceskater1, the
center errors of all four algorithms varied significantly because of the complex movements
of the target. The center errors from our algorithm was low, whereas other algorithms pro-
duced low accuracy and unstable results. For the sequence Bolt1, our method succeeded
in tracking the sprinter, but other methods failed after the first few frames. For the last
sequence, Basketball, DFT failed quite early, IVT and ASLSAM produced accurate results

(a) First frame (b) Frame 5 (c) Frame 50

(d) First frame (e) Frame 19 (f) Frame 40

(g) First frame (h) Frame 13 (i) Frame 130

Fig. 14 Tracking results from the sequence Bolt1. First row: IVT; second row: DFT; third row: ASLSAM
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(a) First frame (b) Frame 79 (c) Frame 337 (d) Frame 663

(e) First frame (f) Frame 17 (g) Frame 79 (h) Frame 164

(i) First frame (j) Frame 277 (k) Frame 286 (l) Frame 310

Fig. 15 Tracking results from the sequence Basketball. First row: IVT; second row: DFT; third row:
ASLSAM

until occlusions between similar objects appeared and the two methods subsequently failed
to recover. Our method successfully tracked the target until the end of the video.

5 Discussion and future work

Although the proposed particle object tracking algorithm proved its efficiency and effective-
ness after being subjected to several tests, we cannot guarantee that the proposed algorithm
will always be accurate in all situations. Figure 17 shows the tracking results for the
sequence Pedestrian2, which was also acquired from [11]. The target was tracked accurately
until Frame 170. After this frame, the camera moved abruptly for a short distance (Frame
181). The dynamic model was unable to follow this sudden change, and the tracking algo-
rithm could not recover from its original failure because of a nearby non-target object that
had a similar appearance. Moreover, the area of the target region was small compared to the
size of the video frame. Our model failed to retain the spatial structure of the target region
when the area was insufficiently large.

The proposed appearance model relies on two components: a saliency model and a
thresholding method. Different algorithms produce different results, which in turn affect the
weighting scheme considerably. Appropriate saliency and thresholding methods must retain
the spatial information as much as possible while having a reasonable execution time. For a
future study, we will exploit modern techniques to produce better saliency maps and more
efficient thresholding algorithm to retaining the details of spatial information, improving
the reliability of our appearance model.
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(a) Sequence Girl

0 100 200 300 400 500 600

Frame index

0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 c
en

te
r 

er
ro

rs

Proposed method
DFT
IVT
ASLSAM

(b) Sequence Iceskater1
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(c) Sequence Bolt1
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(d) Sequence Basketball

Fig. 16 Comparison of normalized center errors from tested sequences



Multimed Tools Appl (2018) 77:30067–30088 30085

(a) Frame 170 (b) Frame 181 (c) Frame 189 (d) Frame 269

Fig. 17 Tracking results from the sequence Pedestrian2

6 Conclusion

In this study, we proposed a novel appearance model for a particle filter-based object
tracking method. Color-based features are suitable candidates for high complexity tracking
frameworks such as particle filters. These features are usually in the form of histograms,
which are simple to construct. One downside of color histograms is that they ignore the spa-
tial layouts of targets, which may cause tracking failures when objects appear that are similar
in color. To overcome this disadvantage, we proposed a saliency-based weighting scheme
for histogram calculation. Given an image region, its corresponding saliency map is first
generated. Then, its weighted histogram is calculated based on the generated saliency map.
Pixels located in salient regions have higher weight than in others, which helps preserve the
spatial information of image regions. The color histograms are then embedded in particles
and the distances between histograms are used to measure observation likelihood. Experi-
mental results showed the efficiency of the proposed appearance model in object tracking
under various conditions. For future work, we will improve the performance of our model
by producing better saliency maps and more efficient thresholding algorithm to retaining
the details of spatial information.
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