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Abstract In this paper, a novel linguistic steganography with high imperceptibility and
undetectability is proposed via secret message compression and candidate text selection.
The length of the practical embedded payload can be reduced by the proposed word index-
ing compression algorithm(WIC), while a best stego text with high undetectability can be
selected from candidates by the stego text selection strategy. WIC algorithm losslessly com-
presses the secret message by combining a minimum maximum weight algorithm with
Huffman coding under the help of the candidate cover text. To improve the anti-steganalysis
capability, ten cover texts with small compression ratios are selected from a huge cover text
set, and are embedded the corresponding compressed secret message by using synonym sub-
stitutions. Only one stego text is selected by a given rule derived from the distance between a
cover text and its stego text. Experimental results show that the proposed compression algo-
rithm achieves better compression ratios than Huffman and LZW coding algorithms leading
to higher embedding efficiency, and our steganography performs well in anti-steganalysis
capability with compression and the stego text selection rule.
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1 Introduction

Nowadays, it is very important of protecting digital information against illegal attacks in the
network. There are many security techniques to achieve secure communication, such as the
encryption [12, 22], the watermarking [13], the steganography [8], and so on. Steganogra-
phy is the art of embedding secret message into the cover objects, such as images, videos,
texts, speeches in a covert way, aiming to transmit stego objects with secret messages
unsuspectedly.

Among all of the aforementioned cover objects, text data is the most common and excel-
lent cover object for steganography, as its great prevalence in real life. The native statistical
properties of text data have been widely employed by existing steganographic methods
[2], which adopt diverse linguistic transformations, such as lexical substitution [4], syn-
tactic transformation [15], and semantic transformation [1] to modify text data, making
modifications imperceptible to the observer.

Synonym substitution is one of the common linguistic transformations, and it utilizes
some similar or relative words named synonym for text steganography. Winstein [19] firstly
distributed a practical linguistic steganographic system Tyrannosaurus Lex(abbreviated as
T-Lex) online, where a block encoding method encoded absolute synonyms from the elec-
tronic dictionary WordNet, and a synonym substitution mechanism embedded the secret
message bits. To avoid decoding ambiguities, each synonymwas encoded as a unique codeword
for steganography. Similar to T-Lex, Muhammad et al. [16] adopted two selected absolute
synonymous words from each synonym set for pursuing good imperceptibility. However,
many other relative synonyms are discarded, which leads to low embedding capacity.

For enhancing the embedding capacity and selecting suitable synonyms, Bolshakov [4]
applied transitive closure to merge all the overlapping synsets into one set, and used the
collocation-test to remove unsuitable words from the merged synsets, making each synonym
belong to the same synonym set. Similar to Bolshakov’s method, Chang et al. [5] treated
words as vertices in a graph, and linked synonyms by edges. A vertex coding algorithm
was developed to encode each synonymous word to a unique bit string without discarding
any synonyms. Besides, Google n-gram corpus was used for checking the applicability of
each synonym to ensure information security. To improve the acceptability of synonyms
in context, Liu et al. [14] gave a disambiguation function to select correct synonyms to
substitute original words. Topkara et al. [17] proposed a quantitative resilience criterion to
prioritize multiple alternatives and selected the more ambiguous words from synonym sets.

The aforementioned methods improved the quality of the stego text and obtained good
imperceptibility. However, some changes are made on statistical features of the cover text
inevitably, making embedded secret messages in high risks of being detected by linguis-
tic steganalysis [6, 20]. In order to ensure the security, secret messages must be embedded
without significant distortion on the cover objects. Hu et al. [11] gave a feasible steganog-
raphy to preserve the word frequency distribution of the cover text unchanged. However,
only when synonymous words appear in a cover text for more than one time, they can
be used to carry secret information, which leads to low embedding capacity. In image
steganography, matrix embedding [18] introduced by Crandall [7] is the most well-known
approach to reduce the distortion measured by the number of embedding modifications.
Matrix embedding was proved to be efficient for large payloads which uses of the codes
constructed from simplex codes and random linear codes of small dimension [9]. Therefore,
Yang et al. [21] attempted to apply the matrix embedding into the synonym-substitution
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based steganography to increase its anti-steganalysis capability. However, this method relies
on embedding capacity to improve security, which deteriorates the practicality of linguis-
tic steganography, whose embedding capacity is usually very low. Besides, the reduction of
embedding modifications cannot protect stego objects from being discovered by all kinds
of steganalysis.

A good linguistic steganography with high imperceptibility should achieve high embed-
ding capacity and anti-steganalysis capability. However, no existing methods could solve
this problem in a proper way. In this paper, we propose a new linguistic steganogra-
phy to improve both the embedding capacity and anti-steganalysis capability. The main
contributions include two following parts.

1) The wording indexing compression, which builds an index table for the words in the
secret message by finding their positions in each cover text, is proposed to improve the
embedding capacity. In addition, a minimum maximum weight algorithm is employed to
find an optimal path, which has shortest compression length for retrieved secret words.
Combining with Huffman coding for the unretrieved secret words, the secret message can
be effectively compressed. With the compressed secret message, the length of the practical
embedded payload is reduced, thus the relative embedding capacity is greatly increased, as
much more original secret messages can be embedded. On the other hand, the modifications
made into the cover text will be effectively reduced improving the embedding efficiency;

2)The stego text selection strategy is designed properly to select a more undetectable
stego text achieving high anti-steganalysis capability. In details, ten cover texts with relative
low compression ratios will be selected and embedded the compressed secret message. In
the end, only one stego text with shortest distance from the corresponding cover text is
reserved. The difference between the stego text and the cover text is imperceptible, and the
improvement of the capability of anti-steganalysis is significant.

The rest of this paper is organized as follows. In Section 2, the framework of the proposed
steganography is described. In Section 3, the secret message compression based on word
indexing is presented. Section 4 introduces the stego text selection process. Section 5 details
the experimental results and analysis. Finally, the conclusions are given in Section 6.

2 The proposed linguistic steganography framework

Size of the message that can be embedded is limited to the number of synonyms con-
tained in the cover text, which is always small. Thus, it is difficult for the existing linguistic
steganographic methods based on synonym substitution providing considerable embedding
capacity. Low embedding capacity will make that a linguistic steganography is insignifi-
cant to practical application. However, some improvements of the embedding capacity are
inevitably compromise the security. Steganography with low security cannot prevent secret
messages from being detected by steganalysis efficiently.

In order to improve the embedding capacity and statistical security at the same time, we
propose a novel linguistic steganography by using compression and selection strategy. The
framework of the proposed steganography is shown in Fig. 1. It mainly has three processes:
the secret message compression, the stego text generation and the secret message extraction.
The secret message compression uses a word indexing compression algorithm to improve
embedding capacity by reducing the practical embedding operations. The stego text gener-
ation designs a stego text selection strategy to enhance the capability of anti-steganalysis
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Fig. 1 The framework of the proposed linguistic steganography

by selecting a good stego text with small distortion. The secret message extraction correctly
recovers the secret message from the selected stego text.

(1) Secret message compression

The secret message compression losslessly compresses the secret message into an extremely
short string by combining a text database, which is firstly built by collecting the huge texts
from the Internet. Each text is regarded as a retrieved text. By the secret message com-
pression, a shorter message will be embedded. In this paper, each retrieved text and secret
messages all in English. And the secret message, which is necessary to be constrained as
a natural language text, is segmented into a token sequence for compression. The tokens
mainly include the words and the punctuations, which in this paper are all called secret
words.

In order to compress the secret message efficiently, an index table of the secret words is
built for each retrieved text in the database, and the secret message is then converted into a
compressed binary sequence by the following steps.

Step 1: Word indexing. The purpose is to construct a word index table to record the
positions of each secret word within a retrieved text.

Step 2: Optimal position path searching. The secret words in the retrieved text are called
retrieved secret words; the optimal position path, whose maximum absolute posi-
tion offset is minimum, is found by a search algorithm from the constructed word
index table. In this paper, a minimizing maximum weight (MMW) algorithm is
employed to find an optimal position path.

Step 3: Secret message compressing. The optimal position path is converted into a binary
position offset sequence. Since not all secret words appear in a text at the same
time, the unretrieved secret words, which are not included in the retrieved text, are
also converted into a binary sequence by a general compression algorithm, e.g.,
Huffman coding. The two binary sequences are linked to a complete compressed
message.

Step 4: Cover text selection. Sorting the retrieved texts by the length of the compressed
message in descending order, the top 10 texts are selected as the candidate cover
texts.
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(2) Stego text generation

With the input of 10 selected cover texts and their corresponding compressed secret
message, the stego text generation obtains 10 candidte stego texts and selects a best one for
high security. As a result of stego text generation, a stego text with low statistical distortion
is obtained, enhancing the security of the embedded secret message.

Step 1: For the 10 candidate cover texts, the corresponding compressed secret messages
are embedded into them by the synonym substitutions to generate 10 candidate
stego texts respectively.

Step 2: Among the 10 candidate stego texts, the stego text with the smallest distance to its
cover text is selected as the final stego text.

(3) Secret message extraction

The final stego text is transmitted to the receiver. The process of the secret message
extraction will extract the secret message correctly by the following steps.

Step 1: The synonyms in the stego text are recognized by searching the synonym
dictionary, which is the same as the one used by the sender.

Step 2: A binary sequence is obtained by decoding the recognized synonyms. Afterwards,
the binary sequence is decompressed by the inverse process of the secret message
compression. According to the obtained compressed message and the correspond-
ing text, part of secret words can be retrieved by the decompressed positions
information, and the rest part is decompressed by the compression algorithm used
in the sender part.

3 Secret message compression based on word indexing

A secret message compression method is proposed to reversibly and losslessly compress the
secret message into a shorter sequence, such that the subsequent embedding operations can
be reduced. Under the same conditions, the shorter secret message can bring fewer changes
into the cover object.

3.1 Word indexing

The secret message and the cover texts will be broken up into tokens, and the easy way
is to segment them into words. Our method(WIC) does not require token normalization,
stemming, and lemmatization. The tokens in the secret message should match those in the
retrieved texts. All letters in a token are case insensitive, and lower case for the general case.
Special characters such as punctuations are treated as separate tokens. We name the tokens
of the secret message as secret words.

An exhaustive search is employed to find all positions of each secret word within a cover
text. The index table is built for each text and the secret message, where each secret word
points to a list of their positions in a cover text (position list).

If the text database is huge enough, there should be at least one text that contains all
secret words. However, the text database in the real applications cannot cover an unlimited
amount of texts. Thus, only parts of secret words will appear in one text.

Table 1 shows an example of the index table. Suppose the secret message is “chang-
sha cloud computing and security magazine”. “changsha” and “magazine” do not appear
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Table 1 An example of the index table

Secret words Position list

changsha /

cloud 3555 12480 27480 ...... 49249 ......

computing 7620 ...... 14518 21199 21236 ...... ...... ......

and 22 78 ...... 7609 7852 ...... 16258 ......

security 1895 ...... 7650 ...... 16790 ...... 36000 ......

magazine /

in the retrieved text. They are unretrieved secret words, while “cloud”, “computing”, and
“security” are retrieved ones.

With the position information, the retrieved secret words can be retrieved from the cover
text. We define the position offset as the word distance of two adjacent retrieved secret
words in the cover text. As for the English language, it makes the average word length be
5.1 letters [3], i.e. about 40.8 bits. The maximum of a 16 bits position offset (including a
sign bit) can be 215 −1, which is very large. Predictably, the average bit length of a position
offset should be greatly lower than 40. A position offset requires less space than a long
secret word. If the retrieved secret words may be clustered in the cover text, the position
offsets will be very small. Thus the retrieved secret words can be effectively compressed by
transforming them into position offsets.

A retrieved word may appear in a text several times, while only one position of each
retrieved word is selected to form a complete position path and to retrieve the secret words.
Thus there exist multiple paths for the same retrieved secret words and the same cover text.
In order to efficiently compress the secret message and make few modifications to the cover
text, the next section gives an optimal position path searching algorithm. Note that any
punctuation is regarded as an unretrieved secret word.

3.2 Optimal position path searching

For the retrieved secret words in an index table, a layered directed graph is constructed to
search the optimal position path.

1) The positions in the index table are regarded as vertices.
2) The positions of one secret word are drawn in the same horizontal layer. The positions

of the first secret word are arranged in the first layer; those of the second secret word
are in the second layer, and so on. For two adjacent layers, each vertex of one layer is
connected to all the vertices of the other layer by edges, as shown in Fig. 2, where wi

is the i th secret word, m is the total number of the secret words, pij records the j th
position of wi appearing in the retrieved text, ni denotes the count of wi in the retrieved
text.

3) The weight assigned to each edge is the absolute position offset between the corre-
sponding two vertices.

4) Two virtual vertices are created: the source vertex s and the end vertex t . s is connected
to the vertices in the first layer by virtual edges, while t is connected to the last layer.
The weight of a virtual edge is supposed to be zero.

From the source s to the end t , there are a large number of paths; the path visiting only
one vertex of each layer is called the position path, which can be employed to retrieve
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the retrieved secret words. Since different position paths will lead to different compression
ratios, and then make different embedding efficiencies to the stego texts, an optimal problem
should be considered to find the best path. The embedding efficiency [10] is a quantita-
tive index to measure the embedding distortion, which is defined as the average number of
bits embedded per one embedding change. In this paper, the compression ratio is defined to
the ratio of the bit length of the compressed secret message to that of the original secret
message.

In order to find the optimal position path, it is natural to consider the bit length of the
maximum edge weight of each path, which determines the compression ratio. So, making
use of the binary search and the Breadth-First-Search, we employ a minimizing maximum
weight (MMW) algorithm to find the minimum of the maximum weight of a position path
in the layered directed graph. The details of MMW algorithm is described as follows.

Using MMW, there may be more than one path with the minimum maximum weight. In this
case, we randomly choose one as the target path.

For the example in Table 1, WWM algorithm calculates the minimum maximum weight
to be 2038, and finds an optimal position path “cloud: 12480, computing: 14518, and:
16258, security: 16790”.

3.3 Secret message compressing

In order to effectively compress the retrieved words, the position offsets (edge weights)
instead of positions in the found optimal position path are converted into a binary string.
The unretrieved words can be compressed by general text compression methods such as
Huffman or LZW codings. Since LZW coding takes advantage of the recurring patterns
in the message to compress and save spaces, it does not perform well on the short secret
message. Huffman coding is better than LZW coding for compressing the unretrieved secret
words.

Compressing the whole secret message requires some additional information to distin-
guish the retrieved secret words from the unretrieved ones. As a result, the secret message
is compressed into a binary string including following four fields.
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Fig. 2 The layered directed graph constructed for an index table

1). Number of the secret words (16 bits in default) recording how many words that
the secret message includes. Denote the value of this field as decimal number N , such that
the maximum number of the secret words can achieve to 2N −1. For the example in Table 1,
the value of this field is “0000 0000 0000 0110”, and N = 6.

2). Flags (N bits) identifying whether a secret word is retrieved or not. Its length equals
to the number of the secret words. If the ith secret word is a retrieved one, then the ith bit
of this field is set to ‘1’; otherwise, it is ‘0’.

There are two special cases to update the value of flags.

Case 1:

If a retrieved secret word is a synonym, it is theoretically possible that its positions in the
cover text may be changed, when the retrieved secret is substituted by its synonymous word
in the embedding process. In this case, the secret word decompressed from the stego text
will be slightly different from the original cover text. To avoid this situation, a retrieved
secret synonym is treated as an unretrieved secret word, thus, its flag is set to ‘0’.

Case 2:

Suppose that a retrieved secret word is compressed into Lr bits, and Lu bits when it is
treated as an unretrieved secret word, if Lr > Lu, then treating it as an unretrieved one is
beneficial for improving compression performance. In this case, the corresponding flag bit
will be set to ‘0’.

The example in Table 1 has four retrieved secret words and two unretrieved ones, thus
the flag field is initialized to “011110”. By checking the synonym dictionary, we find that
there are no synonyms in the secret message, so no updates are required by considering the spe-
cial case 1. The judgment of special case 2 requires the compression result of the retrieved
secret words and the unretrieved secret words. Thus, the flags should be updated at last.
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3). Compressed retrieved secret words MMW algorithm finds a position path for loss-
lessly compressing the retrieved secret words. The first position information in the pathmay be far
greater than the maximum of the absolute position offsets. So, it will be solely encoded
instead of being regarded as a start position offset. This field includes four sub fields.

(a) The bit length of the first position information(8 bits in default): 8 bits is employed to
allocate enough space to encode the first position. Denote the value of this field as the
decimal number Lf .

(b) The first position (Lf bits): encoding the first position information into Lf bits string.
(c) The maximum bit length of position offsets (5 bits in default): identifying the maxi-

mum bit length of the position offsets in the optimal position path. Denote the value
of this field as the decimal number Lr .

(d) The position offset list ((Nr − 1) × Lr bits): Each position offset is allocated a size of
Lr bits. The most significant bit is the sign bit; ‘0’ represents a positive position offset,
while ‘1’ represents a negative one. Nr retrieved secret words require (Nr − 1) × Lr

bits to encode all position offsets.

For the example in Table 1, by using theMMWalgorithm, the position path for the retrieved
secret words is “cloud: 12480, computing: 14518, and: 16258, security: 16790”. Then the
offsets are “2038, 1740, 532”; the maximum absolute offset is 2038; the maximum bit length
of the offsets(including a sign bit) is 12; the bit length of the first position is 14. Thus, the
retrieved secret words are converted into the following binary string, whose total length is 63.

value
︸ ︷︷ ︸

length

00001110
︸ ︷︷ ︸

8

11000011000000
︸ ︷︷ ︸

14

01100
︸ ︷︷ ︸

5

0 11111110110
︸ ︷︷ ︸

12

0 11011001100
︸ ︷︷ ︸

12

0 01000010100
︸ ︷︷ ︸

12

4). Compressed unretrieved secret words All unretrieved secret words are concate-
nated into a character string with the spaces as the delimiters. Nu unretrieved secret words
requires Nu spaces, while the last space is employed to represent the end. Each character is
encoded into variable length bits by Huffman coding.

In the example, the string converted from the unretrieved secret words in lowercase is
“changsha magazine”, with an extra space at the end. Suppose that the character set just
contain 26 lowercase letters, space, and 11 most frequently used punctuations, by counting
their frequencies in a corpus, we can construct a Huffman tree and get the codeword of
each character. As a result, “changsha magazine” is encoded by Huffman Coding into the
following binary string, whose bit length is 83.

value
︸ ︷︷ ︸

character

00010
︸ ︷︷ ︸

c

0100
︸︷︷︸

h

1010
︸︷︷︸

a

1000
︸︷︷︸

n

011011
︸ ︷︷ ︸

g

0101
︸︷︷︸

s

0100
︸︷︷︸

h

1010
︸︷︷︸

a

111
︸︷︷︸

space

110111
︸ ︷︷ ︸

m

1010
︸︷︷︸

a

011011
︸ ︷︷ ︸

g

1010
︸︷︷︸

a

01101000101
︸ ︷︷ ︸

z

0111
︸︷︷︸

i

1000
︸︷︷︸

n

001
︸︷︷︸

e

111
︸︷︷︸

space

At last, the Flags should be updated by considering the special case 2. Each retrieved secret
word together with a space is encoded by Huffman coding. If the length of its codeword is
smaller than the maximum bit length of the position offsets, the corresponding Flag bit ‘1’
is updated to ‘0’. In the example, the four retrieved secret words all have longer codewords
when they are encoded by Huffman coding. Therefore, the Flags do not need be updated.
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In conclusion, by the proposed compression method (WIC), the 368 bits secret message
in the example is compressed into a 168 bits binary string, thus the compression ratio is
45.65%. For comparison, the whole secret message is directly encoded by Huffman cod-
ing and LZW coding, respectively. By Huffman coding, the compression ratio is 57.34%.
By LZW coding, the compression ratio is 67.39%. It is easy to find that our compression
method can greatly reduce the length of the practical embedding information.

4 Stego text generation and secret message extraction

The security of the steganography has relations with the length of the embedding infor-
mation and the modifications on the statistical features of the cover text. The proposed
compression method can achieve different compression ratios with different cover texts even
for the same secret message. For the given text database, ten texts are selected as candidate
cover texts by comparing their compression ratios, consequently, ten candidate stego texts
are generated. A selection method is designed to select the best stego text in this Section.

4.1 Synonym substitution based message embedding

A synonym dictionary consisting of synonym sets is employed for steganography. The
synonymous words are arrayed in a synonym set and encoded as a unique binary digit.

For a given synonym set S = {s0, s1, . . . , sn−1}, let the n synonymous words be in
descending order in terms of their frequencies. The synonym si is encoded by the rule shown
in (1).

e(si) =
{

0 i = 0
1 else

(1)

where e(si) represents the encoded value of si . The word with the highest relative frequency
is encoded as ‘0’, viz. e(s0) = 0, while all the others are denoted as ‘1’.

Synonym substitution rule Suppose that the embedded bit is b, the corresponding cover
synonym is s, which is located in the synonym set S = {s0, s1, . . . , sn−1}; if e(s) = b, no
substitution is done; if e(s) �= b, a synonym s

′
is randomly selected from S to replace s and

make e(s
′
) = b.

In a stego text, if there is a synonym s, then the embedded bit b = e(s) is extracted.

4.2 Stego text selection

By employing the above synonym substitution rule, ten candidate stego texts can be gener-
ated for each secret message. The stego text, whose statistical features are closest to those
of its corresponding cover text, is finally selected. Thus, it is difficult to distinguish the final
stego text from the cover texts.

In order to measure the statistical distance between a stego text and its cover text, both of
them are represented into the statistical features similar to those in a steganalysis method.
Suppose that the feature set of the stego text is V s = {vs

0, v
s
1, . . . , v

s
n−1}, and the one of the

cover text is V c = {vc
0, v

c
1, . . . , v

c
n−1}. The Euclidean distance is employed to measure the
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distance between the stego text and its cover text, i.e., the distance between vectors V s and
V c is defined as follows.

d(V s, V c) =
√

√

√

√

n−1
∑

i=0

(vs
i − vc

i )
2 (2)

Denote the feature vector of the j th candidate stego text as V s
j = {vs

j0, v
s
j1, . . . , v

s
j (n−1)},

and its corresponding cover text as V c
j = {vc

j0, v
c
j1, . . . , v

c
j (n−1)}, then their distance is

d(V s
j , V c

j ) =
√

∑n−1
i=0 (vs

ji − vc
ji)

2. Then, the final stego text S
̂j with the shortest distance

can be selected by (3).

S
̂j = argmin

j

d(V s
j , V c

j ) (3)

4.3 Secret message extraction

The final stego text will be sent to the receiver, and the secret message can be extracted
from the received stego text. (1) is used to calculate the encoded values of synonyms in
the stego text; then the obtained binary string is decompressed by an inverse process of
the compression to recover the original secret message. The details of decompressing the
embedded message can be described as follows.
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As an example, let us consider the compressed secret message in Section 3.3.

1) After decoding the values of synonyms in the stego text, we get a binary string
0000000000000110 011110 0000 1110 11000011000000 01100 011111110110
011011001100 001000010100 00010 0100 1010 1000 011011 0101 0100 1010 111
110111 1010 011011 1010 01101000101 0111 1000 001 111

2) From the first 16 bits, we have a decimal value 6.
3) From the next 6 bits, we have F = 011110, Nr = 4, and Nu = 2.
4) From the next 8 bits, we have a decimal value 14.
5) From the next 14 bits, we have p1 = 12480. By indexing the stego text, we find the

12480th words rw1 = cloud .
6) From the next 5 bits, we have a decimal value 12.
7) From the next 12 ∗ 3 bits, we get 2038, 1740, 532, for every 12 bits. Thus, we have

p2 = 14518, p3 = 16258, p4 = 16790. By indexing the stego text, we find the
14518th, 16258th, 16790th words, thus, we have rw2 = computing, rw3 = and ,
rw4 = security.

8) Read the remaining bits and traverse the Huffman tree node by node until the sec-
ond space is obtained. The decoded characters are “changsha magazine”, i.e., uw1 =
changsha, uw2 = magazine.

9) Set i = 1, j = 1, k = 1.
10) As F1 = 0, M = M + uw1+‘ ’ = changsha ; As F2 = 1, M = M + rw1+‘ ’

= changsha cloud ; As F3 = 1, M = M + rw2+‘ ’ = changsha cloud computing

As F4 = 1, M = M + rw3+‘ ’ = changsha cloud computing and ; As F5 = 1,
M = M + rw4+‘ ’ = changsha cloud computing and security ; As F6 = 0,
M = M + uw2+‘ ’ = changsha cloud computing and security magazine. The
final recovered secret message is “changsha cloud computing and security magazine”.

5 Experimental results and analysis

In this section, we give the experimental results, which demonstrate the efficiency of the
proposed steganographic method, especially in terms of the compression method and the
stego text selection strategy.

5.1 Experimental setup

Compared to common steganography, the proposed steganography requires a text database
instead of a single cover text, special secret messages consisting of natural language words,
and a preprocessed synonym database for encoding and decoding synonyms. In our exper-
iments, 10000 English free ebooks, which were downloaded from the Project Gutenberg
(http://www.gutenberg.org/), compose of the text database. They are all famous literatures.
Three secret message sets Set1, Set2, Set3 were built, each of which consists of 100 mes-
sages copied from the News on the Internet. The average lengths of the secret messages in
these three sets are about 100, 200, 500 bytes, respectively. In order to verify the impact on
compression performance caused by the source of secret message, we selected 200 secret
messages from other ebooks of Gutenberg corpus. The 200 messages were divided into Set4
and Set5. The average lengths of the messages in Set 4 and Set5 are about 100 and 200 bytes
respectively. Finally, the proposed method utilizes the synonym database provided by [19].

http://www.gutenberg.org/
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In order to improve the run speed, we preprocessed the text database before searching
an optimal position path by MMW. For each secret message, we counted the number of the
retrieved secret words in each text, sorted the retrieved texts in descending order, and then
filter the last some texts out. The rest of the retrieved texts contains much more retrieved
secret words, resulting in much lower compression ratios. The proposed compression
method WIC only performed on the selected texts.

For comparison, Huffman coding and LZW coding were employed to compress the
secret message. Meanwhile, a compression method called Random Algorithm (RA) was
designed, which is similar to the proposed WIC method. The only difference is that RA
randomly selects a position path to represent the retrieved secret words.

5.2 Compression ratio

This experiment compares the compression ratios of four compression methods including
RA, Huffman, LZW coding, and WIC. The compression ratios of RA and WIC were cal-
culated over the 5000 candidate cover texts with 500 secret messages in Set1 to Set5. Each
secret message has ten candidate compression ratios, but only the minimum was selected
for comparison. Huffman and LZW codings directly compressed the 500 secret messages
to calculate their compression ratios. The minimum, the maximum, and the average of the
compression ratios of each method for different secret message sets are listed in Table 2.
And the detailed results of the arbitrary selected 100 secret messages are illustrated in
Fig. 3.

Table 2 and Fig. 3 show that the compression ratios of the proposed WIC are lower than
those of three comparison methods in all cases. Our method can make less bits be embedded
into the cover text, that is the embedding capacity is increased. As WIC and RA both benefit
from the cover text to compress the secret message, RA has the proximate compression
ratios. From Table 2 and Fig. 3, it can also be found that RA performs better than Huffman
and LZW codings, while Huffman coding compresses the secret message shorter than LZW
coding does. Besides, all the methods provide stable compression performance as the length
of the secret message increases.

Table 2 Compression ratios comparison

Set1 Set2 Set3 Set4 Set5

Huffman minimum 0.4952 0.5068 0.5144 0.4764 0.4646

maximum 0.5719 0.5683 0.5419 0.5680 0.5757

average 0.5268 0.5281 0.5270 0.5201 0.5270

LZW minimum 0.6250 0.6131 0.6210 0.6332 0.6238

maximum 0.7936 0.7960 0.7331 0.7962 0.7843

average 0.7176 0.7236 0.6886 0.7180 0.7289

RA minimum 0.3534 0.3564 0.3575 0.3377 0.3541

maximum 0.5235 0.5093 0.4851 0.5140 0.5014

average 0.4513 0.4400 0.4392 0.4368 0.4307

MMW minimum 0.3125 0.3198 0.3235 0.1310 0.1231

maximum 0.4988 0.4517 0.4563 0.4352 0.4321

average 0.3902 0.3885 0.3964 0.3784 0.3837
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Fig. 3 Parts of the compression ratios for comparison

It is worth noting that the average compression ratios ofWIC in Set4 and Set5 are slightly
lower that those in Set1, Set2 and Set3. Particularly, the minimums in Set4 and Set5 are
much less than those in Set1, Set2 and Set3. Although the secret messages in Set4 and
Set5 are not captured from the prepared retrieved texts, they are all from the same Guten-
berg Corpus. There is very likelihood that the words of a secret message in Set4 or Set5
concentrates in some of the retrieved texts in the text database. Extremely, a retrieved text
may the same content with the complete secret message. As consequence, the minimum
maximum weight of the found optimal position path will be reduced, evenly it is very small,
thus the average compression ratio will be reduced. In some extreme cases, the compression
ratio will greatly fall to a very low value. The smaller the compression ratio is, the larger the
relative embedding capacity achieves. Namely, for the same cover text, more space will be
saved for embedding longer original secret message if the secret message can be efficiently
compressed into a shorter message.

5.3 Embedding efficiency

The compression of the secret message can improve the embedding efficiency of the
steganography by reducing the number of modifications, as the practical embedded payload
is decreased. By using the synonym substitution rule (see Section 4.1), 500 compressed
secret messages of each compression method were separately embedded into 5000 candi-
date cover texts, which were selected by WIC. And the original 500 secret messages were
also directly embedded to generate 5000 candidate stego texts denoted as NOC stego texts.
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For the candidate stego texts from different secret message sets, the minimum, the max-
imum, the average of embedding efficiencies of each compression method are respectively
calculated, and are listed in Table 2. And the detailed results of the arbitrary selected 100
stego texts are illustrated in Fig. 4.

Suppose that the secret message is a random sequence, then the encoded value of a syn-
onym has a probability of 0.5 to equal the embedded bit, as one bit is embedded into one
cover synonym. The embedding efficiency for NOC stego texts is nearly 2 (bit per synonym
substitution), which is demonstrated by the results listed in Table 3. However, more than one
secret message bit will be embedded into one cover synonym after being compressed, as the
embedded compressed message is shorter than the original secret message. Consequently,
the average embedding efficiency of the compression-based steganography is larger than 2
demonstrated by the results in Table 3. Particularly, that of WIC-based method can achieve
4.5. In extreme cases, the maximum of its embedding efficiency can achieve 15.6981, which
is far larger than those of other methods, as the corresponding secret message has be com-
pressed effectively with a very low compression ratio. The experimental results show that
the proposed WIC-based method has the higher embedding efficiency than other compared
methods. Namely, when the same cover text is embedded the same secret information, the
change of statistical characteristics made on the cover text by the proposed method would
be minimal.

From Figs. 3 and 4, it can be found that the compression ratio greatly affects the embed-
ding efficiency. A low compression ratio may result in a high embedding efficiency, thus
our WIC-based method with better compression performance has the higher embedding
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Table 3 Embedding efficiency comparison

Set1 Set2 Set3 Set4 Set5

NOC minimum 1.7058 1.8581 1.8613 1.7325 1.5767

maximum 2.2921 2.2005 2.1779 2.3415 2.9275

average 2.0335 2.0362 2.0347 2.0533 2.0541

Huffman minimum 2.9904 2.9963 3.1574 2.4425 3.037

maximum 4.2041 3.8935 3.8767 4.8282 4.3011

average 3.5470 3.5205 3.5202 3.5694 3.5464

LZW minimum 2.1390 2.7248 2.8965 2.3774 2.2112

maximum 4.1224 4.0100 4.0200 4.2812 3.9649

average 3.1950 3.2715 3.4065 3.2098 3.2458

RA minimum 3.2308 3.4262 3.5840 2.795 3.4639

maximum 5.9429 5.6741 6.2112 6.222 5.7183

average 4.1860 4.2888 4.3050 4.3142 4.3756

WIC minimum 3.4335 3.5850 3.8902 3.6151 3.4681

maximum 6.2769 6.2756 6.0698 15.698 14.579

average 4.5464 4.5856 4.5652 4.7813 4.6618

efficiency than RA-base method, while Huffman coding based method performs better than
LZW-based method in terms of embedding efficiency and compression ratio.

The matrix encoding based steganographic method in [21] can embed k bits into 2k − 1
cover synonyms by substituting one synonym at most, thus its embedding efficiency e

in theory is (k × 2k)/(2k − 1). k = 4, e ≈ 4.267, while k = 5, e ≈ 5.161. The
compression-based steganography can further improve the embedding efficiency by using
matrix encoding to embed the compressed message. Therefore, cooperating WIC with
matrix encoding, the average embedding efficiency can be significantly exceed 4.5 in the
future work.

5.4 The capability of anti-steganalysis

In this section, the anti-steganalysis capabilities of the linguistic steganographic methods
is tested using the linguistic steganalysis method presented in [6], as they are employed
to measure the security of the secret message. Here, the detection precision defined as the
ratio of correctly predicted stego texts to all stego texts is employed to measure the anti-
steganalysis capability of a stegnographic method. The higher the detection precision is, the
worse the anti-steganalysis capability of the steganographic method is. On the contrary, the
lower the detection precision is, the better the anti-steganalysis capability is.

All candidate stego texts mentioned in Section 5.3 were detected. In terms of the deriva-
tion of secret messages, each category of candidate stego texts was divided into two groups.
The stego texts of one group were generated by embedding secret messages in Set1, Set2
and Set3. The remaining stego texts consist of the other group. The steganalysis results
listed in Table 4 demonstrate that the compression ratio and the embedding efficiency both
have contributions to decrease the anti-steganalysis capability of the stego texts.

With the secret message compression technique, the compression based steganographic
methods perform well in resisting steganalysis, while the NOC-based stego text has the
worst anti-steganalysis capability. As the candidate cover texts are chose by the compres-
sion results of WIC, their sizes are generally large. When the messages with fixed length
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Table 4 Steganalysis results for all candidate stego texts

Steganography Set1+Set2+Set3 Set4+Set5

Stego text Cover text Precision Stego text Cover text Precision

NOC 2306 694 76.87% 1535 465 76.75%

Huffman 1614 1386 53.80% 1091 909 54.55%

LZW 1429 1571 47.63% 943 1057 47.15%

RA 1329 1671 44.30% 881 1119 44.05%

WIC 1264 1736 42.13% 826 1174 41.30%

are embedded, just parts of cover synonyms in the candidate cover texts are used to be
embedded message with low embedding rate. The detection capability of a steganalysis is
deteriorated as the embedding rate decreases. When detected stego text is hidden with the
low embedding rate, the detection precision is particularly not so good. Therefore, the pre-
cision of detecting NOC-based stego texts is lower than the related results in [6]. On the
other hand, applying the compression methods not limited to WIC to other steganographic
methods, their capabilities of resisting steganalysis will be also improved by compressing
the secret message before embedding.

Obviously, the lower the compression ratio, the lower practical embedding payload is,
the higher the embedding efficiency is, and the more difficult the detection task is. From the
results in Table 4, the WIC-based stego text has best capability of resisting steganalysis in
[6]. The anti-steganalysis capability of WIC-based stego texts derived from Set1+Set2+Set3
is slightly higher than that from Set4+Set5. We can see that when the retrieved texts for
compression and secret messages come from the same corpus, the anti-steganalysis capa-
bility will be slightly improved. Similar observations can be made for the RA-based stego
texts, which have second best anti-steganalysis capability. Whereas conversely, the LZW-
based stego text performs better than Huffman -based stego text, although the former has a
lower embedding efficiency than the latter. We think of that one reason can explain these
observations: The compressed secret message by LZW coding is no longer independent and
identically distributed, and which is similar to the encoded values of synonyms in the cover
text. As a result, few synonym substitutions would be done leading to few changes in the
statistical characteristics of the cover text, thus the anti-steganalysis capability of the LZW-
based stego text is greatly improved. To sum-up, the compression ratio of the secret message
is not the only factor that determines the capability of anti-steganalysis.

The stego text selection in Section 4.2 can efficiently improve the anti-steanalysis capa-
bility of the stego text. In this experiment, the features used in [6] and [20] were extracted

Table 5 Steganalysis results for the selected stego texts

Stego text Cover text Precision

NOC 254 246 50.80%

Huffman 169 331 33.80%

LZW 135 365 27.00%

RA 138 362 27.60%

WIC 129 371 25.80%
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from the text to compose a statistical feature vector, which is used for measuring the dis-
tance (by Eq. (2)) between a stego text and its corresponding cover text. By the stego text
selection, 500 stego texts were selected from 5000 candidate stego texts for each category.
The detection results of the selected stego texts by the steganalyis in [6] are listed in Table 5.
It can be found that the capability of resisting the steanalysis is significantly improved by
the selection strategy in all cases compared with Table 4. The detection results also demon-
strate once again that the WIC-based stego text has the higher security compared with the
stego texts of other four categories.

6 Conclusions

In this paper, we have presented a new linguistic steganography, which includes two impor-
tant innovations: secret message compression and stego text selection. Different from
existing compression methods, the proposed secret message compression method MIC
considers the cover text to decrease the compression ratio, and then produces 10 candidate
stego texts. The practical embedded payload is greatly reduced by compressing the secret
message, thus, the security of the secret message in a stego text is improved by reducing
embedding modifications measured by the embedding efficiency. The final stego text is
selected by measuring the distance between the features of each candidate stego text and its
cover text, further improving the undetectability of the secret message. The experimental
results demonstrate that the proposed method outperforms existing state-of-the-art methods,
and it can hide more secret messages and secure them well.

The proposed WIC has quite different requirements compared to the normal compression
works. It is special effective for compressing the natural language words. However, WIC cannot
work well without a comprehensive text database. In general, the larger the text database, the
better the compression performance will achieve. However, it is still questionable whether
this method can be applied for image steganography, and it could be further research.

In future work, our intention is also to minimize both the linguistic and statistical distor-
tion caused by secret message embedding. We can incorporate word embeddings generated
by Neural Network Language Model for measuring linguistic distortion, and combine the
WIC method with Syndrome-trellis Code to minimize the statistical distortion. Finally, in
order to have a better understanding of the difference between a cover and stego text, the-
oretical investigations will be considered to present new stego text selection methods with
minimized distortion.
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