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Abstract Aiming at some problems in existing infrared and visible image fusion methods
such as edge blurring, low contrast, loss of details, a novel fusion scheme based on non-
subsampled shearlet transform (NSST), visual saliency and multi-objective artificial bee
colony (MOABC) optimizing spiking cortical mode (SCM) is proposed. NSST has many
advantages such as multi-scale features and sparse representation. Moreover, the visual
saliency map can improve the low frequency fusion strategy, and SCM has coupling and
pulse synchronization properties. Firstly, NSST is utilized to decompose the source image into
a low-frequency subband and a series of high-frequency subbands. Secondly, the low-
frequency subband is fused by SCM, where SCM is motivated by the edge saliency map of
the low-frequency subband of the source image, and then the high-frequency subbands are also
fused by SCM, where the modified spatial frequency of the high-frequency subbands of the
source image is adopted as the input stimulus of SCM, the parameters of SCM are optimized
by the novel multi-objective artificial bee colony technique. Finally, the fused image is
reconstructed by inverse NSST. Experimental results indicate that the proposed scheme
performs well and has obvious superiorities over other current typical ones in both subjective
visual performance and objective criteria.
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1 Introduction

Image fusion plays an essential part in many applications such as computer vision, satellite
cloud images, medical images, target detection, military, remote sensing and so on [12,
22]. The fusion of visible and infrared images is a significant research focus in the image
fusion field. The infrared image (IR) consists of the thermal radiation characteristic, and
can capture the target hidden under low-light conditions and recognize the objects in the
camouflage. Although infrared imaging sensor is not affected by the various lightings or
bad weather conditions, the obtained image lacks adequate background details. On the
contrary, the visible light image is obtained by the spectral reflection of the object, and
usually contains more textures and detail information of background, and also has higher
spatial resolution, thus the visible image has a better visual quality than the infrared image
[37]. Image fusion technique is to extract meaningful information from multiple images
under the same scene, or different kinds of image sensors under diverse modes. The
composite image synthesizes the advantages of the visible and infrared images and
highlights localization of the target in the infrared image.

Currently, multi-scale geometric transform methods applied to image fusion have been
studied extensively. Among the tools of multi-scale geometric transform, such as discrete
wavelet transform (DWT) [20], Laplacian pyramid (LAP) [31], contourlet transform
(CT) [5]. In order to lead to better frequency selectivity and regularity than CT, and
remove pseudo-Gibbs phenomena along the edges to some extent, non-subsampled
contourlet transform (NSCT) was proposed by Da Cunha et al. [2]. In comparison with
other decomposition methods, NSCT requires a larger amount of computation. To reduce
the computational complexity of NSCT, non-subsampled shearlet transform (NSST) was
proposed by Easley et al. [7], NSST has the shift-invariance of non-subsampled process-
es and inherits the perfect properties from shearlet and wavelet, such as the characteris-
tics of anisotropy, computing speed. Therefore, NSST has an advantage in obtaining
more information for image fusion.

In addition, artificial neural network has become a research hotspot [24-27]. Pulse
couple neuron network (PCNN) is a new generation of artificial neural network, which
was developed by Johnson et al. [14], and owns some superior characters, such as
coupling and pulse synchronization. It has been widely applied in image segmentation,
image enhancement, pattern recognition, and so on [41]. Xin Jin et al. [11] proposed an
images fusion based on NSST and PCNN. However, PCNN has a large number of
parameters which are always set as constants by human experience leading to the lack
of universality. In order to solve these problems, a modified neural network model called
spiking cortical model (SCM) was proposed by Kong et al. [16], which devised a novel
scheme based on SCM and NSST, and overcome the shortcoming of parameters setting
and utilized the intensity distribution of pixels to optimize the iterative number. Mean-
while a large number of intelligent algorithms had been applied to parameters optimiza-
tion of the neural network, such as genetic algorithm-PCNN (GA-PCNN) [43], particle
swarm optimization-PCNN (PSO-PCNN) [13], and artificial bee colony-PCNN (ABC-
PCNN) [3]. Commonly, these single objective optimization algorithms have only one
fitness function, which ignore the influence of other factors so those algorithms do not
achieve the best result in image fusion field.

Recently, the vision saliency detection and super resolution methods are also widely used
for image processing [30, 38]. Jinlei Ma et al. [23] used visual saliency map to fuse the base
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layers. Zhang et al. [44] presented a novel fusion method based on NSST and the visual
saliency, although the performance was improved by the visual saliency map, the treating
processes of background information was too simple so that the details were lost.

To alleviate the aforementioned problems and obtain better fusion performance, a
novel image fusion scheme using the visual saliency detection and optimized SCM in
NSST domain is proposed. At the beginning, NSST decomposes the source images into a
low-frequency subband and a series of high-frequency subbands. Then the visual salien-
cy map of low-frequency subband and the modified spatial frequency of high-frequency
subbands are utilized to act as the SCM external stimulation, respectively. For the sake of
overcoming the disadvantage of single objective optimization, we present to optimize
parameters of SCM with multi-objective artificial bee colony algorithm, besides the
iteration times is set by the time matrix. Finally, the fused image is obtained via
optimization process. Experimental results show the proposed method does well in the
fusion of infrared and visible image and can preserve not only the spectral information of
the visible image but also the thermal target information of the infrared image, thus the
fused result contains high contrast and rich background details.

The remaining sections of this paper are summarized as follows. Section 2 presents an
overview of the proposed fusion scheme and reviews the theory of related algorithms.
Section 3 describes the image fusion strategies and steps in detail. Experimental results
and discussions are given in Section 4. Some conclusions are summarized in Section 5.

2 The proposed fusion scheme

Figure 1 sketches out the main scheme of the proposed fusion method. Firstly, the
infrared image and the visible image are decomposed into a low-frequency subband

Saliency Maps Modified
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Fig. 1 Schematic diagram of the proposed image fusion framework
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and a series of high-frequency subbands using NSST, respectively. Then, the modified
frequency-tuned algorithm is used to extract the saliency map as external stimulation of
SCM in the low-frequency subband, in the meanwhile, the modified spatial frequency
(MSF) of the high-frequency subbands is used to stimulate the SCM. Next, the novel
multi-objective artificial bee colony technique is utilized to optimize the parameters of
SCM according to suitable fitness functions. Finally, the fused image is gained by taking
inverse NSST.

2.1 Non-subsampled shearlet transform

NSST, which was proposed by Easley [7], is an extension of the wavelet in multidimen-
sional space and combines the non-subsampled pyramid (NSP) filter with shearlet trans-
form to provide the multiscale decomposition. The shearlet transform (ST) is close to
optimal sparse representation, the synthetic expansion of affine system is described as
follows:

M) = {t0(x) = et (BAxK) : j, 17, keZ? }. (1)

where 1); ;  is expressed as a composite wavelet, A denotes the anisotropy matrix for multi-scale
decomposition, B is a shear matrix for directional analysis, j, / and k are scale, the direction of

0 2 0

wavelet becomes shearlet, the structure of the frequency tiling by the shearlet is shown in Fig. 2.

The NSST decomposition is divided into two major steps: (I) Multi-scale decompo-
sition. (k+ 1) subbands as same size as the source image can be obtained by using the k-
class non-subsampled pyramid filter, including a low-frequency map and a series of high-
frequency maps; (II) The direction of localization. In pseudo polarization grid coordi-
nates, standard shearlet is calculated by Meyer window function, which requires the
subsampled operation to obtain the shift-invariance. However, NSST direction of local-
ization uses the modified shearlet filter, which can map from the pseudo polarization to

decomposition and shift parameter, respectively. When A = [4 0} ,B= [ ! i } , the composite
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Fig. 2 The structure of the frequency tiling by the shearlet
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the Cartesian coordinate system avoid the next sampling operation via Fourier inverse
transform, so NSST has the characteristic of the shift-invariance.

2.2 Saliency detection of infrared image

Achanta et al. [29] introduced a frequency-tuned (FT) approach to estimate center-surround
contrast using color and luminance features. This approach obtained the saliency map S for an
image 7 of width W and height H pixels thus could be formulated as follows

S(6,3) = [|LuLane(x,2)]|, 2)

where /,, is the arithmetic mean pixel value of the image, 1,,.(x, ) is the pixel value of the
source image in the Gaussian blurred version (5%5 separable binomial kernel), and || is
defined as Euclidean distance.

Guided filter was proposed by He et al. [8], which is a linear shift filter. The filtering output
at a pixel 7 is expressed as a weighted average:

9= ;Wij(l)p,- (3)

where i and j are pixel indexes, W; is the filter kernel, / is guidance image, p is a filtering input
image and ¢ is an output image. The guidance image / is set according to different applications
and can be taken as input image p directly.

The filter kernel weights are expressed by

W) B 5 (1+(1iﬂk)(ljuk)>’ )

|l k(i ea ol +e

where |w| is the number of pixels in the window, wy, is the window of & kernel function, z,and
o7 are the mean and variance of the guidance image / respectively, € denotes the smoothing
factor.

The conventional FT algorithm utilized a Gaussian blurry filter to process the input image.
However, the guided filter kernel used the pixel mean and variance of the neighborhood as
local estimation, and could adjust the output weight adaptively based on the content of the
image, which had superior competence in retaining the edge information and performance of
detail enhancement, so this paper makes an improvement on the FT approach by using the
guided filter.

S(xy) = [[1i~16(x.»)], (5)

where /5(x, y) is the guided filter output of the input image, the guidance image / is the same as
input image p.

In the comparative study of well-known saliency detection methods, such as Itti
model [19], saliency using natural statistics (SUN) [42], spectral residual approach
(SR) [10]. Our modified method has the advantages in extracting target information of
the infrared image, and keeping the edge details, and suppressing the background
information of infrared image fully at the same time, as shown in Figs. 3 and 4. The
X-axis and the Y-axis represent the position of the pixel, and the Z-axis represents the
value of gray-scale in the three-dimensional diagram of gray-scale image.
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(a) Source image (b) Itti model (¢c) SUN

(d) SR (e) FT (f) Modified FT

Fig. 3 Saliency detection of the infrared image

2.3 Multi-objective ABC algorithm

Artificial bee colony (ABC) is a group intelligence optimization algorithm initially proposed
by Karaboga [15] through imitating bee feeding behavior which uses various kinds of bees
with a different division of labor to share information during the search process.

(a) Source image (b) Modified FT

Fig. 4 Three-dimensional diagram of the gray-scale image
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The ABC algorithm consists of three groups: employed bees, onlooker bees, scout bees.
Each nectar position represents a possible solution, and the degree of income of the nectar
corresponds to the fitness of the solution.

First of all, the ABC algorithm generates initial populations randomly, N denotes the
number of bees, and also the number of the nectar. At the initial time of algorithm flow, all
bees are set to scout bees.

Secondly, each solution consists of D dimensional vectors, where D denotes the
number of the neural network parameters which need to be optimized. And then the
nectar position also expresses the solution of the corresponding problem, which is
searched using the iteration of the three kinds of bees, employed bees search for and
calculate the income of the new location, which also is known as the fitness of the
practical problem in the neighborhood based on the local information in the memory.
According to the greedy rule, if the income of the new location is high enough, we
should record the new location to replace the original location.

Finally, the obtained information should pass to the waiting onlooker bees by unique dance
like the shape of ‘8’, while the search process is finished by the employed bees. Then onlooker
bees start to search and choose a better solution by analyzing the obtained information, the rule
is: the higher the probability of fitness is, the greater the probability of the choice of nectar
position is.

The probability formula is as follow

Jit;

N )
2 fit,
n=1

pi= (6)

in which, fit; denotes the value of the fitness function of the ith solution, n represents the
number of the nectar or the number of employed bees.
The ith employed bees and onlooker bees search for new nectar position formula

Vi =X+ ¢;(XyXp), 7

where ke {1,2-",N},je {1,2--,D}, k#i, ;€ rand (-1, 1) is used to limit the honey of the
nectar location X;.

Equation (7) shows the situation, namely, the smaller the difference between X;; and
Xj; is, and the smaller the disturbance is. The optimal solution is achieved by the search
area, and can shorten step size adaptively. Thus this algorithm has the advantage of
adaptive convergence.

If the fitness still cannot be improved during a certain number of cycles, and the source
nectar will be discarded. Scout bees will go to search by generating the random new nectar
position.

Pareto domination is one of the effective methods for judging individual merits in
low-dimensional multi-objective optimization [1, 28, 34]. Based on the concepts of
Pareto non-inferior ranking and crowding distance in multi-objective evolutionary algo-
rithm, we present the MOABC algorithm, the pseudo-code of algorithm flow is shown in
Table 1, where N is the number of the employed bees; MCN is the maximum number of
iterations; Limit is the number of honey source update times and ‘archive’ represents the
external population.
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Table 1 The pseudo-code of
MOABC algorithm Framework MOABC

1: Input: N, MCN, Limit

Begin

: Initialization and update the archive

: While (iteration<=MCN) do

: Send employed bees using above searching strategy

Make an optional Pareto local search

. if (employed bees having no preferences) then

Form new nectar sources according to Eq. (6) Eq. (7)

endif

: Evaluate the quality of the new nectar sources according to the
fitness function

10: if (employed bees having no preferences) then

11: Send onlookers

12: endif

13: if(the fitness still can’t be improved and nectar source will be

discarded)then

14: Send Scout bees

15:endif

16: iteration++

17: end while

18: Output archive

End

OO NDU AW

2.4 Spiking cortical model

SCM was presented by Zhan K et al. [40], has the simple structure and fewer parameters, as
shown in Fig. 5. It consists of multiple neurons, and each neuron contains three main function
units: receptive field, modulation field, and pulse generator. Moreover, it does not need to learn
or train, and can extract the useful information from the complex background. The mathemat-
ical expressions of the model are as follows

Fij(n) = SU(I’l), (8)

Uj(n) = fU;(n-1) +Sij%szYkz(n*1)» 9)
Ej(n) = gEy(n=1) + VoY (n—1), (10)
X,(n) o (1)

= 41 N e(E,-,*Ulj)

Yy(n) = {O, otherwise

where 7 denotes the iteration times, (i, j) is the location of the image pixel, Fj(n) describes the
feedback input signal of the neuron, S;(n) is the input excitation signal, U(n) refers to the
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Modulation field

Fig. 5 The structure of the basic SCM neuron

internal active state of the neuron, Wy, is the weighted coefficient matrix of linking between
neurons, E;(n) is the dynamic threshold, Vj is the threshold of amplification factor, Y;(n) is the
output signal of the neuron at nth iteration, f and g are the internal active and dynamic
threshold signal decay coefficients, respectively (Fig. 5).

In order to show the difference within ignition range, the sigmoid function is used to
improve the neuron output signal [39], as shown in (11), X;(n) denotes the pixel pulse ignition
output amplitude, as X;(n) > 0.5, the neuron produces a pulse, which is called one firing time,
the signal is captured by the linking matrix Wp,, and the adjacent neurons achieve synchroni-
zation pulse release at the spatial position. 7;(n) expresses the neuron firing times matrix after
nth iteration, the formula is described as follows

Ty(n) = Ty(n=1) + Yy(n). (13)

2.5 Multi-objective artificial bee colony optimization SCM

Commonly, the quality of image fusion need to be evaluated by using various evaluation
metrics comprehensively. However, these single objective optimization algorithms were
presented by Jin Xin et al. [13] and Banharnsakun A [3], and have only one fitness function
so ignore the influence of other factors in the image fusion field. To achieve better fused
results, we introduce the multi-objective optimization algorithm.

The main task is to optimize the parameters of SCM, namely, it is equivalent to finding the
optimal solution set of the two-dimensional equation and the bees corresponding to SCM’s
parameters f'and g.

It is key point to select suitable fitness function, so we introduce several alternative
objective evaluation metrics as the hybrid fitness function of MOABC algorithm. Those
objective evaluation metrics include mutual information (M) [9], mean structural similarity
(MSSIM) [33], standard deviation (SD) [11], spatial frequency (SF) [11], image entropy (/E)
[11] and margin information retention (QAB/ 5 132].
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1) Ml shows the correlation between two events, the M1 of U and V can be defined as follows:

p(u,v)
MI(U,V) = u,v)log, ————,
( ) VEZV u;Up( ) & p(u)p(v)
where p(u,v) is the joint probability distribution of U and V, p(u) and p(v) are the marginal
probability distribution of U and V; respectively. The sum of mutual information between the
fused image and two source images can be calculated to denote the difference of fusion quality,
and then the mutual information metric can be described as follows:

(14)

MI(A,B, F) = MI(A, F) + MI(B, F), (15)

Eq. (15) reflects a total amount of information that fused image F{(i, /) contains about source
image A(Z, j) and source image B(7, /). The larger value of mutual information metric indicates
that the fused image contains the more information and achieves the better the fusion effect.

2) 8D is a measure of the dispersion degree of a set of image data averages. The standard
deviation of an image is calculated as.

sD = \/M v 2 X (Fw) (16)

=1 j=1
where F{(i, ) is the pixel value of the fused image at the location (i, ), and  is the mean value.
3) SFis composed of row frequency (RF) and column frequency (CF), and is described as
follows

SF L § 5 RF + CF 17
= — —+ ,
v 5,3 ke ) (17)

in which M is the row of the image, N is column of the image.

4) IE represents the amount of information in the fused image. It can be acquired by (18)

L
IE = =Y P(l)log,P(]), (18)
where P(/) expresses the probability densitsoof L.

5) MSSIM is an effective measure of similarity of two images, which is calculated as follows
SSIM(A, F) + SSIM(B, F)
2 )
where SSIM(A, F) and SSIM(B, F) are correlation coefficients between infrared image and
fused image, visible image and fused image respectively. SSIM (i, j) is defined as follows

MSSIM = (19)

(2uam;+ €1) (207 + C2)
(n2+ 12+ C) (02 +0p+Ca)

SSIM (i, j) = (20)

where 11;, 0; and o;; express the mean, standard deviation, and cross-correlation, respectively.
C1 and C2 are used to ensure stability when the mean value and the variance are close to zero.
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The rotationally symmetric Gaussian window with standard deviation 1.5 was selected in
MSSIM.

6) O represents the transformation degree of edge information of the fused image and the
source image. It is defined as follows

T 3 (QV ) + 01w 1)
B/F _ ==
¢ TS WA ) + w2, )

; (21)

where QY(i, j) = QQF(i,j)Qf)‘F(i,j), QQF(i,j) and QA (i, /) are the edge strength and
orientation preservation value at the location (i, j), respectively. N and M are the size of the
image, and Q% (i, j) is similar to O*(i, j), w’(i, /) and w?(i, j) reflect the weight of 0*(i, /) and
0%, ) respectively.

According to the principle, namely, the larger the value of objective evaluation metrics are,
the better the performance of the fusion method is [13, 36], so we adopt two multi-criteria
fitness functions, as shown as follows

Sfitness, = max(MI + SD + IE), (22)

fitness, = max (QAB/F)‘ (23)

3 Fusion strategies and specific steps
3.1 Low-frequency subband fusion strategy

Commonly the low-frequency information is the main components of the source images. On
the contrary, the high-frequency information contains the details of the image [7]. Most of the
low-frequency coefficients are fused by the simple weighted averaging or maximum based
strategies [35], which do not consider the relationship between pixels. In order to have a better
fusion effect, we proposed a novel method that the improved edge saliency map is used as
external excitation of SCM. We define edge saliency map as Map, which is described as
follows:

Map(i, j) = max[Sk(i, /), E1(i, j)], (24)
Mapy (i, j) = max[Sy (i, j), E2 (i, )], (25)
E\(i,)) = (Lw*F) (i, ), (26)
Ey(i,)) = (Ly*F) (i), (27)
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02 02 02
F=102 05 02/, (28)
02 02 02

where * denote convolution, L;z(i, ), Li(i, ) are the low-frequency coefficients. E(i, j) repre-
sents the filtered image with convolution kernel F. Syz(i, ) and Si(i, /) represent the visual
saliency map of the source images, which can be calculated using (5).

3.2 High frequency subband fusion strategy

The existing high-frequency fusion strategies contain the largest absolute value, regional
energy, variance and gradient [7], but these strategies cannot extract detail information
from the image adequately while only considering the individual pixels or regional
characteristics. The gray value of a single pixel is used as the excitation of the neural
network, this may lose image edges and texture features. Kong W et al. [17] introduced
the modified spatial frequency which increases the gradient calculation of the diagonal
direction, it can be utilized to extract more information in the infrared image sets.

Suppose H(i,j) denotes the high-frequency coefficient at the location (i,;), and MSF is
measured using slipping windows (the size is3 x 3) of the coefficient, then MSF in each
subband is used to motivate the neuron, and it is defined as follows:

1

MSF = [g é (RF + CF + MDF + SDF)"/?, (29)
RF = [H(i,j)-H(i,j-1)]", (30)

CF = [H(i, j)~H (i1, )], (31)

MDF = [H(i,j)—H(i-1,j-1)]?, (32)

SDF = [H(i,j)~H(i-1,j + 1)), (33)

where RF, CF, MDF, SDF denote the frequencies at rows, columns, main diagonal and
auxiliary diagonal, respectively. N and M are the size of the slipping window.

3.3 Specific image fusion steps

Assume that the infrared and visible images have been matched and treated with uniform size
accurately. The steps of the image fusion algorithm based on SCM as follows.

Step 1  Decompose the infrared and visible images using NSST to obtain their low-frequency

subbands {L%,.L5} and a series of high-frequency subbands {Hﬁ}é‘,Hl",k} at each K-
scale and [-direction, where 1 <k<K.
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Step2  SCM is utilized to deal with the low-frequency subbands. Let the edge saliency maps
be the feedback inputs of SCM.

(a) Calculate the Map;r and Mapy according to (24) and (25), and all coefficients are
normalized.

(b) Set the initial values as follows:U;(0) = 7;(0) = £,0)=0. In the initial state, all the
neurons are inactivated, so ¥;(0) =0.

(c) Calculate Uy(n), Ej(n), Y(n) by (9), (10) and (12), respectively, and then compute the
neuron’s firing times 7j(n) according to (13). The fusion coefficients are selected
according to Tj(n), N is the maximum number of iterations, and the rule is described as:

o = [LRGD), T N)=T,Y (V)
Lllf"(hj) - {Lg(l’]j)’ Tij[R(N) < T,-jV(N) . (34)

Step 3 Measure the MSF as the external excitation of SCM using (29). Referring to step 2,

use SCM to fuse the high-frequency subbands {H%{,H i}k}. The fused coefficients
can be determined as follows:

HV (iaj)a Ti/]R(N) < TUV(N)

Step 4  Optimize the parameters of SCM using multi-objective artificial bee colony algo-
rithm. First of all, initialize the bee populations and set maximum number of
iterations. Then, find the optimal solution set according to the two fitness functions,
as shown in (22) and (23). Finally, select the optimization solution based on the
selection principle.

Step 5  Take the optimal parameters to set SCM and perform inverse NSST of the low-
frequency and the high-frequency coefficients to obtain the fused image.

4 Experimental results and analysis

The simulation experiments were conducted by MATLAB2014a software on PC with Intel ES
2670 2.6 GHz, 16 GB RAM. We take several groups of accurate matching of infrared image
and visible light image to test. All of them cover 256 or 512 Gy levels. The source infrared and
visible images were collected from http://www.imagefusion.org/ and https://figshare.
com/articles/TNO_Image Fusion_ Dataset/1008029.

4.1 Experiment parameters setting

According to Ref. [1], we initialize the bee populations as follows: feasible solutions number is
2, the sum of bees is 20 (the number of employed bees and onlooker bees is 10 respectively),
the largest number of search limit is set to 10, the maximum number of iterations is 50. The 2-
D initial random values are f€ [0, 1] and g €0, 1].

At the same time, so as to show the optimization effect of this method, the un-optimized
SCM fusion method is used to compare and analyze. The high frequency coefficient adopts the
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Table 2 The optimal solution sets

of UN Camp Number S g
1 0.2045 0.2395
2 0.1996 0.6288
3 0.0704 0.4101
4 0.1959 04116
5 0.2169 0.5088
6 0.2209 0.5805
7 0.0903 0.5456
8 0.2054 0.5275
9 0.3403 0.5216
10 0.8728 0.4592

modified spatial frequency as the fusion strategy, the low-frequency coefficient fusion strategy
selects the saliency map of the image. According to Ref. [8] and the parameters of the
conventional SCM are set as follows:
0.1091 0.1409 0.1091
f=02,g=0.6, V=20, W = | 0.1409 0 0.1409 |, n=20, V,=20.
0.1091 0.1409 0.1091
In addition, the parameters of £, g, and iteration n are set by the optimized SCM adaptively
and the remaining parameters are the same as that of the conventional SCM in our method. In
our implementation, the proposed fusion method is compared with three representative
conventional fusion methods and two state-of-the-art fusion methods, such as wavelet-based
method (DWT) [20], Laplacian pyramid (LAP) [31], multiscale transform-based method
(NSST-SCM) [18], multiscale transform and sparse representation (MST-SR) [21], guide the

(b) Visible image

(e) FT-Max (f) Modified FT-Max (g) Un-optimized SCM (h) Proposed
Fig. 6 Comparison of different fusion strategies

@ Springer



Multimed Tools Appl (2019) 78:28609-28632 28623

3.5
3
2.5 u Ave-SF
) = Ave-MSF
FT-Max
L5 MFT-Max
1 ® Un-optimized SCM
]
05 II II I II Proposed
. 1
MI MSSIM QAB/F

Fig. 7 The chart of evaluation indexes

filtering-based method (GFF) [6]. The ‘db2’ wavelet adopts discrete wavelet decomposition;
NSST uses a non-subsampling pyramid ‘maxflat’ filter and its decomposition directions are set
as [12, 20, 37].

4.2 Parameters optimization

In order to verify the rationality of the parameters and the fusion strategies in our proposed
method, several experiments were conducted on the image sets, we selected “UN Camp” for
specific analysis. At the beginning, four groups of different fusion strategies are compared,
Group 1: the low-frequency subbands are fused by a simple weighted averaging strategy, and

(e) NSST-SCM (f) MST-SR (g) GFF (h) Proposed

Fig. 8 Image fusion results of “Bristol Queen’s Road”
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(a) IR image (b) Visible image (c) DWT (d) LAP

(e) NSST-SCM (f) MST-SR (g) GFF (h) Proposed

Fig. 9 Image fusion results of “Kaptein”

the high-frequency subbands adopt SF as external excitation of SCM. Group 2: the low-
frequency subbands are also fused by a simple weighted averaging strategy, and the high-
frequency subbands adopt MSF as external excitation of SCM. Group 3: the saliency
map is used as the external stimulus of SCM in the low-frequency subbands, and the
high- frequency subbands are fused by the largest absolute value strategy. Group 4:

(a) IR image (b) Visible image (c) DWT

\ 5
=

r s ’:-
‘ |"uuy:._,f,,4 . f

5 v =g
e, [y - P8

(e) NSST-SCM (f) MST-SR (h) Proposed

Fig. 10 Image fusion results of “Street”
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(e) NSST-SCM (f) MST-SR (h) Proposed

Fig. 11 Image fusion results of “Heather”

the low frequency subbands are fused using modified saliency map as external
excitation of SCM, and the high-frequency subbands are fused by the largest absolute
value strategy. Next, the fifth experiment uses the conventional SCM, so the number
of iterations cannot be optimized. The last is our fusion method, the ten sets of
solutions about SCM parameters were listed in Table 2.

However, it is difficult to select which set of optimal solutions to be the final
parameters of SCM, so we introduce the concept of the best compromise solution [4].
Generally, 0" can better reflect the object edge information in the fused image, so the
solution of the maximum value of this index is f=0.2209 and g=0.5805, which is
selected as the final solution, the selection of parameters is realized adaptively based on
this criterion.

It can be seen from Fig. 6 that Fig. 6¢ to f correspond to four groups of comparative
experiments. Figure 6g and h show the fused results of the un-optimized SCM and the
proposed method, respectively. First of all, in terms of visual effects, these methods take
a simple weighted averaging strategy, and have bad fusion effect, the modified FT
method can preserve more edge information than original FT method, such as the details
of eaves in the fused image. Obviously, the un-optimized SCM lacks the details of the
fence in the regions marked by the yellow rectangle. Then we utilize objective evaluation
indexes [9, 32, 33] to measure the fused results, and the data show that the modified
strategies improve MI and Q*®F to a certain extent, as shown in Fig. 7.

4.3 Subjective evaluations

The fused results based on the different methods above are illustrated in Fig. 8, 9, 10,
and 11, and the red rectangle and yellow rectangle region represent the enlarged details
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of the region and the contrast region, respectively. For the case of Fig. 8, the key point of
image fusion is to fuse the information of pedestrians and vehicles into the final image
fully, and maintain environmental information as much as possible. In terms of visual
effects, although these algorithms can fuse most information of the source images, both
DWT method and GFF method have lost infrared character details, as shown in the
yellow rectangular marked region. It can be seen that our method can well retain the
details of the tarpaulins in the red rectangular marked area because of the uniform gray-
scale distribution. However, the fusion effects of NSST-SCM and MST-SR methods are
inferior to our method. The next set of the image is “Kaptein”, as shown in Fig. 9.
Among DWT, LAP and GFF methods do not to fuse the sky area properly due to
contaminated with the dark IR spectral information, while the sky in our result is brighter
and less noisy. Moreover, as we can see in marked region, the edge of the street lamp and
the trees have some shadow in the result by NSST-SCM method. Both MST-SR and the
proposed method can achieve good visual effects compared with other methods.

Figure 10 shows a scene that contains multiple targets and complex source of lights,
which is similar to Fig. 8. Compared with the proposed method, both the bulb luminance
and the contrast of the fused results obtained by NSST-SCM and GFF methods are a
little lower, and the details of two lamps in the upper right are not fused; the background
scenery in MST-SR result contains more IR noise, and the contrast of the DWT result is
low. From Fig. 11, we can easily find out that the result based on GFF looks like the
visible image which lost the infrared information, whereas the result of the proposed
method contains more details of the natural scene and obvious target.

In summary, the proposed method is superior to other methods in both inheriting the
characteristics of the source images and preserving background details on the visual level.

4.4 Quantitative comparison

Another essential evaluation criterion is quantitative comparison, so the image fusion
effect is measured by some above objective evaluation indexes [9, 11, 32, 33]. From
Table 3, 4, 5, and 6 report the objective evaluation results based on six methods. Moreover,
the two important relative evaluation metrics that MI and Q*®F will be represented as
graph intuitively, as shown in Fig. 12. It can be seen that these two indexes are superior to
other methods, this indicates the fused image generated by the proposed method contains
more significant information from the source image, and the details of the two source
images are reflected more accurately, the remaining metrics are slightly better than other
comparison methods, this proves that the image fusion quality of the proposed method is
better objectively.

Table 3 Quantitative results of experiment on“Bristol Queen’s Road”

Methods MI EI SF SD MSSIM QABF

DWT 1.7641 5.9502 10.8103 26.8452 0.6084 0.4105
LAP 2.7743 6.7614 17.6038 36.0527 0.6004 0.6719
NSST-SCM 2.7080 6.4549 17.3505 36.1998 0.5901 0.6407
MST-SR 3.5980 6.7462 17.6871 35.6520 0.5994 0.6750
GFF 1.8704 6.5639 16.6055 32.7254 0.6052 0.6666
Proposed 3.6116 6.8114 17.6940 36.6063 0.6209 0.6783
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Table 4 Quantitative results of experiment on “Kaptein”

Methods MI EI SF SD MSSIM QABF

DWT 1.9752 6.5779 7.5664 31.6990 0.7036 0.3605
LAP 2.4530 7.0261 9.9516 40.4013 0.7164 0.4939
NSST-SCM 2.3740 7.3433 9.7017 51.4140 0.7041 0.4763
MST-SR 2.5068 7.1490 9.6775 545026 0.7239 0.5279
GFF 2.5989 6.9828 8.6265 34.1017 0.7125 0.5224
Proposed 2.6214 7.4392 9.6068 54.0522 0.7253 0.5332

Table 5 Quantitative results of experiment on “Street”

Methods MI EI SF SD MSSIM QABF

DWT 2.7036 6.9454 12.1065 34.7115 0.6037 0.4612
LAP 24962 7.2680 22.1301 429834 0.6129 0.6192
NSST-SCM 2.7553 7.2680 19.8159 40.3688 0.6008 0.5630
MST-SR 2.6138 73779 22.0925 40.7620 0.5733 0.6326
GFF 2.7105 7.2098 20.1805 40.5091 0.6155 0.6248
Proposed 3.1125 7.4204 21.4458 435274 0.6043 0.6335

In conclusion, our proposed method retains the effective information of the source images
and plays a significant role in the fusion of infrared and visible images.

5 Conclusions

In this paper, a novel infrared and visible light image fusion scheme is proposed, in
which visual saliency map improves the low-frequency fusion strategy, the spatial
frequency is utilized as the external incentive of SCM in NSST domain. Among them,
the soft limiting function improves the output of SCM; at the meanwhile, the parameters
of SCM are further optimized by multi-objective the artificial bee colony. Compared with
other methods, the experimental results show that the modified SCM structure is simple
which has fewer parameters to set, low computational costs, and objective is outstanding
in the fused image, the outline is clear, rich background details in the fused image, the

Table 6 Quantitative results of experiment on “Heather”

Methods MI EI SF SD MSSIM QABF

DWT 1.7641 6.6894 10.8103 26.8452 0.6094 0.3447
LAP 2.4129 7.2744 13.8266 48.9163 0.6158 0.4721
NSST-SCM 22577 7.1917 13.2201 47.1087 0.6021 0.4588
MST-SR 2.3631 7.4123 13.3848 49.1882 0.6072 0.5257
GFF 2.5389 7.3006 12.4872 39.9741 0.6038 0.4701
Proposed 2.7359 7.5715 13.8749 49.2002 0.6203 0.5138
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(b) The comparison line chart for Q*BF

Fig. 12 Objective evaluation results based on Figs. 8, 9, 10 and 11

fusion performance is better than the other state-of-the-art methods both the subjective
and objective evaluation. Our next research goal is to use parallel computing to reduce
computational costs and extend the application domain of this scheme.
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