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Abstract In Visual Cryptographic Scheme (VCS) shares of the secret image look like random,
whereas in Extended Visual Cryptographic Scheme (EVCS) the shares look like meaningful
images. In the case of ideal contrast deterministic constructions for VCS, depending upon the
access structure, each participant needs to hold one/multiple image shares with same size of
the binary secret image and the secret image will be reconstructed without any change in
resolution. In this paper, two deterministic constructions for EVCS with a relative contrast
of 0.333 are proposed by utilizing the ideal contrast deterministic constructions for VCS as
a building block. The proposed schemes are applicable to share secret binary images only.
Theoretical analysis and comparison with other related works are given in this paper.

Keywords Visual cryptography · Extended visual cryptography · OR-AND
reconstruction · XOR-AND reconstruction · General access structure

1 Introduction

Today, every business, medical and research units of government/private sectors transfer
digital images over the Internet and store it in public cloud servers. In order to mitigate
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any event of disclosure of secret images to unauthorized persons, there exist various tech-
niques like steganography [23–25] and secret sharing. Secret image sharing is a practice of
encoding the secret image into shares and steganography is the practice of hiding a secret
information within another file, image or video. Secret images can be encoded into shares

Fig. 1 Reconstructed images for (2, 3) EVCS
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either by complex computations like Lagrange interpolations or using Visual cryptography.
In this paper, we focus on the development of Visual cryptographic scheme.

Visual cryptography, pioneered by Naor and Shamir [34], is a method in which the dealer
generates random-looking shares from a secret image (SI Figs. 1, 7 and 11), then distributes
these shares to a set of participants and when sufficient shares combine, the reconstructed
image (RI) will be generated. The quality of a VCS is measured using two parameters: pixel
expansion and contrast. The pixel expansion is the number of sub pixels used for encoding
a pixel while, contrast is the difference in gray level between black and white pixels of SI.
One can distinguish the black (1) and white (0) pixel in the RI because every m sub pixel
in black area will have more black sub pixels than in white area. The Boolean operations
used in VCS for reconstruction are: XOR, OR, AND and NOT. In deterministic VCS all the
black and white areas of SI will be reconstructed in RI. Deterministic VCS were introduced
in [3, 6, 34]. The perfect black VCS constructions were discussed in [6, 7]. In ideal contrast
VCS, the secret SI is reconstructed using combined Boolean operations (either OR and
NOT [10] or OR and XOR [45] or OR and AND [37]) without loss of resolution. For XOR
based ideal contrast step construction [28], participants hold less number of multiple shares
when compared with the constructions given in [10, 37, 45]. Deterministic EVCS [5, 20,
27, 31, 32, 44, 46, 48–50, 53, 56, 58, 59, 62, 63] and probabilistic EVCS [8, 9, 12, 15,
16, 18, 22, 35, 36, 39–41, 47, 54, 55] are other types of VCS where the shares of SI look
like meaningful. The halftone EVCS constructions are discussed in [48–50, 56, 63]. EVCS
for (2, 2) [32], (k, k) [18], (k, n) [46] are some of the existing threshold access structure
constructions. Progressive EVCS constructions are given in [8, 16]. Apart from some of
these schemes [1, 51, 52] as a solution for authentication, Naor and Pinkas [33] proposed a
solution based on visual cryptography. Some other applications of visual cryptography are
discussed in papers [2, 11, 21, 30, 38, 43, 60, 61].

In ideal contrast VCS constructions [10, 28, 37, 45], each participant needs to carry mul-
tiple shares which are of same size of SI. For EVCS in general each participant carries a
single pixel expanded meaningful image as share. In this paper, we propose constructions
(PC1 and PC2) for EVCS having the relative contrast value of RI as 0.333, where each par-
ticipant carries multiple meaningful images as shares. Since each participant holds multiple
shares, we consider the average pixel expansion (APE) instead of pixel expansion, where the
APE [28] is defined as the average value of the total pixel expansions of the share images
that each participant holds. For a good EVCS the APE value needs to be low and relative
contrast value of the reconstructed image needs to be high. Our construction shows better
results for relative contrast (Fig. 1) and APE values compared with the existing EVCS. The
proposed algorithm works when the secret and cover are binary images.

The rest of the paper is organized as follows. Section 2 shows the background and Section 3
shows the proposed EVCS constructions respectively. Conclusions are given in Section 4.

2 Preliminaries

Let P = {p1, p2, p3, ......, pt, ......, pn} be the set of participants, and 2P denote the power set
of P. Let us define a subset E = {p1, ......, pt} of P. Denote �Qual as qualified set and �Forb

as forbidden set where, �Qual ∩ �Forb = ∅. Any set A ∈ �Qual can recover SI whereas any
set A ∈ �Forb cannot recover SI. Let �QM = {A ∈ �Qual: A′ /∈ �Qual for all A′ ⊂ A} be the set of
minimal qualified subsets of P. Let �FM = {B ∈ �Forb: B∪{i} ∈ �Qual for all i ∈ P\B} be the
set of maximal forbidden subsets of P. The pair � = ( �Qual, �Forb) is the access structure
of the scheme. A VCS with �QM = {A ∈ �Qual: A ⊆ P and |A| = k} is called (k, n) - VCS. A
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VCS with �QM = {A ∈ �Qual: A ⊆ P, p1 ∈ A and |A| = k} is called (1, k, n) - VCS. A VCS
with �QM = {A ∈ �Qual: A ⊆ P, E ⊆ A and |A| = k} is called (t, k, n) - VCS. Let us denote
the set �EM = {A1,A2,A3, ......,Ar} which contains r minimal qualified subsets such that
A1∩A2∩A3, ......,Ar−1∩Ar = E 	= ∅. Let S be an n × m Boolean matrix and A ⊆ P, then the
vector obtained by applying the Boolean operations to the rows of S corresponding to the
elements of A is denoted by SA and number of ones in the vector SA is denoted as W( SA).

Let us define the notations used in this paper.

1) x =
{
1 if x == 0
0 if x == 1

as NOT operation

2)
⊗

as OR operation
3)

⊕
as XOR operation

4)
⊙

as AND operation
5)

[
x1 x2 x3

]⊗ [
y1 y2 y3

]
=

[
x1

⊗
y1 x2

⊗
y2 x3

⊗
y3

]
6)

[
x1 x2 x3

]⊕ [
y1 y2 y3

]
=

[
x1

⊕
y1 x2

⊕
y2 x3

⊕
y3

]
7)

[
x1 x2 x3

]⊙ [
y1 y2 y3

]
=

[
x1

⊙
y1 x2

⊙
y2 x3

⊙
y3

]
8) Ni as the number of shares held by participant pi
9) Sizei as the share size of a single pixel of SI
10) # as the number of Boolean operations done during reconstruction.
11) SPP as Shares hold by each participant.
12) RI as the reconstructed image.
13) OI as the intermediate image generated for reconstructing RI in PC2.
14) D(u,j): The jth share of the uth participant, Sh(u,j) of size p × 3q is generated using all

the p × q row vectors D(u,j) of size 1 × 3.

Definition 1 (OR operation based) [6]: Let � = ( �Qual, �Forb) be an access structure on
a set of n participants. Two collections of n × m Boolean matrices C0 and C1 constitute
a ( �Qual, �Forb) -VCS if there exists a positive real number α and the set of thresholds{
tA | A ∈ �Qual

}
satisfying the following two properties

1. Any qualified set A =
{
i1, i2, ......, ip

} ∈ �Qual can recover SI by stacking their trans-
parencies. Formally for any S0 in C0, W( SA0 ) ≤ tA − α × m and for any S1 in
C1,W( SA1 ) ≥ tA.

2. Any forbidden set A =
{
i1, i2, ......, ip

} ∈ �Forb has no information on SI.

Two collections of matrices Cv, v ∈ {0, 1} in Definition 1 are obtained by generating all
permutations of the basis matrices Sv, v ∈ {0, 1}. In such a case, |C0| = |C1| = m! and r =
log2 m! is called the randomness of the VCS [13, 17]. Formally the two collections of p×m
matrices are obtained by restricting each n × m matrix in Sv to the rows i1, i2, ......, ip are
indistinguishable. The first property is related to contrast α × m of RI. The number α is
called the relative contrast. The second is for the security of the scheme.

2.1 EVCS - Ateniese et al. [5]

In the case of EVCS, the share of the participants belonging to set P is meaningful, and is
not random-looking in nature as in conventional VCS. Let Cc1,......,cn

sc where, {c1, ......, cn} ∈
{0, 1}, be the collection of matrices from which the dealer chooses a matrix to encode a ci
pixel, where i = 1 to n in the image COVi (cover images or meaningful images) associated
to participants in set P in order to obtain a sc pixel when the transparencies associated to
the participants in the set A ∈ �Qual are stacked together. Hence there will be a collection



Multimed Tools Appl (2019) 78:1315–1344 1319

of 2n pairs (Cc1,......,cn
0 , Cc1,......,cn

1 ) for all possible combinations of white and black pixels in
the n original images. Let Tc1,......,cn0 = [

S0 || D ] ∈ Cc1,......,cn
0 and Tc1,......,cn1 = [

S1 || D ] ∈
Cc1,......,cn
1 where, S0 (resp. S1) are the basis matrices of perfect black VCS [6, 7] and when

stacking the rows of D matrix corresponding to the participants in the qualified set, an all
one row vector will obtain. This implies that T0 (resp. T1) are basis matrices of a perfect
black EVCS for sharing 0 (resp. 1) pixel in SI.

Example 1 Let P = {p1, p2, p3} be the set of participants, �QM ={{p1, p2}, {p1, p3}, {p2, p3}}
and �FM = {{p1}, {p2}, {p3}}. Let SI =

[
1 0

]
. Let the three cover images used in this

construction be COV1 =
[
0 0

]
, COV2 =

[
0 1

]
and COV3 =

[
1 1

]
. Let S0 =

⎡
⎣ 0 1 1 1
0 1 1 1
0 1 1 1

⎤
⎦

and S1 =

⎡
⎣ 0 1 1 1
1 0 1 1
1 1 0 1

⎤
⎦. Then the Boolean matrices constructed for sharing a 0 pixel is T0110

=

⎡
⎣ 0 1 1 1 0 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

⎤
⎦ and for sharing a 1 pixel is T0011 =

⎡
⎣ 0 1 1 1 0 1 1
1 0 1 1 1 0 1
1 1 0 1 1 1 1

⎤
⎦. So for the

access structure (�QM, �FM) the pixel expansion and relative contrast of Ateniese et al. [5]
scheme is 7 and 1/7 respectively.

2.2 Ideal contrast constructions for VCS

Let S0 (resp. S1) be the basis matrices of perfect black general access structure scheme ([6]
and [7]) for sharing a 0 (resp. 1).

The share generation phase:

In Cimato et al. [10] scheme the m shares for each participant is generated as follows.

H(u,j)(g, h) =

{
S0(u, j) ifSI(g, h) == 0
S1(u, j) ifSI(g, h) == 1

; where j = 1 to m, 1 ≤ u ≤ n,

0 ≤ g ≤ p − 1, 0 ≤ h ≤ q − 1.

The secret reconstruction phase:

Generate�1(g, h) =
⊗

pu∈�QM
H(u,1)(g, h),�2(g, h) =

⊗
pu∈�QM

H(u,2)(g, h), ...,�m−1(g, h)
=

⊗
pu∈�QM

H(u,m−1)(g, h), �m(g, h) =
⊗

pu∈�QM
H(u,m)(g, h). Then RI is obtained in any

of the following three ways when the gray levels of SI is 2. Based on Cimato et al. [10] OR-

NOT scheme, RI(g, h)=
m⊗

j=1
�j( g, h). Based on Wang et al. [45] OR-XOR scheme, RI(g,

h) =
m⊕

j=1
�j( g, h). Based on Praveen et al. [37] OR-AND scheme, RI(g, h) =

m⊙
j=1

�j( g, h).

The Wang et al. [45] scheme is also applicable to non perfect black general access structure
schemes.

2.3 Ideal contrast Step construction for VCS [28]

In the case of XOR based (2, 2) - VCS, two collections of 2×1 Boolean matrices for sharing

a 0 (resp .1) pixel in SI are C0 =

{[
1
1

]
,

[
0
0

]}
and C1 =

{[
1
0

]
,

[
0
1

]}
respectively. Here
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RI is identical to SI which implies that the contrast is ideal (α ×m = 1) and pixel expansion
m = 1. By recursively calling XOR based (2, 2)-VCS, Liu et al. [28] in 2010 developed the
ideal contrast XOR step construction, where the amount of shares each participant holds
is different. The APE and relative contrast of step construction is better when compared to
other results and is given in TABLE I of paper [28].

2.3.1 Step construction for (n, n) - VCS (Construction1)

Here initially two shares ShL
1 and ShR

1 are generated from SI using XOR based (2, 2)-VCS.
Then for constructing an (n, n)-VCS select any one of the shares say ShR

1 as secret image
and again generate two shares ShL

2 and ShR
2 using XOR based (2, 2)-VCS. This procedure

is continued till the shares ShL
n−1 and Sh

R
n−1 are generated from the share ShR

n−2 using XOR
based (2, 2)-VCS. During the share distribution phase, distribute ShL

1 , Sh
L
2 , ......, Sh

L
n−1,

ShR
n−1 to the n participants in the set P respectively. During the share reconstruction phase,

when all the n participants combine their shares, the following procedure will recover the
RI = SI = ShL

1 ⊕ ShL
2 , ......, Sh

L
n−1 ⊕ ShR

n−1. Hence the XOR step construction for (n, n)
access structure generates a VCS with ideal contrast (α × m = 1) and pixel expansion
m = 1.

Access structures can be simplified using equivalent participants for effective construc-
tion (for achieving small APE). Participants who have the same right can be considered as
equivalent participants.

2.3.2 Generation of the simplified qualified set �̃QM

Without affecting the security, identical shares are distributed to equivalent participants for
simplifying the access structure of VCS. Formally, equivalent participants are defined as
follows:

Definition 2 (Equivalent participants) [28]: Let �QM be the access structure on P. If
participant pi and pj satisfy that, for all A ∈ �FM, pi ∈ A hold iff pj ∈ A hold, then participant
pi and pj are considered to be equivalent participants on �QM, denoted by pi ∼ pj.

Here ∼ is an equivalence relation on P. A quotient set is a set derived from another by
an equivalence relation. Let P̃ be the quotient set derived from P based on ∼. Following
definition shows how to simplify the access structure based on equivalent participants.

Definition 3 (Simplifying access structure) : The simplified access structure based on the
equivalent participants is �̃QM = {̃A: A ∈ �QM }, where the set Ã = {p̃i ∈ P̃: pi ∈ A} is called
the corresponding set of A and p̃i is called the equivalence class or corresponding participant
of pi. �QM is called the most simplified access structure when �̃QM = �QM.

Theorem 1 [28]: Let �̃QM = {̃A: A ∈ �QM }. By distributing the share images of corre-
sponding participants to the equivalent participants, a construction of VCS for the �̃QM is
also a construction of VCS for the �QM.

Using Definition 3 and Theorem 1, the ideal contrast XOR based step constructions for
VCS are given below.
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2.3.3 Step construction for �EM (Construction2)

Let us denote the set �EM = {A1,A2,A3, ......,Ar} which contains r minimal qualified sub-
sets such that A1 ∩A2 ∩A3, ......,Ar−1 ∩Ar = E 	= ∅ where E = {p1, ......, pt}. Let �′ = {A\E
: A ∈ �EM}. Method 1 and Method 2 for constructing �EM are represented as construction
trees of Figs. 2 and 3, respectively. It is given in Theorem 6 of paper [28] that the APE and
contrast for both the methods are the same.

Method 1: The shares ShL
1 , Sh

L
2 , ......, Sh

L
t shown in Fig. 2 are distributed to the partici-

pants p1, p2, ......, pt respectively. For all L ∈ �′, if |L| = 1, distribute ShRt to the participant
in L, else for all L when |L| = d and g = t+d-1, take ShRt as secret image and generate
share images for participants in L based on the construction shown in the Fig. 2. Then
distribute the shares ShLt+1, ......, Sh

L
g , Sh

R
g to the participants in L.

Method 2: For all L ∈ �′, if |L| = 1, the dealer distributes ShR1 to the participant in the set
L, else for all L when |L| = d, take ShR

1 as secret image and generate share images ShRL
2 ,

......, ShRL
d , ShRR

d and distribute it to the participants in the set L respectively as shown in
Fig. 3. When t = 1, distribute ShL

1 to p1, else generate share images ShLR
2 , ......, ShLL

t−1 and
ShLR

t−1 from ShL
1 and distribute it to the participants p1, p2, ......, pt respectively.

For both methods 1 and 2, the step construction for the sets L ∈ �′ are processed
independently. Let w=|L ∪ E|, then the step construction of the set L ∪ E forms a step
construction of (w, w)-VCS. In the case of �QM = {A1} and A1 = {p1, ......, pt}, apply step
construction of (t, t)-VCS for the participant set A1.

Fig. 2 Step construction Method 1
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Fig. 3 Step construction Method 2

2.3.4 Step construction of VCS for general access structure(Construction 3)

Following are the steps performed by the dealer for generating shares for � = (�QM, �FM).

Step 1) Simplify �QM to �̃QM according to Theorem 1.
Step 2) Then divide �̃QM into several parts, say �i = {A1,A2,A3, ......,Ari} such that A1∩

A2 ∩ A3, ......,Ari = Ei 	= ∅.
Step 3) For each part �i, let �′

i = {A \ Ei : A ∈ �i} and �′′
i = {L ∈ �′

i : |L| 	= 1}. If
�′′
i = ∅ then apply Construction 2 directly on �′

i . Else treat �′′
i as virtual participant E′

i
in �i = {Ei,E′

i}. Then apply Construction 2 (Method 1 or Method 2) on �i i.e., apply the
(2, 2)-VCS and denote the share image distributed to E′

i as Sh
′
i. Then go to Step 1 and

apply a new step construction of VCS, which takes Sh′
i as the secret image for the access

structure �′′
i .

Step 4) Repeat Step 1, 2 and 3 until all the participants receive their share images for all
the qualified sets in �QM.

Theorem 1 simplifies the access structure �QM. Step 1 reduces the number of qual-
ified sets in �QM. There always exist partitions for a general access structure where
each part satisfies the condition of Construction 2 [28]. A simple example for parti-
tioning �̃QM is explained as follows. Assume �̃QM = {A1,A2,A3, ......,Ar}, then let �1
= {A1,A2,A3, ......,Af} be the set of qualified sets which contain p1, i.e., A1 ∩ A2 ∩
A3, ......,Af−1 ∩ Af = {p1}. Let �2 be generated from �′

1 = �̃QM \ �1. Similarly �i is gener-
ated from �′

i−1 = �′
i−2 \ �i−1, where all the minimal qualified sets in �i contain participant

pi. Suppose when there are n partitions in total, �̃QM = �1 ∪ �2 ∪ ... ∪ �n and each �i

satisfies the condition of Construction 2. APE of VCS will vary based on the partition meth-
ods and it is quite complicated to find a general partition method to obtain minimal APE
[28]. Suppose for example when �̃QM = {{p1, p2, p3}, {p1, p2, p4}, {p1, p3, p4}, {p2, p3, p4}}.
Then we can generate two partitions from �̃QM as �1 = {{p1, p2, p3}, {p1, p2, p4}} where
{p1, p2, p3}∩{p1, p2, p4} = {p1, p2} and �2 ={{p1, p3, p4}, {p2, p3, p4}}where {p1, p3, p4}∩
{p2, p3, p4} = {p3, p4}. Even though in Step 2, when each part of �̃QM satisfies the condition
of Construction 2, in order to obtain a smaller APE, the dealer needs to further divide �′′

i by
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recursively applying Construction 3. Example 2 shows a (t = 1, k = 3, n = 4) access structure
where, participant p1 is an essential participant and is present in all the qualified sets.

Based on some access structures mentioned in Table 1 it is evident that APE for XOR
based step construction by Liu et al. [28] VCS is less when compared with VCS by Ateniese
et al. [6], Adhikari et al. [3], Shyu et al. [42], Cimato et al. [10], Wang et al. [45] and
Praveen et al.[37]. Also constructions [10, 28, 37, 45] will provide ideal contrast, but we
cannot obtain ideal contrast for constructions [3, 6, 42]. The disadvantage of constructions
[10, 28, 37, 45] is each participant needs to carry multiple shares which is of the same size
of secret image, but in the case of constructions [3, 6, 42] each participant needs to carry a
single pixel expanded share.

Example 2 Let P = {p1, p2, p3, p4} be the set of participants, the secret image is denoted
as SI and shares generated using XOR step construction are of same size of SI. Let �EM

= {{p1, p2, p3}, {p1, p2, p4}, {p1, p3, p4}} and �FM = {{p2, p3}, {p2, p4}, {p3, p4}, {p1, p2},
{p1, p3}, {p1, p4}}.

As per the scheme, �EM is already in the most simplified form and also satisfies the
condition of Construction 2, so �̃QM = �QM. Let �1 be the partition obtained from �̃QM.
Then apply Construction 2 on �1 to generate �′

1 = �′′
1 = {{p2, p3}, {p2, p4}, {p3, p4}}.

Let the virtual participant be E′
1 = �′′

1 then �1 = {p1,E′
1}. Apply (2, 2)-VCS on the

set �1 which generate shares ShL
1 and Sh′

1 from SI. Distribute ShL
1 to p1 and Sh′

1 to virtual
participant E′

1. Take Sh
′
1 as the secret image and apply step construction on �′′

1 . As per the
scheme it is possible to divide �′′

1 into two parts say, {{p2, p3}, {p2, p4}} and {{p3, p4}}.In
the case of set {{p2, p3}, {p2, p4}}, {p3, p4} ∈ �FM. So p3 ∼ p4. Apply (2, 2)-VCS on Sh′

1 to
generate shares ShL1

2 and ShR1
2 . Based on Definition 2, 3 and Theorem 1, distribute ShL1

2 to
p2 and ShR1

2 to p3 and p4.In the case of set {{p3, p4}}, apply (2, 2)-VCS on Sh′
1 to generate

shares ShL2
2 and ShR2

2 . Distribute ShL2
2 to p3 and ShR2

2 to p4.
So p1 holds share H(1,1) = ShL

1 which implies N1 = 1. p2 holds share H(2,1) = ShL1
2 which

impliesN2 = 1. p3 holds sharesH(3,1) = ShR1
2 andH(3,2) = ShL2

2 which implies N3 = 2. p4 holds
shares H(4,1) = ShR1

2 and H(4,2) = ShR2
2 which implies N4 = 2. So APE = (1 + 1 + 2 + 2)/4.

3 Main results

3.1 Proposed Construction (PC1)

Initially generate H(u,j)(g, h) for SI as given in share generation phase of Section 2.2. As
given in Definition 1, in order to provide randomness [13, 17] while encoding each pixel in

Table 1 APE of VCS for some access structures

�QM [28] [6, 10, 37, 45] [3] [42]

{p1, p2},{p1, p3} 1 2 2 2

{p1, p2},{p1, p3},{p2, p3} 1.6 4 3 3

{p1, p2, p3},{p1, p2, p4},{p1, p3, p4} 1.5 8 6 6

{p1, p2, p3},{p1, p2, p4},{p1, p3, p4},{p2, p3, p4} 2 32 6 6

{p1, p2, p3, p4} 1 8 8 8
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SI, S0 or S1 are updated with a column permutation operation. The algorithm to generate n×
m meaningful shares Sh(u,j)(g, h) from the n× (m− 2) distinct cover images COV(u,j)(g, h)
and a pair of complementary cover images (CV, IV) for the secret image SI is given
below.

3.1.1 Share generation and distribution phase

3.1.2 Secret reconstruction phase

Using Praveen et al. [37] reconstruction algorithm generate the secret RI(g, h) =
m⊙

j=1

⊗
pu∈A Sh(u,j)(g, h).
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3.1.3 Analysis on the APE, contrast and security

This construction is based on the proper arrangement of first, second and third bit in the
blocks D(u,j) which is of size 1×3. In the construction, same column permutation is applied
for all D matrices corresponding to a secret pixel s in SI. Let us assume r1, r2, r3 as random
bits either 0 or 1 and COV(u,j), CV (g, h), IV (g, h) (inverted CV (g, h)) as meaningful cover
images. Assign the second bit of all D(u,j) as H(u,j), the first and third bit are same as that
of corresponding meaningful image. If m is the pixel expansion of a VCS, according to the
algorithmm - 2 shares of uth participant are generated using COV(u,j). During reconstruction
phase corresponding to s, all the jth (D(u,j)) block of the qualified participants stacked(OR)
together to generate jth (

[
r1 r2 r3

]
) block and when AND-ing all the j blocks,

[
0 s 0

]
is

obtained corresponding to s in RI. The design rationale is (m − 1)th meaningful share and
mth meaningful share of uth participant are constructed usingCV (g, h) and IV (g, h) respec-
tively. In this construction all the n participants hold m shares and the pixel expansion in
each share is 3. SoAPE for this EVCS is 3×n×m

n , wherem is the pixel expansion of a perfect
black general access structure VCS. It is possible to construct a (t, k, n) - EVCS based on our
PC1, when the inputs S0 (resp. S1) are basis matrices of size n×2tm1 constructed from a per-
fect black Guo et al. [19] - VCS, where m1 is the pixel expansion of a perfect black (k - t,
n - t) VCS. It is also possible to construct a (1, k, n) - EVCS, when the inputs S0 (resp. S1)
are basis matrices of size n × 2m2 constructed from a perfect black scheme of Arumugam
et al. [4] - VCS, where m2 is the pixel expansion of a perfect black (k - 1, n - 1) VCS. Aru-
mugam et al. [4] - VCS is a special case of Guo et al. [19] - VCS. The APE for our (t, k, n)

- EVCS constructed by using Guo et al. [19] - VCS is 3×n×(2t×m1)
n . The APE for our (1, k,

n) - EVCS constructed by using Arumugam et al. [4] - VCS is 3×n×(2×m2)
n . Step construc-

tion based (t = 1, k = 3, n = 4) - VCS using XOR operation is shown in Example 2. In the
construction same permutation is applied for all D matrices corresponding to a secret pixel
in SI. For proving contrast and security we have not considered permutation of D matrices.

Proof of Contrast :

Let �1(g, h) =
⊗

pu∈�QM
Sh(u,1)(g, h), �2(g, h) =

⊗
pu∈�QM

Sh(u,2)(g, h), ......,

�m−1(g, h) =
⊗

pu∈�QM
Sh(u,m−1)(g, h), �m(g, h) =

⊗
pu∈�QM

Sh(u,m)(g, h).

Let RI(g, h) =
z⊙

j=1
�j( g, h)

⊙
�m−1( g, h)

⊙
�m( g, h), where z = m - 2=

z⊙
j=1

�j( g, h)

⊙ [
�m−1( g, h)

⊙
�m( g, h)

]
=

z⊙
j=1

�j( g, h)
⊙[

0 (�m−1( g, h)
⊙

�m( g, h)) 0
]

=

[
0

m⊙
j=1

�j( g, h) 0
]
=

[
0 SI( g, h) 0

]
. When SI =

[
1 0

]
, for SI(0, 0) the reconstructed

RI(0, 0) =
[
0 1 0

]
and for SI(0, 1) the reconstructed RI(0, 1) =

[
0 0 0

]
. Then relative

contrast of reconstructed image RI is calculated as

(
W

([
0 1 0

])
−W

([
0 0 0

]))
3 = 0.333.

This implies that when the participants in the qualified set join, the 0 and 1 pixel are
distinguishable so that secret is revealed.

Proof of Security :

Generate �1(g, h) =
⊗

pu∈�FM
Sh(u,1)(g, h), �2(g, h) =

⊗
pu∈�FM

Sh(u,2)(g, h), ......,

�m−1(g, h) =
⊗

pu∈�FM
Sh(u,m−1)(g, h), �m(g, h) =

⊗
pu∈�FM

Sh(u,m)(g, h). Here, when SI
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=
[
1 0

]
, for SI(0, 0) the reconstructed RI(0, 0) =

[
0 0 0

]
and for SI(0, 1) the recon-

structed RI(0, 1) =
[
0 0 0

]
. Then relative contrast of reconstructed image RI is calculated

as

(
W

([
0 0 0

])
−W

([
0 0 0

]))
3 = 0 and this implies that when the participants in the for-

bidden set join, the 0 and 1 pixel are indistinguishable so that secret cannot be revealed.

Fig. 4 Meaningful share images of participant p1 for (2, 3) PC1-EVCS
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Proof of Contrast for meaningful shares :

According to the construction when H(u,j)(g, h) = 0 and COV(u,j)(g, h) = 0, then
Sh(u,j)(g, h) =

[
0 0 0

]
, when H(u,j)(g, h) = 0 and COV(u,j)(g, h) = 1, then Sh(u,j)(g, h) =[

1 0 1
]
, when H(u,j)(g, h) = 1 and COV(u,j)(g, h) = 0, then Sh(u,j)(g, h) =

[
0 1 0

]
, when

Fig. 5 Meaningful share images of participant p2 for (2, 3) PC1-EVCS
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H(u,j)(g, h) = 1 and COV(u,j)(g, h) = 1, then Sh(u,j)(g, h) =
[
1 1 1

]
. So W(

[
0 0 0

]
) <

W(
[
0 1 0

]
) < W(

[
1 0 1

]
) < W(

[
1 1 1

]
) which implies that the contrast of the cover

images is preserved in the meaningful shares. The contrast value will range from 1 to 3. So

Fig. 6 Meaningful share images of participant p3 for (2, 3) PC1-EVCS
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the ratio of cover pixel (resp. secret information pixel) preserved in a block of size 1 × 3 of
the meaningful share is 0.666 (resp. 0.333).

Example 3 Let P = {p1, p2, p3} be the set of participants, �QM ={{p1, p2}, {p1, p3}, {p2, p3}}

and �FM = {{p1}, {p2}, {p3}}. Let SI =
[
1 0

]
, S0 =

⎡
⎣ 0 1 1 1
0 1 1 1
0 1 1 1

⎤
⎦ and S1 =

⎡
⎣ 0 1 1 1
1 0 1 1
1 1 0 1

⎤
⎦.

The cover images used for creating meaningful shares are COV(1,1) =
[
0 0

]
, COV(1,2) =[

0 1
]
, COV(1,3) =

[
1 1

]
, COV(1,4) = COV(1,3), COV(2,1) =

[
1 0

]
, COV(2,2) =

[
1 1

]
,

COV(2,3) = COV(1,3), COV(2,4) = COV(1,3), COV(3,1) =
[
0 1

]
, COV(3,2) =

[
0 0

]
, COV(3,3)

= COV(1,3), COV(3,4) = COV(1,3). The constructed H matrices are H(1,1) =
[
0 0

]
, H(1,2) =[

1 1
]
, H(1,3) =

[
1 1

]
, H(1,4) =

[
1 1

]
, H(2,1) =

[
1 0

]
, H(2,2) =

[
0 1

]
, H(2,3) =

[
1 1

]
,

H(2,4) =
[
1 1

]
, H(3,1) =

[
1 0

]
, H(3,2) =

[
1 1

]
, H(3,3) =

[
0 1

]
, H(3,4) =

[
1 1

]
. Then

the constructed meaningful shares are Sh(1,1) =
[
000 000

]
, Sh(1,2) =

[
010 111

]
, Sh(1,3)

=
[
111 111

]
, Sh(1,4) =

[
010 010

]
, Sh(2,1) =

[
111 000

]
, Sh(2,2) =

[
101 111

]
, Sh(2,3)

=
[
111 111

]
, Sh(2,4) =

[
010 010

]
, Sh(3,1) =

[
010 101

]
, Sh(3,2) =

[
010 010

]
, Sh(3,3) =[

101 111
]
, Sh(3,4) =

[
010 010

]
. Same column permutations are applied to all Shmatrices

corresponding to a single pixel in SI. According to this construction RI =
[
010 000

]
. Thus

relative contrast of reconstructed image is 0.333 and APE = 12. Figs. 4 , 5 , 6 and 7 shows
the experimental results for this Example.

Fig. 7 Secret image and Reconstructed image in the case of (2, 3) PC1-EVCS
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3.2 Proposed Construction (PC2)

Initially, generate {H(u,j) : 1 ≤ u ≤ n, 1 ≤ j ≤ Nu} by XOR step construction [28] for
VCS given in share generation phase of Section 2.3. The algorithm to generate (Nu + 1)
meaningful shares from {H(u,j) : 1 ≤ u ≤ n, 1 ≤ j ≤ Nu} for each uth participant is given
below.

3.2.1 Share generation and distribution phase
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3.2.2 Secret reconstruction phase [28]

Let A =
{
i1, i2, ......, ip

} ∈ �QM. Assume the shares carried by the participant ip are Sh(ip,j),
where 1 ≤ j ≤ Nip . Here Nip denotes the number of shares carried by the participant ip.
For j1 =1 to Ni1

For j2 =1 to Ni2
.
.
For jp =1 to Nip

O(j1,j2,......,jp)(g, h) = Sh(i1,j1)
⊕

Sh(i2,j2)
⊕

......
⊕

Sh(ip−1,jp−1)

⊕
Sh(ip,jp).

End
.
.

End
End
Here only one OI(g, h) from the set of all O(j1,j2,......,jp)(g, h) will be used to gen-

erate RI(g, h). So, each uth participant in �QM generates the secret, RI(g, h) =
OI(g, h)

⊙
(Sh(u,(Nu+1))

⊕
Sh(u,Ru)).

3.2.3 Analysis on the APE, contrast and security

This construction is based on the proper arrangement of first, second and third bit in the
blocks D(u,j) which is of size 1× 3. In the construction same column permutation is applied

Fig. 8 Meaningful share images of participant p1 for (2, 3) PC2-EVCS
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for all D matrices corresponding to a secret pixel s in SI. Let us assume r1, r2, r3 as random
bits either 0 or 1 and {COV(u,j) : 1 ≤ u ≤ n, 1 ≤ j ≤ Nu} be the set of distinct cover
images. Assign the second bit of all D(u,j) as H(u,j), the first and third bit are same as that
of corresponding {COV(u,j)}. During reconstruction phase, when XOR-ing D(u,j) blocks of
the qualified participants

[
r1 s r3

]
block is generated. Then

[
0 s 0

]
block corresponding

to s in RI is generated when AND-ing
[
r1 s r3

]
with

[
0 1 0

]
. Each uth participant can

generate
[
0 1 0

]
block by XOR-ing D(u,(Nu+1)) with D(u,Ru) because the first and the third

bit of blocks D(u,(Nu+1)) and D(u,Ru) are generated using same cover image COV(u,Ru). Here
each ith participant in P holds (Ni+1) shares, soAPE for this step construction based EVCS

is
3×

(
n∑

i=1
Ni+n

)

n .

Fig. 9 Meaningful share images of participant p2 for (2, 3) PC2-EVCS
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Proof of Contrast :

Consider the case of (n, n) access structure, where OI(g, h) = Sh(i1,1)
⊕

Sh(i2,1)
⊕

......
⊕

Sh(ip−1,1)
⊕

Sh(ip,1),
{
i1, i2, ......, ip

} ∈ �QM. Let us denote the following
b1 =

⊕
pu∈�QM

COV(u,1)(g, h)

Sh(u,Ru)(g, h) =
[
COV(u,Ru)(g, h) H(u,Ru)(g, h) COV(u,Ru)(g, h)

]
Sh(u,(Nu+1))(g, h) =

[
COV(u,Ru)(g, h) H(u,Ru)(g, h) COV(u,Ru)(g, h)

]
RI(g, h) = OI(g, h)

⊙
(Sh(u,(Nu+1))(g, h)

⊕
Sh(u,Ru)(g, h))

=
[
b1 SI( g, h) b1

]⊙ [
0 1 0

]
=

[
0 SI( g, h) 0

]
.

When SI =
[
1 0

]
, for SI(0, 0) reconstructed pixel RI(0, 0) =

[
b1 1 b1

] ⊙ [
0 1 0

]
=[

0 1 0
]
and for SI(0, 1) reconstructed RI(0, 1) =

[
b1 0 b1

] ⊙[
0 1 0

]
=

[
0 0 0

]
. So the

Fig. 10 Meaningful share images of participant p3 for (2, 3) PC2-EVCS
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relative contrast of the reconstructed image RI is calculated as

(
W

([
0 1 0

])
−W

([
0 0 0

]))
3

= 0.333. This implies that when the participants in the qualified set join, the 0 and 1 pixel
are distinguishable so that secret is revealed.

In Figs. 8, 9 and 10 (Sh(1,1), Sh(1,2)), (Sh(2,1), Sh(2,3)) and (Sh(3,1), Sh(3,3)) are the similar
cover shares held by participants p1, p2 and p3 respectively for (2, 3) - EVCS.

Proof of Security:

Here, for SI =
[
1 0

]
, when

{
i1, i2, ......, ip

} ∈ �FM, for SI(0, 0) (resp. SI(0, 1)) the inter-
mediate pixels OI(0, 0) (resp. OI(0, 1)) is

[
b1 0 b1

]
, the reconstructed pixels RI(0, 0)

(resp. RI(0, 1)) is
[
b1 0 b1

] ⊙ [
0 1 0

]
=

[
0 0 0

]
. So the relative contrast is calculated

as

(
W

([
0 0 0

])
−W

([
0 0 0

]))
3 = 0. This provides a 0 contrast and implies that when the

participants in the forbidden set join, the 0 and 1 pixel are indistinguishable so that secret
cannot be revealed.

Proof of Contrast for meaningful shares:

According to the construction whenH(u,j)(g, h) = 0 and COV(u,j)(g, h) = 0, then Sh(u,j)(g, h)
=

[
0 0 0

]
, whenH(u,j)(g, h) = 0 and COV(u,j)(g, h) = 1, then Sh(u,j)(g, h) =

[
1 0 1

]
, when

H(u,j)(g, h) = 1 and COV(u,j)(g, h) = 0, then Sh(u,j)(g, h) =
[
0 1 0

]
, when H(u,j)(g, h) =

1 and COV(u,j)(g, h) = 1, then Sh(u,j)(g, h) =
[
1 1 1

]
. So W(

[
0 0 0

]
) < W(

[
0 1 0

]
) <

W(
[
1 0 1

]
) <W(

[
1 1 1

]
)which implies that the contrast of the cover images is preserved

in the meaningful shares. The contrast value will range from 1 to 3. So the ratio of cover

Fig. 11 Secret image and Reconstructed image in the case of (2, 3) PC2-EVCS
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pixel (resp. secret information pixel) preserved in a block of size 1 × 3 of the meaningful
share is 0.666 (resp. 0.333).

Example 4 Consider same P, �QM, �FM, SI as given in Example 1. Let Ru = {1, 2, 1}.
The cover images used are COV(1,1) =

[
0 0

]
, COV(1,2) = COV(1,1) , COV(2,1) =

[
1 0

]
,

COV(2,2) =
[
1 1

]
, COV(2,3) = COV(2,2), COV(3,1) =

[
0 1

]
, COV(3,2) =

[
0 0

]
, COV(3,3)

= COV(3,1). The constructed H matrices are H(1,1) =
[
0 1

]
, H(2,1) =

[
1 1

]
, H(2,2) =[

1 0
]
, H(3,1) =

[
1 1

]
, H(3,2) =

[
0 0

]
. Then the constructed meaningful shares with APE

= (3+3)+(3+3+3)+(3+3+3)
3 = 8 are Sh(1,1) =

[
000 010

]
, Sh(1,2) =

[
010 000

]
, Sh(2,1) =[

111 010
]
, Sh(2,2) =

[
111 101

]
, Sh(2,3) =

[
101 111

]
, Sh(3,1) =

[
010 111

]
, Sh(3,2) =[

000 000
]
, Sh(3,3) =

[
000 101

]
. Same column permutations are applied to all Shmatrices

corresponding to a single pixel in SI. After reconstruction RI =
[
010 000

]
with α = 0.330.

Figs. 8 , 9 , 10 and 11 shows the experimental results for this example.

3.3 Comparison with related works

There are plenty of deterministic and probabilistic schemes applicable for
Binary/Gray/Color images available in the literature. The reconstruction operations
for these schemes are Stacking(OR) and XOR operation. Each participant may hold
Single/Multiple meaningful shares based on the construction. In Halftone VCS [27, 63], a

Table 2 Review of different
EVCS construction Scheme APE Operations SPP �

PC1 Yes OR with AND Multiple General

PC2 Yes XOR with AND Multiple General

Ateniese et al. [5] Yes OR Single General

Liu et al. [27] Yes OR Single General

Zhou et al. [63] Yes OR Multiple General

Wang et al. [48] Yes OR Single General

Wang et al. [46] Yes OR Single (k, n)

Yang et al. [62] Yes OR Single (n, n),(k, n)

Yan et al. [56] Yes OR Single General

Lu et al. [31] Yes OR Single (2, n)

Kang et al. [20] Yes OR Single (k, n)

Yang et al. [59] Yes OR Single General

Lee et al. [22] No OR Single General

Guo et al. [18] No OR Single (n, n)

Chiu et al. [9] No OR Single (k, n)

Ou et al. [36] No XOR Single (n, n)

Yan et al. [55] No OR Single (k, n)

Wang et al. [47] No OR Single (k, n)

Yan et al. [54] No OR Single (2, 2)

Lathif et al. [15] No OR Single (k, n)

Shyu et al. [41] No OR Single (k, n)

Ou et al. [35] No XOR Single (2, infinity)

Shivani et al. [39] No OR Single (2, 2)
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Table 3 Comparison for (2, 3) - EVCS

Scheme APE α Ni Sizei #OR #AND #XOR

Ateniese et al. [5] 7 0.140 1, 1, 1 7 7 0 0

Liu et al. [27] 16 0.062 1, 1, 1 16 16 0 0

Zhou et al. [63] 26.63 0.062 1, 2, 2 16 16(or 32) 0 0

Wang et al. [48] 12 0.083 1, 1, 1 12 12 0 0

Wang et al. [46] 7 0.140 1, 1, 1 7 7 0 0

Yang et al. [62] 16 0.062 1, 1, 1 16 16 0 0

Yan et al. [56] 16 0.062 1, 1, 1 16 16 0 0

Lu et al. [31] 15 0.066 1, 1, 1 15 15 0 0

PC1 21 0.333 7, 7, 7 3 21 18 0

PC2 8 0.333 2, 3, 3 3 0 3(or 6) 6(or 12)

Table 4 Comparison for (1, 3, 4) - deterministic schemes

Scheme APE α Ni Sizei Share Type

Arumugam et al. [4] 6 0.160 1, 1, 1, 1 6 Random

Adhikari et al. [3] 6 0.160 1, 1, 1, 1 6 Random

Ateniese et al. [5] 10 0.100 1, 1, 1, 1 10 Meaningful

Liu et al. [27] 16 0.062 1, 1, 1, 1 16 Meaningful

Zhou et al. [63] 24 0.062 1, 1, 2, 2 16 Meaningful

Wang et al. [48] 16 0.062 1, 1, 1, 1 16 Meaningful

Yan et al. [56] 16 0.062 1, 1, 1, 1 16 Meaningful

PC1 18 0.333 6, 6, 6, 6 3 Meaningful

PC2 7.50 0.333 2, 2, 3, 3 3 Meaningful

Table 5 Comparison for (2, 4, 5) - deterministic schemes

Scheme APE α Ni Sizei Share Type

Guo et al. [19] 12 0.083 1, 1, 1, 1, 1 12 Random

Dutta et al. [14] 12 0.083 1, 1, 1, 1, 1 12 Random

Ateniese et al. [5] 18 0.055 1, 1, 1, 1, 1 18 Meaningful

Liu et al. [27] 25 0.040 1, 1, 1, 1, 1 25 Meaningful

Zhou et al. [63] 22.4 0.062 1, 1, 1, 2, 2 25 Meaningful

Wang et al. [48] 32 0.031 1, 1, 1, 1, 1 32 Meaningful

Yan et al. [56] 32 0.031 1, 1, 1, 1, 1 32 Meaningful

PC1 36 0.330 12, 12, 12, 12 3 Meaningful

PC2 7.20 0.330 2, 2, 2, 3, 3 3 Meaningful
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single secret pixel is encoded with a halftone cell size which is selected based on the access
structure and the number of participants. In order to avoid image distortion (maintain the
aspect ratio) during halftoning process, halftone cell size is selected as square number

Table 6 Comparison for (k, n) access structure

(k, n) [5] (APE, α) [46] (APE, α) [48, 56] (APE, α) PC1(APE, α)

(2, 3) (5, 1/5) (≥ 5, ≤ 1/5) (≥ 6, ≤ 1/6) (9, 1/3)

(2, 4) (6, 1/6) (≥ 6, ≤ 1/6) (≥ 8, ≤1/8) (12, 1/3)

(2, 5) (7, 1/7) (≥7, ≤ 1/7) (≥ 10, ≤ 1/10) (15, 1/3)

(2, 6) (8, 1/8) (≥8, ≤ 1/8) (≥ 12, ≤ 1/12) (18, 1/3)

(2, 7) (9, 1/9) (≥9, ≤ 1/9) (≥14, ≤ 1/14) (21, 1/3)

(2, 8) (10, 1/10) (≥10, ≤ 1/10) (≥ 16, ≤ 1/16) (24, 1/3)

(2, 9) (11, 1/11) (≥11, ≤ 1/11) (≥ 18, ≤ 1/18) (27, 1/3)

(2, 10) (12, 1/12) (≥12, ≤ 1/12) (≥ 20, ≤ 1/20) (30, 1/3)

(3, 4) (11, 1/11) (≥11, ≤ 1/11) (≥ 18, ≤ 1/18) (27, 1/3)

(3, 5) (19, 1/19) (≥19, ≤ 1/19) (≥ 32, ≤ 1/32) (48, 1/3)

(4, 5) (27, 1/27) (≥27, ≤ 1/27) (≥ 50, ≤ 1/50) (75, 1/3)

(3, 6) (28, 1/28) (≥28, ≤ 1/28) (≥ 50, ≤ 1/50) (75, 1/3)

(4, 6) (58, 1/58) (≥58, ≤ 1/58) (≥ 112, ≤ 1/112) (168, 1/3)

(5, 6) (67, 1/67) (≥67, ≥ 1/67) (≥ 130, ≤ 1/130) (195, 1/3)

(3, 7) (40, 1/40) (≥40, ≤ 1/40) (≥ 72, ≤ 1/72) (108, 1/3)

(4, 7) (108, 1/108) (≥108, ≤ 1/108) (≥ 210, ≤ 1/210) (315, 1/3)

(5, 7) (178, 1/178) (≥178, ≤ 1/178) (≥ 352, ≤ 1/352) (528, 1/3)

(6, 7) (163, 1/163) (≥163, ≤ 1/163) (≥ 322,≤ 1/322) (483, 1/3)

(3, 8) (53, 1/53) (≥53, ≤ 1/53) (≥ 98, ≤ 1/98) (147, 1/3)

(4, 8) (179, 1/179) (≥179, ≤ 1/179) (≥ 352, ≤ 1/352) (528, 1/3)

(5, 8) (387, 1/387) (≥387, ≤ 1/387) (≥ 770, ≤ 1/770) (1155, 1/3)

(6, 8) (514, 1/514) (≥514, ≤ 1/514) (≥ 1024, ≤ 1/1024) (1536, 1/3)

(7, 8) (387, 1/387) (≥387, ≤ 1/387) (≥ 770, ≤ 1/770) (1155, 1/3)

(3, 9) (69, 1/69) (≥69, ≤ 1/69) (≥ 128, ≤ 1/128) (192, 1/3)

(4, 9) (276, 1/276) (≥276, ≤ 1/276) (≥ 546, ≤ 1/546) (819, 1/3)

(5, 9) (739, 1/739) (≥739, ≤ 1/739) (≥ 1472, ≤ 1/1472) (2208, 1/3)

(6, 9) (1283, 1/1283) (≥1283, ≤ 1/1283) (≥ 2562, ≤ 1/2562) (3848, 1/3)

(7, 9) (1410, 1/1410) (≥1410, ≤ 1/1410) (≥ 2816, ≤ 1/2816) (4224, 1/3)

(8, 9) (899, 1/899) (≥899, ≤ 1/899) (≥ 1794, ≤ 1/1794) (2691, 1/3)

(3,10) (86, 1/86) (≥86, ≤ 1/86) (≥ 162, ≤ 1/162) (243, 1/3)

(4,10) (404, 1/404) (≥404, ≤ 1/404) (≥ 800, ≤ 1/800) (1200, 1/3)

(5,10) (1284, 1/1284) (≥1284, ≤ 1/1284) (≥ 2562, ≤ 1/2562) (3843, 1/3)

(6,10) (2754, 1/2754) (≥2754, ≤ 1/2754) (≥ 5504, ≤ 1/5504) (8256, 1/3)

(7,10) (3971, 1/3971) (≥ 3971,≤ 1/3971) (≥ 7938, ≤ 1/7938) (11907, 1/3)

(8,10) (3714, 1/3714) (≥3714, ≤ 1/3714) (≥ 7424, ≤ 1/7424) (11136, 1/3)

(9,10) (2051, 1/2051) (≥2051, ≤ 1/2051) (≥ 4098, ≤ 1/4098) (6147, 1/3)
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like 4, 9, 16, 25, 32 etc. According to EVCS by Wang et al. [48] and Yan et al. [56] for
maintaining good quality meaningful shares, if m is the pixel expansion of a VCS then the
halftone cell size needs to be ≥ 2 × m based on the access structure. According to EVCS
by Wang et al. [46] if m is the pixel expansion of a (k, n) - VCS the pixel expansion of (k,
n) - EVCS will be ≥m + � n

k−1�. Guo et al. [19] derived that, the pixel expansion for a (t, k,

n) - VCS by Ateniese et al. [6] is 2(
n−t

k−t−1)+t−1. So, the pixel expansion for a (t, k, n) - EVCS

by Ateniese et al. [5] is obtained as 2(
n−t

k−t−1)+t. Based on these observations comparison of
our schemes with related works is shown below.

1) Table 2 shows that our PC1 (resp. PC2) are deterministic general access structure
schemes applicable to Binary images which use OR-AND (resp. XOR-AND) oper-
ations for reconstruction. Based on our constructions each participant need to hold
multiple shares similar to the EVCS constructed by Zhou et al. [63]. The advantages

Table 7 Comparison for (t, k, n) access structure

(t,k, n) [19] (APE) [5] (APE, α) [48, 56] (APE, α) PC1(APE, α)

(2, 5, 6) m= 27 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 5, 7) m= 211 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 6, 7) m= 211 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 5, 8) m= 216 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 6, 8) m= 221 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 7, 8) m= 216 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 5, 9) m= 222 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 6, 9) m= 236 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 7, 9) m= 236 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 8, 9) m= 222 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 5, 10) m= 229 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 6, 10) m= 257 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 7, 10) m= 271 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 8, 10) m= 257 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 9, 10) m= 229 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 5, 11) m= 237 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 6, 11) m= 285 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 7, 11) m= 2127 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 8, 11) m= 2127 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 9, 11) m= 285 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 10, 11) m= 237 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 5,12) m= 246 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 6,12) m= 2121 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 7,12) m= 2211 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 8,12) m= 2253 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 9,12) m= 2211 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 10,12) m= 2121 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)

(2, 11,12) m= 246 (m+2, 1/(m+2)) (≥ 2m, ≤ 1/2m) (3m, 0.333)
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of our PC1 (resp. PC2) with a computing model of OR-AND (resp. XOR-AND) com-
pared to other approaches are the following a)Less APE b)High relative contrast for the
reconstructed image(α) c) High relative contrast for the meaningful share images(ρ).

2) Table 2 shows a review on various EVCS constructions. In Table 3, 4 and 5, deter-
ministic schemes which are applicable to Binary images are selected from Table 2 for
comparison. In Table 3, for (2, 3)-Halftone VCS [63], participant p1 holds one share
each and participant p2 and p3 hold two shares each. The APE and relative contrast are
(16+(2×16)+(2×16))

3 = 26.63 and 0.062 respectively. In Table 4 , for (1, 3, 4)-Halftone
VCS [63], participants p1 and p2 hold one share each and participants p3 and p4 hold
two shares each. The APE and relative contrast are (16+16+(2×16)+(2×16))

4 = 24 and
0.062 respectively. In Table 5, for (2, 4, 5)-Halftone VCS [63], participants p1, p2 and
p3 hold one share each and participants p4 and p5 hold two shares each. The APE
and relative contrast are (16+16+16+(2×16)+(2×16))

5 = 22.4 and 0.062 respectively. Our
PC1(resp. PC2) have better results compared to Halftone VCS [63] and other related
works because our computing model is OR-AND (resp. XOR-AND) instead of only
OR or XOR reconstruction. The reconstruction operation count for different EVCS
constructions for (2, 3) access structure is also given in Table 3. In case of EVCS given
in paper [63] the minimum (resp. maximum) number of OR operations is 16(resp.
32). For PC2 the secret image will be reconstructed by minimum 6 XOR + 3 AND
operations or by maximum 12 XOR + 6 AND operations. If more shares of a participant
are involved in reconstruction the Boolean operations will also increase.

3) For (2, 2) and (3, 3) EVCS by Liu et al. [27], the APE is 9 and 16 respectively, but
for our PC2 it is 6. Some probabilistic EVCS [18, 22] have better relative contrast
of reconstructed secret image than 0.333 for some access structure. But the relative
contrast calculations of deterministic and probabilistic schemes are different. Like our
construction, schemes given in paper [5, 27] also use perfect black VCS as building
blocks.

Table 8 Comparison for some access structure using step construction

�QM [28] PC2(APE, α)

{p1, p2} (1, 1) (6, 0.333)

{p1, p2, p3} (1, 1) (6, 0.333)

{p1, p2},{p2, p3},{p3, p4} (1.25, 1) (6.75, 0.333)

{p1, p2},{p1, p3},{p1, p4} (1, 1) (6, 0.333)

{p1, p2},{p1, p4},{p2, p3},{p3, p4} (1, 1) (6, 0.333)

{p1, p2},{p2, p3},{p2, p4},{p3, p4} (1.50, 1) (7.50, 0.333)

{p1, p2},{p1, p3},{p1, p4},{p2, p3},{p2, p4} (1.50,1) (7.50, 0.333)

{p1, p2},{p1, p3},{p1, p4},{p2, p3},{p2, p4},{p3, p4} (2.25, 1) (9.75, 0.333)

{p1, p2, p3},{p1, p4} (1, 1) (6, 0.333)

{p1, p2, p3},{p1, p4},{p3, p4} (1.50, 1) (7.50, 0.333)

{p1, p3, p4},{p1, p2},{p2, p3},{p2, p4} (1.75, 1) (8.25, 0.333)

{p1, p2, p3},{p1, p2, p4} (1,1) (6, 0.333)

{p1, p2, p4},{p1, p3, p4},{p2, p3} (1.50, 1) (7.50, 0.333)

{p1, p2, p3},{p1, p2, p4},{p1, p3, p4} (1.50,1) (7.50, 0.333)

{p1, p2, p3, p4} (1,1) (6, 0.333)
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4) The (APE, α) values for the EVCS constructions [5, 27, 46, 48, 56, 62, 63] given in
Tables 3, 4 and 5 are calculated under the assumption that the VCS used is Ateniese
et al. [6] construction. But Blundo et al. [7] constructed a perfect black (k, n) - VCS
with less pixel expansion in 2001. So the (APE, α) values for the EVCS constructions
[5, 46, 48, 56] given in Table 6 (resp. 7) are calculated under the assumption that the (k,
n) - VCS used is Blundo et al. [7] construction and (t, k, n) - VCS used is Guo et al. [19]
construction. In Tables 8 and 9, the (APE, α) values for our PC2 - EVCS are calculated
under the assumption that the VCS used is XOR based step construction by Liu et al.
[28]. The APE values of our PC2 - EVCS are directly derived from the APE values of
XOR based VCS given in Table 1 of paper [28].

5) In Halftoning EVCS, the halftone block size vary depends on the pixel expansion of
VCS used, peak signal to noise ratio (PSNR) and universal quality index(UQI) mea-
surements are used to calculate the distortion of cover share image compared to original

Table 9 Comparison for (k, n)
access structure using step
construction

(k, n) [28] (APE, α) PC2(APE, α)

(2, 3) (1.60, 1) (8, 0.333)

(2, 4) (2.25, 1) (9.75, 0.333)

(3, 4) (2, 1) (9, 0.333)

(2, 5) (2.80, 1) (11.40, 0.333)

(3, 5) (3.6, 1) (13.8, 0.333)

(4, 5) (2.6, 1) (10.8, 0.333)

(2, 6) (3.33, 1) (13, 0.333)

(3, 6) (5.5, 1) (19.5, 0.333)

(4, 6) (5.33, 1) (18.9, 0.333)

(5, 6) (2.6, 1) (10.98, 0.333)

(2, 7) (3.85, 1) (14.57, 0.333)

(3, 7) (7.71, 1) (21, 0.333)

(4, 7) (9.42, 1) (31.26, 0.333)

(5, 7) (6.85, 1) (23.55, 0.333)

(6, 7) (3.28, 1) (12.84, 0.333)

(2, 8) (4.37, 1) (16.12, 0.333)

(3, 8) (10.25, 1) (33.75, 0.333)

(4, 8) (15.12, 1) (48.37, 0.333)

(5, 8) (14.25, 1) (45.75, 0.333)

(7, 8) (3.25, 1) (12.75, 0.333)

(2, 9) (4.88, 1) (17.66, 0.333)

(3, 9) (13.11, 1) (42.33, 0.333)

(4, 9) (22.66, 1) (70.98, 0.333)

(5, 9) (26.11, 1) (81.33, 0.333)

(8, 9) (3.88, 1) (14.4, 0.333)

(2, 10) (5.40, 1) (19.20, 0.333)

(3,10) (16.3, 1) (51.9, 0.333)

(4,10) (32.3, 1) (99.9, 0.333)

(5,10) (43.9, 1) (134.7, 0.333)

(9,10) (3.80, 1) (14.4, 0.333)
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Table 10 Comparison of visual
quality of cover share images ρ

for (3, 3) - EVCS
[5] [27] [48] [56] PC1 PC2

0.250 0.750 0.500 0.555 0.666 0.666

halftoned share images. Let us define em (resp. m) as the pixel expansion of an EVCS
(resp. VCS). Then em = m (represents: secret information pixels) + q (represents: cover
image information pixels + auxiliary black pixels). So the visual quality (relative con-
trast) of the cover share images is calculated as ρ = em−m

em > 0 [48, 56]. Table 10
shows that the visual quality of our EVCS constructions maintain the quality of exist-
ing deterministic EVCS in the literature. The user can select the values for em and m
based on the applications.

6) The reconstructed image quality of our EVCS (Fig. 1) is better than Ateniese et al. [5]
- EVCS and the probabilistic scheme of Yang [57] for (2, 3) access structure.

4 Conclusions

Our deterministic EVCS constructions have a relative contrast of 0.333 for both the recon-
structed image and cover share images for all access structures. It is evident that our EVCS
construction PC2 has less APE and high relative contrast for reconstructed image compared
to all other deterministic EVCS constructions for any access structure. It is true that, our pro-
posed deterministic EVCS constructions are complex due to a) Combined use of Boolean
operations OR and AND (resp. XOR and AND) instead of only OR or XOR operation for
reconstruction b) Each participant holds multiple shares instead of single share c) Selection
of cover images (Complementary cover images in PC1, Similar cover images in PC2). But
in our schemes there are no complex calculations involved in finding q (represents: cover
image information pixels + auxiliary black pixels) needed for maintaining the visual qual-
ity of cover share images, as in halftoning EVCS constructions. In our schemes, for all the
cover image shares the value of q = 2 for any access structure, but in halftoning EVCS con-
structions qwill vary according to the access structure. Moreover our proposed schemes can
be used effectively for applications [2, 11, 21, 30, 38, 43, 60, 61] which need less storage
space (less APE) and high reconstructed image quality (high relative contrast). At the same
time in deterministic EVCS, a thin line in the secret is converted to a thick line and due to
pixel expansion problem it may lead to graying effect but in probabilistic EVCS, a thin line
may not be visible in the reconstructed secret. Our deterministic EVCS constructions solves
this problem of thin line discussed in papers [26, 29].
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