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Abstract In the recent literature, many research studies have proven that Known and Cho-
sen plaintext attacks are very efficient tools that are widely used to cryptanalyze partially
or completely some chaos-based and non-chaos cryptosystems. In this paper, we addressed
some weaknesses in the first Zhang et al., cryptosystem “An image encryption scheme
using reverse 2-dimensional chaotic map and dependent diffusion”. First, we analyzed the
encryption process of Zhang et al., and we found that the non-linear diffusion process can
be removed because its argument is present in the ciphered image. Then, based on this
observation we derived a partial cryptanalysis equation that removes the effect of the dif-
fusion function and accordingly permits to recover the permuted version of the ciphered
image. As a result of the previous operation, the brute-force attack became more suit-
able. In addition, we mounted a chosen plaintext attack based on a proposed chosen plain
image. Consequently, the encryption key space is reduced or recovered for one round,
also, the average values of NPCR and UCAI randomness parameters become small com-
pared to the optimal values, and moreover, they are very low for specific pixel position
attacks.
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1 Introduction

In the last years, algorithms that are used to secure information become more important,
specially with the rapid growth of multimedia networking and communication [1, 6, 24, 48].
For example, data security is one of the main obstacles against wide adoption of cloud com-
puting [22]. In cryptography, two essential requirements are important in any cryptosystem:
a high encryption throughput and a high security level. Normally, it is difficult to design a
cryptosystem that can achieve these two requirements together. A trade off between secu-
rity level and encryption speed depends on the target application [8, 11, 29], for example,
some applications require a security level for some days or hours and a slow encryption
time, while other applications require a high security level with extra computational time.
Shannon in his research [38] defines the importance of confusion and diffusion effects, and
stated that, “in a strongly ideal cipher all statistics of the cryptogram are independent of
the particular key used”. The confusion property aims to make the statistical relationship
between the cipher image and the secret key as complex as possible [33], whereas the dif-
fusion property aims to make the statistical relationship between the plain image and the
cipher image as complex as possible [9, 14, 18]. The diffusion process modifies the statisti-
cal properties of the plain image by spreading the effect of each bit/byte of the plain image
all over the cipher image. As a result, the efficiency of using differential attacks is decreased
significantly [5, 33, 45]. Based on Kerckhoffs’ principle [34], the security of the encryption
algorithm should only be based on the secret key and all the system parts should be known
for the public [15]. A cryptanalyst tried to break the cipher without knowing the secret key,
with several levels of difficulties based on the available resources.

Any proposed cryptosystem should pass all statistical tests, and it should be evaluated
regarding to the existing and known mathematical attacks.

The cryptanalysis research papers confirm that the security evaluation of cryptosystems
by standard statistical tools is not a sufficient proof of their security [2, 7, 10, 16, 21, 32,
35, 36, 40–43, 47]. Also, in recent years many studies demonstrate the weaknesses of some
chaos-based and non-chaos cryptosystems against the plain-chosen text attacks and against
a combination of differential-chosen text attacks. For example, Y. Zhang et al., [51] broke
a chaotic image encryption algorithm based on the Perceptron Model by finding the equiv-
alent secret key, using only one pair of known-plaintext/ciphertext. Moreover, the proposed
encryption algorithm “A simple, sensitive and secure image encryption algorithm based
on hyper-chaotic system with only one round diffusion” [31] is cryptanalyzed by apply-
ing known plaintext and chosen plaintext attacks by Y. Zhang et al., [53]. Li et al., [20]
broke a chaotic image encryption algorithm based on the modulo addition and XOR oper-
ation by using two known plain-images and the corresponding cipher-images. The attack
is based on some properties of solving a composite function involving a carry bit, which is
composed of the modulo addition and bitwise OR operations. Zhang and Xiao [49] carried
out cryptanalysis of S-box-only chaotic image ciphers by using chosen plaintext attack, and
demonstrated that the computational complexity of the attack is only O (128 L), where the
constant L is the total number of pixels with respect to the image. Again, Y. Zhang et al.,
broke a novel image cipher based on mixed transformed logistic maps [54], by applying
chosen plaintext attack, six odd integer keys and three chaotic keystreams equivalent to the
chaotic keys were revealed. Liu and Liu [26] investigated the security of an image scheme
based on a permutation layer carried out by the Cat-map and chaos-based substitution layer.
Eight images are selected in revealing all keystreams. Where as when seven images are
selected the block-Cat-map is broken. By using a combination of chosen-plaintext attack
and differential attack, Y. Zhang et al., revealed all the keystream of an image scrambling
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based on chaotic sequences and Vigenère cipher In [55]. L. Y. Zhang et al., [50] applied
the differential cryptanalysis on a chaos-based image encryption algorithm using an alter-
nate structure. The differential attack can recover an equivalent secret key with only a small
number of chosen plain-images. Finally, li et al., [19] pointed out that all permutation-only
image ciphers are insecure against known/chosen-plaintext attacks in the sense that only
O(logL(MN)) known/chosen plain-images are sufficient to break the ciphers, where MN
is the size of the image and L is the number of different pixel values. Also, it is found
that the attack complexity is only O(n(MN)2), where n is the number of known/chosen
plain-images used.

In the proposed work, partial cryptanalysis of the first Zhang et al., cryptosystem is
carried out. It is based on a chosen plaintext attack and a mathematical model to remove the
diffusion effect of the last round of dependent diffusion, decrease the security level based on
differential attacks, and decrease the encryption key space (i.e., sometimes called sub-key,
it is generated from the secret key for each new encryption round and the used mathematical
function should be difficult to invert. [12, 30, 56]).

It is important to note that Zhang et al., cryptosystem can be secure when the variable n

is greater than 2, but in this case the system becomes time consuming and not suitable for
real-time applications.

This paper is organized as follows: Section 2 presents the cryptosystem of Zhang et al.,
[52]. In Section 3, the partial cryptanalysis of the Zhang et al., cryptosystem is described in
detail. Section 4 presents our conclusion.

2 The first Zhang et al., cryptosystem

Two cryptosystems were designed based on Fridrich’s architecture in Zhang et al., paper
[52]. The first consists of a dependent diffusion layer based on the reverse 2-D cat map. The
second presents new mapping from a pseudo-random position to another for the confusion
effect. The diffusion layer of both cryptosystems is based on the logistic map. In these
versions, Zhang et al., tried to achieve the confusion and the diffusion effects sequentially.
Then, the effect of one ciphered pixel is transferred to the next and so on. Only two rounds
(in the first version) and one round (in the second version) of the diffusion-confusion process
are/is needed instead of many rounds of separate confusion and diffusion processes used in
the traditional structures such as Fridrich cryptosystem [46].

Our work is directed to the first Zhang et al., cryptosystem. The mathematical model of
the first Zhang et al., cryptosystem, (Enc=the encryption process) is:-

Enc =

⎧
⎪⎪⎨

⎪⎪⎩

[
x′
y′

]

=
[

1 pi

qi piqi + 1

] [
x

y

]

(ModN)

ciph(x, y) = arr(x′, y′) ⊕ f (t)

t = ciph(x, y)

(1)

The general block diagram of the first Zhang et al., cryptosystem is shown in Fig. 1. It
consists of the following steps iterated n times (with n > 0):

1. Selection: this step generates a random pair arr(rx
j , ry

j ) from the whole image. The
values of the variable rx

j and the variable ry
j are calculated using (2) and (3), where

the variable j is a counter ranging from 0 to n − 1 encryption rounds.

rx
j = (SQ1(2000 + 100 + j) × 109)mod 512 (2)
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Fig. 1 Zhang et al., image encryption cryptosystem architecture

ry
j = (SQ2(2000 + 100 + j) × 109)mod 512 (3)

SQ1 and SQ2 series are calculated using (7).
2. Array exchanges: the second step is to exchange the first byte arr(0, 0) with the

random byte from the previous step arr(rx
j , ry

j ).
3. Dependent diffusion: the cryptosystem goes to the dependent diffusion layer for m

rounds (m = 2 in the Zhang et al., cryptosystem case), which also includes three stages.

(a) New position estimation: in the dependent diffusion layer the first step is to cal-
culate the new byte position (x′, y′) from the old byte position (x, y) using
(4).

[
x′
y′

]

=
[

1 pi

qi piqi + 1

] [
x

y

]

(ModN) (4)

where the variable N is the square root of the test image. Variables pi and qi are
calculated using the following equations:

pi = (SQ1(2000 + i) × 109)mod 512 (5)

qi = (SQ2(2000 + i) × 109)mod 512 (6)

The variable i is a counter ranging from 0 to m − 1. The two sequences SQ1 and
SQ2 used in (2, 3, 5), and (6) are calculated using the following equation:

f (xn) = α × xn−1(1 − xn−1) (7)

Where the initial values x−1 = 0.12345678912345 for SQ1, and for SQ2 is x−1 =
0.67856746347633. The value of α is set to 3.99999.

(b) Calculation of the local ciphered pixel: the next step of the dependent diffusion
layer is to calculate the ciph(x, y) value using the following equation:

ciph(x, y) = arr(x′, y′) ⊕ f (t) (8)

where

f (t) =
[

α

(
t

1000

)

×
[

1 − t

1000

]

× 1000

]

mod 256 (9)

(c) Update of t: the last step of the dependent diffusion layer is to change the value of
the variable t using (10).

t = ciph(x, y) (10)

The initial value t0 is defined by the following equation:

t0 = [4 × keyd × (1 − keyd) × 1000]mod 256. (11)

Where the initial value of the diffusion key variable keyd = 0.33456434300001.
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3 Research objectives

In the proposed work, the first Zhang et al., cryptosystem is presented and analyzed in order
to perform the following research objectives:

1. Deriving a mathematical equation to recover a per-mutated version of the ciphered
image.

2. Removing the diffusion effect.
3. Applying the Chosen Plaintext Attack (CPA).
4. Applying brute force attack and CPA together.
5. Decreasing the UACI and NPCR values significantly.
6. One encryption round and two dependent diffusion rounds have been broken com-

pletely. Moreover, the partial cryptanalysis equation is used to significantly decrease
the robustness of the cryptosystem for two encryption rounds and two dependent dif-
fusion rounds (assumed secure in the Zhang et al., cryptosystem) regarding differential
attacks.

4 Partial cryptanalysis of Zhang et al., cryptosystem

In this section, the number of depended diffusion rounds and cryptanalysis levels are pre-
sented. The partial cryptanalysis equation and the used scenario are described to decrease
the key space. Based on our chosen image the CPA is analyzed. NPCR and UACI values are
reproduced using our proposed equation.

4.1 Conditions for the proposed partial cryptanalysis

The proposed partial cryptanalysis is highly dependent on the number of encryption rounds.
The conditions and the level of the proposed cryptanalysis are summarized in Table 1.

The Zhang et al., cryptosystem is susceptible to the brute force attack for (n = 1, m = 1),
where as for other cases it seems to be secure. The robustness against the brute force attack
is described in detail in Section 4.3.1. Regarding differential attacks, the Zhang et al., cryp-
tosystem does not pass this type of attack because after applying our partial cryptanalysis,
the UACI and NPCR values become too far from the optimal values. Section 4.3.5 presents
a detailed study of this type of attacks. Finally, the used encryption keys of the Zhang et al.,
cryptosystem can be recovered as described in Section 4.3.4.

Table 1 Partial cryptanalysis
level Encryption Cryptanalysis level

rounds

n m Decreasing the Pass differential Find the

key space attacks dynamic key

1 1 Yes No Yes

1 2 Yes No Yes

2 1 Yes No Yes

2 2 Yes No No

3 1 Yes No No

3 2 Yes No No
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4.2 Partial cryptanalysis method and the scenario principle

In fact, the encryption key space of the diffusion function f (t) (8) can be removed from
the calculation of the total encryption key space independently of the used key, because
the t values are clearly presented in the ciphered image. This is the core of the partial
cryptanalysis method. To prove the correctness of the above assumptions, we derive the
following scenario:

ciph0 = arrk′
0 ⊕ f (t0)

ciph1 = arrk′
1
⊕ f (t1) = arrk′

1
⊕ f (ciph0)

ciph2 = arrk′
2
⊕ f (t2) = arrk′

2
⊕ f (ciph1)

ciph3 = arrk′
3
⊕ f (t3) = arrk′

3
⊕ f (ciph2)

ciph4 = arrk′
4
⊕ f (t4) = arrk′

4
⊕ f (ciph3)

ciphk = arrk′
k
⊕ f (tk) = arrk′

k
⊕ f (ciphk−1),

Where arrk′
0 is coming from the plain image of the current encryption round, ciph0 is the

first ciphered pixel which is the result of (8), (as an example, arrk′
0 in the case of n = 1,

m = 1 it is the original plain image (arr(x′, y′)), while in the case of n = 1, m = 2 it is the
encrypted image which is the output of (1) (i.e ciph(x, y)) and so on).

From the last equation in the previous sequences, we can write the main partial
cryptanalysis equation of the Zhang et al., cryptosystem as:

arrk′
k

= ciphk ⊕ f (ciphk−1) (12)

where

k = x × N + y

k′ = x′ × N + y′ ((x′, y′) is the new position calculated from the old one (x, y), (4)).

Note that arrk′
k

is the input pixel of the last dependent diffusion round (m) in the last encryp-
tion round (n) and ciphk is the ciphered pixel. As the function f (t) is known, (12) can be
used to remove the diffusion effect of the last (m and n) rounds from the ciphered pixels.
This allows recovery of a permuted version of the previous ciphered image.

4.3 Partial Cryptanalysis results and benefits

The proposed partial cryptanalysis scenario can be used by the cryptanalyst to perform one
of the following attacks:

1. Decrease the encryption key space of the whole cryptosystem.
2. Perform partial cryptanalysis of the Zhang et al., cryptosystem for (n = 1, m = 1) and

(n = 1, m = 2).
3. Decrease the UACI and NPCR values significantly.

4.3.1 Decreasing the encryption key space of the whole cryptosystem

The brute-force attack is the basic attack that can be used against any cryptosystem. It
trys all possible keys until the correct key is found. In the worst case, all possible keys
in the key space are tested [37, 39]. From (4), it is clear that the key space of the 2-D
cat map for Zhang et al., cryptosystem is N2 for one encryption round and one dependent
diffusion round (n = 1, m = 1), where N is the square root of the image size. In (9), the
key space of the function f (t) is independent of the image size, and it is 28 for (n = 1,
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m = 1). The time complexity spent on performing the brute force attack on Zhang et al.,
cryptosystem is:

KS = (S1 × S2)
n×m,

where the parameter KS is the total encryption key space, S1 represents the encryption
key space for the standard 2-D cat map, and S2 represents the encryption key space for the
logistic map implemented by a lookup table S1 = N2, S2 = 28, and so

KS = (N2 × 28)n×m.

For one encryption round and one dependent diffusion round (n = 1, m = 1).
With N = 512

KS = (218 × 28)1.

The cryptanalysis time complexity is 226 which is less than 2128.
Equation (12) can be used to find the permuted plain image which means that the

encryption key space of the parameter t can be removed from the encryption key space
analysis:

KS = (218)1.

The cryptanalysis time complexity is 218 which is less than 2128.
For one encryption round, two dependent diffusion rounds (n = 1, m = 2), (N = 512)

and if we assume that the Zhang et al., cryptosystem encrypts a plain image P into a cipher
image C1 in the first dependent diffusion round, and then encrypts the cipher image C1
into a cipher image C2 in the second dependent diffusion round. Using (12) we can at
least find non-order C1 pixels easily within 10 ms. To find the original plain image P (at
n = 1, m = 2), the cryptanalytic system needs 10 ms to obtain the cipher image C1 from
the cipher image C2. For each possible value of the encryption keys p2 and q2, the ciphered
image C1 is decrypted using the brute-force attack for all possible values of the encryption
keys p1 and q1:

KS = (S1)
2, S1 = 236, The cryptanalysis time complexity is 236 which is less than 2128.

For one encryption round, one dependent diffusion round (i.e., n = 1, m = 1), and
(N = 256),

KS = (S1)
1, S1 = 216,

The cryptanalysis time complexity is 216 which is less than 2128.
For one encryption round, two dependent diffusion rounds (i.e., n = 1, m = 2), and

(N = 256)

KS = (S1)
2, S1 = 232 :

The cryptanalysis time complexity is 232 which is less than 2128.
Note that, the possible values of the encryption keys p1 and q1 are completely

independent for each round. Which opens the possibility of using parallel cryptanalysis.

4.3.2 Chosen plaintext attack (CPA) on the first Zhang et al., cryptosystem

The CPA is defined as a cryptanalysis model when the adversary has the capability of
choosing some plaintexts and encrypting them. The adversary studies the corresponding
ciphertexts to obtain some information on the used keys or even to reduce the security level
of the cryptosystem [3, 13, 17, 23]. From this well-known definition, we can choose a plain-
text and encrypt it without knowing the encryption keys, and our objective is to calculate
the encryption keys. The following scenario describes the proposed partial crytpanalysis of
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the first Zhang et al., cryptosystem. The chosen plain image is used to find the encryption
keys (q1, p1) of the first dependent diffusion round. Using these keys we can decipher any
ciphered image with the same encryption keys (this scenario is only applicable in the case
where n = 1, m = 1). We choose a specific plain image P of size 512 × 512 × 1 byte.
This plain image is chosen to help us in the process of finding the encryption keys (q1, p1).
Indeed, we try to fill each position with a predefined value to decrease the range of possible
values of the encryption keys q1 and p1.

The possible pixel value ranges from 0 to 255 and, the Zhang et al., image size has 512
rows and 512 columns. We fill every two rows with the same pixel value except pixels 0, 1
and 2 (the justification of this exception is described later). Knowing the plain pixel value
helps to determine the row which is related to the value of (p1). To determine the value
of (q1, which refers to the column number) the second and the fourth rows are filled using
the sequential series 1, 2, 3, 4, . . . 255, 1, 2, 3, 4, . . . 255, 1, 2. Now, the exceptions
are:

– A pixel value of 0 has been placed in the top left of the plain image, which is not a
useful pixel because of the second step of the Zhang et al., (Array Exchanges).

– A pixel value of 1 has been placed in three rows (it can be any pixel of value
2, 3, . . . 255 the idea here is to have three rows instead of two filled with the same
value. We can replace the fifth row by 2′s instead of 1′s with no major changes, but we
cannot add 0 more than one time in the whole image).

For example, assuming that the decrypted value is 5, then by looking at the following given
matrix P , we can be sure that only rows (1, 3, 9 or 10) contain this value. This will be
helpful in the process of finding values of the encryption keys q1 and p1 as illustrated below.
The chosen plain image P is encrypted, and the ciphered image (C1) is obtained. A group of
ciphered pixels is used to analyze the encryption process and to try to recover the encryption
keys. For this we introduce the steps:
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First encryption key calculations (q1) To find the value of the encryption key q1, as
described before, the second and the fourth rows are only helpful to decrease the possible
values of the encryption key q1. Two steps are carried out:

First Step As mentioned before, q1 refers to the column position. Using the ciphered pixel
at position (x = 1, and y = 0), the plain pixel position (x′, y′) is calculated using (4):

x′ = 1 × x + p1 × y = 1 + 0 = 1 =⇒ x′ = 1,

y′ = q1 × x + (q1 × p1 + 1) × yy′ = q1 × 1 + (q1 × p1 + 1) × 0 =⇒ y′ = q1,

This means that from the value of the ciphered pixel ciph(1, 0), the value of the plain
pixel arr(1, q1) can be easily calculated using (12): arr(1, q1) = ciphk ⊕f (ciphk−1),
where ciphk = ciph(1, 0) and ciphk−1 is calculated using (13).

(xprevious, yprevious) =
{

(x − 1, N − 1), k is a multiple of N
(x, y − 1), otherwise

(13)

So, arr(1, q1) = ciph(1, 0) ⊕ f (ciph(0, 511)).
The ciphered pixels (ciph(1, 0), ciph(0, 511)) are known. The function f (t) is also

known. The plain pixel value arr(1, q1) is located in row number 1 of the plain image
P . The only unknown parameter is the column position which is q1, ranging from 0
to 511.

Equation (14) is used to decrease the key space of the encryption key q1.

q1 ∈

⎧
⎪⎪⎨

⎪⎪⎩

Skip this value, arr(1, q1) = 0
{0, 255, 510}, arr(1, q1) = 1
{1, 256, 511}, arr(1, q1) = 2
{arr(1, q1) − 1, arr(1, q1) + 254}, otherwise

(14)

If arr(1, q1) = 0, it is skipped since it can come from any position of the chosen plain
image P (Fig. 1 justifies this, since the first pixel is swapped with a random pixel from
the whole image). If arr(1, q1) = 1, the value can be located in one of three positions on
row number 1 (second row): [(1, 0), (1, 255) or (1, 510)], As a result, the possible val-
ues of q1 are 0, 255 or 510. If that arr(1, q1) = 2, the value can be located in one of three
positions on row number 1: [(1, 1), (1, 256) or (1, 511)]. Finally, if arr(1, q1) > 2,
the value can be located in one of two positions on row number 1: [(1, arr(1, q1) −
1) or (1, arr(1, q1) + 254)] which are the positions containing the arr(1, q1)

value.
Second Step To further decrease the possible range values of the encryption key q1,

another ciphered pixel at position (x = 3, and y = 0) is considered. The pixel is located
in the fourth row. The position (x′, y′) of the corresponding plain pixel is calculated
using (4):

x′ = 1 × x + p1 × yx′ = 3 + 0 = 3 =⇒ x′ = 3,

y′ = q1 × x + (q1 × p1 + 1) × yy′ = q1 × 3 + (q1 × p1 + 1) × 0 =⇒ y′ = 3q1,

Using (12) and (13)

arr(3, 3q1) = ciph(3, 0) ⊕ f (ciph(2, 511)),
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The second decrypted pixel arr(3, 3q1) is located in row number 3, and the column
position 3q1, with 0 ≤ 3q1 ≤ 511. Equation (15) is used to decrease the key space of the
encryption key q1 (simplification of (15) is given in Appendix A).

3q1 ∈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Skip this value, arr(3, 3q1) = 0
{253, 508}, arr(3, 3q1) = 1
{254, 509}, arr(3, 3q1) = 2
{0, 255, 510}, arr(3, 3q1) = 3
{1, 256, 511}, arr(3, 3q1) = 4
{a, b}, otherwise

(15)

where

a =

⎧
⎪⎨

⎪⎩

arr(3, 3q1)−3
3 , (arr(3, 3q1) − 3) MOD 3 = 0

arr(3, 3q1)+509
3 , (arr(3, 3q1) − 3 + 512) MOD 3 = 0

arr(3, 3q1)+1021
3 , otherwise

(16)

b =

⎧
⎪⎨

⎪⎩

arr(3, 3q1)+252
3 , (arr(3, 3q1) + 252) MOD 3 = 0

arr(3, 3q1)+764
3 , (arr(3, 3q1) + 252 + 512) MOD 3 = 0

arr(3, 3q1)+1276
3 , otherwise

(17)

From the previous four ciphered pixels (ciph(1, 0), ciph(0, 511), ciph(3, 0) and
ciph(2, 511)), the exact value of the encryption key q1 is calculated by finding the
overlap values between the first and the second steps. More details of this analysis are
given in the Appendix A.

Second encryption key calculations (p1) To find the value of the encryption key p1
(which refers to the row position), at least two steps are needed:

First Step From the ciphered pixel at the (x = 0, and y = 1) position, the plain pixel
position (x′, y′) is calculated using (4):

x′ = 0 × x + p1 × 1x′ =0 + p1 =p1 =⇒ x′ = p1,

y′ = q1×x+(q1 × p1 + 1)×yy′ = q1 × 0 + (q1 × p1 + 1) × 1 =⇒ y′ =q1 × p1 + 1.

Using (12), the value of arr(p1, p1q1 + 1) is calculated: arr(p1, p1q1 + 1) =
ciph(0, 1) ⊕ f (ciph(0, 0)).

The decrypted pixel arr(p1, p1q1+1) is located at row number p1 of the chosen plain
image P . Here we focus on finding the p1 value (p1 ranges from 0 to 511). Equation (18)
is used to decrease the encryption key space p1 as:

p1 ∈

⎧
⎪⎨

⎪⎩

Skip this value, arr(p1, p1q1+1)=0
{0, 1, 3, 4, 511}, arr(p1, p1q1+1)=1
{1, 2, 3}, arr(p1, p1q1+1)=2
{1, 3, arr(p1, p1q1+1)×2−1, arr(p1, p1q1+1)×2}, otherwise

(18)
To justify (18), firstly, assume that arr(p1, p1q1 + 1) = 1, from the chosen plain
image P , the plain pixel value 1 is located in five rows [0, 1, 3, 4, 511], and so,
the possible values of the encryption key p1 are: [0, 1, 3, 4, 511]. Secondly, assume
that arr(p1, p1q1 + 1) = 2, then this value is located in three rows: [1, 2, 3], and
so, the possible values of the encryption key p1 are: [1, 2, 3]. Thirdly, assume that
arr(p1, p1q1 + 1) = 3, then this value is located in four rows [1, 3, 5, 6], and so,
the possible values of the encryption key p1 are: [1, 3, 5, 6]. Finally, for any value
such that arr(p1, p1q1 + 1) > 2, this value can be located in one of four rows [1, 3,



Multimed Tools Appl (2018) 77:28225–28248 28235

arr(p1, p1q1 + 1) × 2 − 1, arr(p1, p1q1 + 1) × 2], and so, the possible values of the
encryption key p1 are [1, 3, arr(p1, p1q1 + 1) × 2 − 1, arr(p1, p1q1 + 1) × 2].

Second Step To further decrease the range values of the encryption key p1, another
ciphered pixel at position (x = 0, and y = 2) is considered. The position (x′, y′) of the
corresponding plain pixel is calculated using (4):

x′ = 1×x+p1×y =⇒ x′ =0+2p1 =2p1 =⇒ x′ =2p1,

y′ = q1×x+(q1×p1+1)×y =⇒ y′ =q1×0+(q1×p1+1)×2 =⇒ y′ =2(q1×p1+1),

Again, using (12) the value of arr(2p1, 2p1q1 + 2) is calculated as:

arr(2p1, 2p1q1 + 2) = ciph(0, 2) ⊕ f (ciph(0, 1))

This pixel arr(2p1, 2p1q1 + 2) is located at row 2p1 of the chosen plain image P . The
following (19) is used to decrease the key space of the encryption key p1 as:

p1 ∈

⎧
⎪⎨

⎪⎩

Skip this value, arr(2p1, 2(p1q1+1))=0
{0, 2, 256, 258}, arr(2p1, 2(p1q1+1)))=1
{1, 257}, arr(2p1, 2(p1q1+1))=2
{arr(2p1, 2(p1q1+1)), arr(2p1, 2(p1q1+1))+256}, otherwise

(19)
To justify (19), we consider the following cases:

Firstly, assume that the decrypted pixel value is arr(2p1, 2p1q1 +2) = 1, so from the
chosen plain image P , the plain pixel value 1 is located in five rows [0, 1, 3, 4, 511],
and the possible values of the encryption key p1 are as follows:

Using the equality equation 2p1 = 0, it gives that p1 ∈ {0, 256}. While the equality
equations 2p1 = 1, 2p1 = 3 and 2p1 = 511 have no integer solution, since the right-
hand side is odd and the left-hand side is even and the modulus value is even. The equality
equation 2p1 = 4, it gives that p1 ∈ {2, 258}.

Secondly, assume that the decrypted pixel value is arr(2p1, 2p1q1 + 2) = 2, then
the plain pixel value 2 is located in three rows [1, 2, 3], and the possible values of the
encryption key p1 are as follows:

The equality equations 2p1 = 1 and 2p1 = 3 have no integer solution. While the
equality equation 2p1 = 2, it gives that p1 ∈ {1, 257}.

Thirdly, assume that the decrypted pixel value is arr(2p1, 2p1q1 + 2) = 3, then the
plain pixel value 3 is located in four rows [1, 3, 5, 6], and the possible values of the
encryption key p1 are as follows:

The equality equations 2p1 = 1, 2p1 = 3 and 2p1 = 5 have no integer solution.
While the equality equation 2p1 = 6, it gives that p1 ∈ {3, 259}.

Finally, for any decrypted pixel value such that arr(2p1, 2p1q1 +2) > 2, the possible
values of p1 are as follows:

p1 = arr(2p1, 2p1q1 + 2) or p1 = arr(2p1, 2p1q1 + 2) + 256.

Note that in the most cases the first and the second steps are sufficient to find the encryp-
tion key value of p1. However, if the overlap between the obtained range values of the
encryption key p1 in the first step and the obtained range values of p1 in the second step
is not a single value, then the following calculation is required.

Extra Step To find the exact value of the encryption key p1, the plain pixel position
(x′, y′) is calculated from the ciphered position pixel at (x = 0, y = 3), using (4):

x′ = 1×x + p1×y =0 + 3p1 =3p1 =⇒ x′ =3p1,

y′ = q1×x+(q1×p1+1)×y =q1×0 + (q1 × p1 + 1) × 3 =⇒ y′ = 3(q1 × p1 + 1),
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Again, here the plain pixel arr(3p1, 3(q1 × p1 + 1)) is calculated from the ciphered
pixels ciph(0, 3) and ciph(0, 2) using (12). Now (20) is used to decrease the encryption
key space of the encryption key p1. To simplify the notation of the calculations, assume:

3p1∈

⎧
⎪⎨

⎪⎩

Skip this value, arr(3p1, 3(p1×q1+1))=0
{0,1,3,4,511}, arr(3p1, 3(p1×q1+1))=1
{1,2,3}, arr(3p1, 3(p1×q1+1))=2
{1,3,arr(3p1, 3(p1×q1+1))−1, arr(3p1, 3(p1×q1+1))}, otherwise

(20)
Regarding p1,

p1 ∈

⎧
⎪⎪⎨

⎪⎪⎩

Skip this value, arr(3p1, 3(p1 × q1 + 1)) = 0
{0, 1, 171, 172, 341}, arr(3p1, 3(p1 × q1 + 1)) = 1
{1, 171, 342}, arr(3p1, 3(p1 × q1 + 1)) = 2
{1, 171, a, b}, otherwise

(21)

Where

a =

⎧
⎪⎨

⎪⎩

(arr(3p1, 3(p1×q1+1)))×2−1
3 , ((arr(3p1, 3(p1×q1+1)))×2−1) MOD 3=0)

(arr(3p1, 3(p1×q1+1)))×2+511
3 , (((arr(3p1, 3(p1×q1+1)))×2+511) MOD 3=0)

(arr(3p1, 3(p1×q1+1)))×2+1023
3 , otherwise

(22)

b =

⎧
⎪⎨

⎪⎩

(arr(3p1, 3(p1×q1+1)))×2
3 , ((arr(3p1, 3(p1×q1+1)))×2) MOD 3=0)

(arr(3p1, 3(p1×q1+1)))×2+512
3 , (((arr(3p1, 3(p1×q1+1)))×2+512) MOD 3=0)

(arr(3p1, 3(p1×q1+1)))×2+1024
3 , otherwise

(23)
Simplification of (20) is given in Appendix A.

4.3.3 Time complexity analysis of the CPA

To evaluate the Time Complexity (TC) of the proposed CPA in the previous section, we
need the following operations (later it is referred as TCCPA):

1. One execution of (12) to find the arr(1, q1).
2. TC to perform (14).
3. One execution of (12) to further decrease the range values of the encryption key q1

during the first step.
4. TC to perform (15).
5. XOR and shifting operations to find the overlap between the first and the second steps.
6. One execution of (12) to find the arr(p1, p1 × q1 + 1).
7. TC to perform (18).
8. One execution of (12) to further decrease the range values of the encryption key p1

during the second step.
9. TC to perform (19).

10. One execution of (12) to perform the Extra Step to further decrease the range values
of the encryption key p1 during the second step.

11. TC to perform (20).
12. XOR and shifting operations to find the overlap between the first and the second steps.
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The time complexity of the proposed CPA can be determined using the basic operations
required to achieve one execution from (12) to (20). 2 logical Shift operations, 5 logical
IF operations, 7 XOR operations, 15 addition and subtraction operations, 15 multiplication
and divition operations, and 98 lock up and memory access operations are needed. In terms
of instruction complexity, the required TC is 7 XOR operations, 5 logical If statements and
2 shift operations. In terms of execution time, all these operations take less than 5 ms in our
simulation enviroment. (see the given examples in Appendix A.)

4.3.4 Combination of brute-force and chosen plaintext attacks

In the case where n = 1, m = 2, which is assumed as a secured case as it is mentioned
in [52] at page 2074 “In Algorithm 1, the round numbers m and n as shown in Fig. 7 are
selected as 2 and 1, respectively”, the algorithm can be partially cryptanalyzed. A combina-
tion of the aforementioned attacks are used to find the encryption key pairs (p1, q1, p2, q2)
and then to find any plain image, ciphered by these pairs of keys. First, the Zhang et al., cryp-
tosystem is used to encrypt our chosen plain image: the chosen plain image P, is encrypted
in the first dependent diffusion round (n = 1, m = 1) with the encryption key parameters
(p1, q1) to obtain the middle cipher image (C1). In the second dependent diffusion round
(n = 1, m = 2), the middle ciphered image (C1) with encryption key parameters (p2, q2) is
ciphered to obtain the cipher image (C2). The cryptanalysis scenario is carried out as:

1. Using (12) and the cipher image (C2), the permuted version of the middle ciphered
image (C1) can be recovered in 10 ms.

2. To guess the encryption key pair (p2, q2), in the worst case, we need to try 29 possible
encryption keys for the encryption key p2 as well as for the encryption key q2. For
each guess (p2, q2), the required time to reorder the middle ciphered image pixels C1
is 5 ms (achieved by inverse permutation). The proposed CPA in Section 4.3.2 is used
to find the encryption key pair (p1, q1) of the first dependent diffusion round at (n = 1,
m = 1) within 5 ms.

Time analysis In the worst case, the process requires less than two hours to find the
values of the encryption keys (p1, q1) and (p2, q2) (for the image of size 512 × 512)
since, the number of all possible encryption keys (p2, q2) is 218 keys. The total time to
find (p1, q1) and (p2, q2) is referred as Tn=1,m=2:

Tn=1,m=2 = T1 + T2 × T3

T1 is the required time to calculate (C1) from (C2) which is 10 ms.
T2 is the required time to guess the second encryption key (p2, q2) and to order C1

pixels. It is TCCPA for each try. In the worst case it requires 218× TCCPA.
T3 is the required time to achieve the proposed attack of Section 4.3.2, which is less

than the TCCPA for each guess.
Tn=1, m=2 = 10+218× TCCPA×5 ≈ 110 minutes (i.e., O(222)), when TCCPA = 5.

To generalize the time complexity, assume the used image size is N . For each dependent dif-
fusion round, number of bits for each key is Log2(N). The time complixety of the proposed
attack depends on the image size and number of dependent diffusion round. Fprmally,

T C = 2m×2×Log2(N) (24)

where, m is number of dependent diffusion round, and N is image size. In order to have
secure version of the proposed Zhang et al., cryptosystem, TC should be greater than or
equal to 2128. Thus, m × 2 × Log2(N) ≥ 128. Assume N = 512, m should be greater
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than 7. However, in this case, the Zhang et al., cryptosystem is time consuming, because
each dependent diffusion round needs 10 ms. The total time required is 70 ms, which means
that the Running Speed (RS) of the 512 × 512 gray image is RS = 512×512

0.070 = 3.58 Mega
bytes per second. This not suitable for real-time application or even high speed encryption
applications.

4.3.5 Decreasing the UACI and NPCR values significantly

In this section, a sample experiment is carried out to show the effect of using (12) on the sec-
urity level of the proposed Zhang et al., cryptosystem exactly in terms of differential attacks.

A cryptosystem should be sensitive to one-bit changes in the plaintext. This requirement
is important to resist the known plaintext and the chosen plaintext attacks [25, 28]. In a
chosen plaintext attack, more than one plaintext (with one-bit changes between them) is
selected to analyze the difference between the corresponding ciphertexts. The measurement
tool to test the sensitivity of any cryptosystem regarding these attacks is carried out as:
Select P1 as the first plain image, change one bit in P1 and name it P2. (i.e., P1 and P2 are
exactly the same except for one bit, to be more accurate, this bit should be located at the
beginning, middle or the end of the tested image/block). Then both images (P1 and P2) are
encrypted using the same secret key. This encryption produces two cipher images Cd1 and
Cd2. Most researchers use two security parameters to measure the resistance of any chaos-
based cryptosystem against a plaintext sensitivity attack (differential attacks introduced by
Eli Biham and Adi Shamir [4]). These parameters are the Number of Pixel Change Rate
(NPCR) and the Unified Average Changing Intensity (UACI), given by the equations:

NPCR = 1

L × C × P
×

P∑

p=1

L∑

i=1

C∑

j=1

D(i, j, p) × 100% (25)

where

D(i, j, p) =
{

0, if Cd1(i, j, p) = Cd2(i, j, p)

1, if Cd1(i, j, p) 	= Cd2(i, j, p)
(26)

UACI = 1

L × C × P × 255
×

P∑

p=1

L∑

i=1

C∑

j=1

|Cd1(i, j, p) − Cd2(i, j, p)| × 100% (27)

The optimal NPCR value is 99.61%, and the optimal UACI value is 33.46% [27, 44].
We try to reproduce the NPCR and UACI results of the Zhang et al., cryptosystem

using exactly the same parameters as were used in Zhang et al., cryptosystem analy-
sis. (i.e., Barbara 512 × 512 × 1 gray-scale image, x−1 = 0.12345678912345 for SQ1,
x−1 = 0.67856746347633 for SQ2. The value of the constant α is set to 3.99999, and the
diffusion key keyd = 0.33456434300001, with n = 2, m = 2). steps performed are:

1. Encrypting the Barbara image (i.e., P1) using the first Zhang et al., cryptosystem and
using the same secret keys mentioned above to obtain the ciphered image Cd1. Then,
changing one bit in the Barbara image (i.e., P2) and encrypting it to obtain another
ciphered image Cd2. The UACI and NPCR are calculated between the two ciphered
images Cd1 and Cd2.

2. The ciphered images Cd1 and Cd2 are used as input for the partial cryptanalysis process
based on (12) to remove the diffusion effect in less than 1 ms and the UACI and NPCR



Multimed Tools Appl (2018) 77:28225–28248 28239

Table 2 Sample of NPCR and UACI results under the same parameters and conditions in the original
research paper for all pixel positions

RPa CPb UACI Result NPCR Result UACIp Result NPCRp Result

0 0 33.529 Pass 99.624 Pass 31.747 Fail 93.872 Fail

14 103 33.299 Fail 98.883 Fail 11.950 Fail 35.471 Fail

26 476 33.212 Fail 98.569 Fail 07.313 Fail 21.654 Fail

39 98 32.987 Fail 97.865 Fail 05.073 Fail 14.990 Fail

97 475 32.699 Fail 96.828 Fail 03.425 Fail 10.135 Fail

125 87 33.473 Pass 99.611 Pass 33.171 Fail 98.668 Fail

296 337 32.797 Fail 97.139 Fail 04.482 Fail 13.224 Fail

471 375 33.151 Fail 98.256 Fail 07.441 Fail 22.040 Fail

511 511 33.478 Pass 99.611 Pass 33.034 Fail 98.057 Fail

aRow position
bColumn position

Table 3 Sample of NPCR qnd UACI results

RPa, CPb UACI NPCR UACIp NPCRp Key Used image

511, 511 33.000 97.859 15.223 45.221 1 Barb
27.184 80.579 13.366 39.665 Lena
33.286 99.026 23.934 71.059 Boat
27.486 81.781 14.083 41.806 Baboon

0, 0 30.730 91.057 14.557 43.183 1 Barb
33.258 98.777 20.295 60.161 Lena
28.804 85.552 15.665 46.507 Boat
27.244 81.135 11.233 33.308 Baboon

125, 87 32.670 97.047 18.440 54.797 1 Barb
33.575 99.580 30.954 91.762 Lena
30.940 92.003 14.789 43.671 Boat
32.443 96.348 18.876 56.158 Baboon

511, 511 5.979 17.734 3.453 10.269 2 Barb
6.838 20.343 2.993 8.883 Lena
6.217 18.449 3.820 11.314 Boat
7.504 22.371 4.578 13.579 Baboon

0, 0 7.691 22.753 5.039 14.939 2 Barb
7.065 20.919 4.524 13.484 Lena
8.048 23.861 3.575 10.585 Boat
6.434 19.092 3.985 11.753 Baboon

125, 87 05.737 17.081 02.746 08.123 2 Barb
08.885 26.581 03.950 11.695 Lena
06.510 19.318 04.538 13.546 Boat
07.970 23.809 04.533 13.369 Baboon

aRow position
bColumn position
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are recalculated again (in Table (2), the UACI for this case is UACIp while the NPCR
in this case is the NPCRp).

The results obtained in Table 2, measured by the UACIp and the NPCRp (index p refers to
the calculated NPCR and UACI values after applying our cryptanalysis (12), show that for
some pixel positions [(511, 511), (0, 0) and (125, 87)], with a one-bit change value (the
LSB bit), Zhang et al., cryptosystem is not secure.

We have done the same experiment explained above, for two pixel positions, but in rela-
tion to the nature of the image and to the secret key of the Logistic map. The results given in
Table 3, of the parameters UACIp , NPCRp , show the sensitivity of Zhang et al., cryptosys-
tem regarding the image under test and the used secret key of the Logistic map. The used
values of Key 1 and Key 2, are:

Key 1:x−1 = 0.4251533555101169 for SQ1, and x−1 = 0.80288094729453419 for
SQ2, the initial value of the keyd = 0.2251045258949553.
Key 2:x−1 = 0.96368297372356337 for SQ1, and x−1 = 0.80925931577501753 for
SQ2, the initial value of the keyd = 0.50190740684224977.

5 Conclusion

In this paper, one of the fastest chaos-based cryptosystems, namely the Zhang et al., cryp-
tosystem is studied and analyzed. We partially cryptanalyzed it using a combination of a
precise plaintext, as chosen plaintext attack, and a brute-force attack, for parameters (n = 1,
m = 2). Next, after removing the diffusion effect using (12), we succeeded in significantly
decreasing the security level measured by the well-known parameters NPCR and UACI, by
applying the differential attacks for (n = 2, m = 2).

Acknowledgements This work is supported by the European Celtic-Plus project 4KREPROSYS - 4K
ultraHD TV wireless REmote PROduction SYStems.

Appendix A: Numerical example on chosen plaintext attack of the first
Zhang et al., cryptosystem

The Justification of (15) is given as: (15) is used to decrease the number of possible column
positions (i.e., the range of the encryption key q1). Using the chosen plain image P matrix,
the row of the arr(3, 3q1) is 3.

Firstly, assume that arr(3, 3q1) = 0, then, this value is skipped. Secondly, assume that
arr(3, 3q1) = 1, then, this value can be located in one of two column positions in row
number 3 [(3, 253) or (3, 508)] (see the chosen plain P matrix for more details). Thirdly,
assume that arr(3, 3q1) = 2, then, this value can be located in one of two column posi-
tions in row number 3 [(3, 254) or (3, 509)]. Fourthly, assume that arr(3, 3q1) = 3,
then, this value can be located in one of three column positions in row number 3 [(3, 0),
(3, 255) or (3, 510)]. Fifthly, assume that arr(3, 3q1) = 4, this value can be located
in one of three column positions in row number 3 [(3, 1), (3, 256) or (3, 511)]. Finally,
for all arr(1, q1) > 4, these values can be located in one of two column positions
in row number 3 [(3, arr(3, 3q1) − 3) or (1, arr(1, q1) + 252)]. Now, let us take
the case when the arr(3, 3q1) = 4 as an example, without loss of generality, i.e.,
3q1 ∈ {1, 256, 511}.
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Firstly, the equality equation 3q1 = 1; to solve this equation, which contains the module
operation, the encryption key value q1 is calculated as:

q1 = the integer value of

(
1

3
,

1 + 512

3
,

1 + 512 + 512

3

)

=⇒ q1 = 171.

Secondly, the equality equation 3q1 = 256, then the encryption key q1 = the integer value

of
(

256
3 , 256+512

3 , 256+512+512
3

)
=⇒ q1 = 256.

Finally, the equality equation 3q1 = 511, then the encryption key q1 = the integer value

of
(

511
3 , 511+512

3 , 511+512+512
3

)
=⇒ q1 = 341.

For all other values (arr(3, 3q1) > 4), there is a general scheme to calculate the
range of the encryption key q1 values (i.e., a and b parameters in (15)). Now, let us take
arr(3, 3q1) = 5 as another example. i.e., 3q1 ∈ {2, 257}.

Firstly, the equality equation 3q1 = 2, then: the encryption key q1 = the integer value of(
2
3 , 2+512

3 , 2+512+512
3

)
=⇒ q1 = 342.

Secondly, the equality equation 3q1 = 257.

The encryption key q1 = the integer value of
(

257
3 , 257+512

3 , 257+512+512
3

)
=⇒ q1 =

427.
From previous developments, we can deduce the following rules for (15):

1. In the case where arr(3, 3q1) ∈ {1, 2}, then we have two positions given by:
arr(3, 3q1) + 252 or arr(3, 3q1) + 507.

2. In the case where arr(3, 3q1) ∈ {3, 4}, then we have three positions given by:
arr(3, 3q1) − 3, arr(3, 3q1) + 252 or arr(3, 3q1) + 507.

3. In the case where arr(3, 3q1) > 4, then we have two positions given by: arr(3, 3q1)−
3 or arr(3, 3q1) + 252.

To justify (20), assume that the ciphered pixel value is one (i.e., T = 1 in (20)). From
the chosen plain image P , the value 1, is located in five rows, actually in positions
[0, 1, 3, 4, 511], and so: 3p1 ∈ {0, 1, 3, 4}.

Firstly, the equality equation 3p1 = 0; to solve this equation, which contains the module
operation, the encryption key p1 is calculated as: the encryption key p1 =the integer value

of
(

0
3 , 0+512

3 , 0+512+512
3

)
=⇒ p1 = 0.

Secondly, the equality equation 3p1 = 1.

The encryption key p1 = the integer value of
(

1
3 , 1+512

3 , 1+512+512
3

)
=⇒ p1 = 171.

Thirdly, the equality equation 3p1 = 3.

The encryption key p1 =the integer value of
(

3
3 , 3+512

3 , 3+512+512
3

)
=⇒ p1 = 1.

Fourthly, the equality equation 3p1 = 4, then the encryption key p1 =the integer value of(
4
3 , 4+512

3 , 4+512+512
3

)
=⇒ p1 = 172.

Finally, the equality equation 3p1 = 511.

The encryption key p1 = the integer value of
(

511
3 , 511+512

3 , 511+512+512
3

)
=⇒ p1 =

341, p1 ∈ {0, 1, 171, 172, 341}. The same analysis is used for the other values of the
variable T , where for T = 2, there are only three possible rows, and for T > 2, there are
four possible rows.

Example 1 Calculation of the encryption keys p1 and q1.
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A chosen plain image P is encrypted using 3 random values of the secret key of the
Logistic map, namely: [x−1, SQ1 ], [x−1, SQ2], [keyd , t−1]. The following values are
obtained from the Lena encrypted image for: [n = 1,m = 1],

ciph(1, 0) = 190,

ciph(0, 511) = 27,

ciph(3, 0) = 149,

ciph(2, 511) = 159,

ciph(0, 1) = 132,

ciph(0, 0) = 165,

ciph(0, 2) = 140,

ciph(0, 1) = 132.

For the first decrypted pixel, using (12) we obtain:

arr(1, q1) = ciph(1, 0) ⊕ f (ciph(0, 511)),

arr(1, q1) = 190 ⊕ f (27),

arr(1, q1) = 190 ⊕ 105,

arr(1, q1) = 215.

Using (14), the encryption key q1 values are restricted to:

q1 ∈ {215 − 1, 215 + 254} =⇒ q1 ∈ {214, 469}.
For the second decrypted pixel, using (12) we obtain:

arr(3, 3q1) = ciph(3, 0) ⊕ f (ciph(2, 511)),

arr(3, 3q1) = 149 ⊕ f (159),

arr(3, 3q1) = 149 ⊕ 22,

arr(3, 3q1) = 131.

Using (15), the encryption key value q1 ∈ {a, b}.
To find the value of the parameter a of (15), the following conditions are met:

((131 − 3) MOD 3) = 2,

((131 + 509) MOD 3) = 1,

((131 + 1021) MOD 3) = 0.

The last condition allows us to calculate the value of parameter a:

a = arr(3, 3q1) + 1021

3
=⇒ a = 384.

To find the value of the parameter b in (15), the following conditions are met:

((131 + 252) MOD 3) = 2,

((131 + 764) MOD 3) = 1,

((131 + 1276) MOD 3) = 0.

The last condition allows us to calculate the value of parameter b:

b = 469, so, q1 ∈ {384, 469}.



Multimed Tools Appl (2018) 77:28225–28248 28243

The overlap between the first range {214, 469} and the second {384, 469} range gives the
exact value of the encryption key q1: q1 = 469.

To calculate the exact value of the encryption key p1, we consider the third decrypted
pixel and (12), then:

arr(p1, p1q1 + 1) = ciph(0, 1) ⊕ f (ciph(0, 0)),

arr(p1, p1q1 + 1) = 132 ⊕ f (165),

arr(p1, p1q1 + 1) = 132 ⊕ 39,

arr(p1, p1q1 + 1) = 163.

Now by using (18), the encryption key p1 values are restricted to:

p1 ∈ {1, 3, 163 × 2 − 1, 163 × 2} =⇒ p1 ∈ {1, 3, 325, 326}.
Finally, the exact value of the encryption key p1 is obtained by using the fourth decrypted
pixel and (12), as follows:

arr(2p1, 2p1q1 + 2) = ciph(0, 2) ⊕ f (ciph(0, 1)),

arr(2p1, 2p1q1 + 2) = 140 ⊕ f (132),

arr(2p1, 2p1q1 + 2) = 140 ⊕ 202,

arr(2p1, 2p1q1 + 2) = 70.

Using (19):
p1 ∈ {70, 326}.

The overlap between the first range ({1, 3, 325, 326}) and the second range ({70, 326})
gives the exact value of the encryption key p1: p1 = 326.

Remark The above procedure can be used to find any encryption keys p1 and q1 parameters.

Example 2 The original image P is encrypted using new random values of keyd and x−1,
where x−1 for SQ1 is differed from the value for SQ2. Also, Lena image of the same size
is encrypted using the same dynamic keys, The following values are obtained from the
encrypted image of P :

ciph(1, 0) = 226

ciph(0, 511) = 166

ciph(3, 0) = 142

ciph(2, 511) = 64

ciph(0, 1) = 87

ciph(0, 0) = 45

ciph(0, 2) = 202

ciph(0, 1) = 87

arr(1, q1) = ciph(1, 0) ⊕ f (ciph(0, 511))

arr(1, q1) = 226 ⊕ f (166)

arr(1, q1) = 190 ⊕ 41

arr(1, q1) = 203

q1 ∈ {203 − 1, 203 + 254}
q1 ∈ {202, 457}



28244 Multimed Tools Appl (2018) 77:28225–28248

arr(3, 3q1) = ciph(3, 0) ⊕ f (ciph(2, 511))

arr(3, 3q1) = 142 ⊕ f (64)

arr(3, 3q1) = 142 ⊕ 239

arr(3, 3q1) = 97

((97 − 3) MOD 3) = 1

((97 + 509) MOD 3) = 0

((97 + 1021) MOD 3) = 2

Then

a = 202

((97 + 252) MOD 3) = 1

((97 + 764) MOD 3) = 0

((97 + 1276) MOD 3) = 2

b = 287

q1 ∈ {202, 287}
The overlap of the first and the second solutions is at

q1 = 202

To calculate the exact value of the dynamic key p1, for the third decrypted pixel, using (12):

arr(p1, p1q1 + 1) = ciph(0, 1) ⊕ f (ciph(0, 0))

arr(p1, p1q1 + 1) = 87 ⊕ f (45)

arr(p1, p1q1 + 1) = 87 ⊕ 171

arr(p1, p1q1 + 1) = 252

p1 ∈ {1, 3, 252 × 2 − 1, 252 × 2}
p1 ∈ {1, 3, 503, 504}

For p1 = 1
arr(1, 203) = 204

So this value is rejected For p1 = 3

arr(3, 202 × 3 + 1) = arr(3, 95) = Mod(Mod(95, 255) + 3, 255) = 98

also, this value is rejected

arr(2p1, 2p1q1 + 2) = ciph(0, 2) ⊕ f (ciph(0, 1))

arr(2p1, 2p1q1 + 2) = 202 ⊕ f (87)

arr(2p1, 2p1q1 + 2) = 202 ⊕ 61

arr(2p1, 2p1q1 + 2) = 247

p1 ∈ {247, 503}
The overlap of the first and the second solutions is at

p1 = 503

Now, the encrypted Lena image is decrypted using these dynamic values(q1 = 202, p1 =
503).
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