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Abstract Automatic image annotation aims to predict labels for images according to their
semantic contents and has become a research focus in computer vision, as it helps peo-
ple to edit, retrieve and understand large image collections. In the last decades, researchers
have proposed many approaches to solve this task and achieved remarkable performance
on several standard image datasets. In this paper, we propose a novel learning to rank
approach to address image auto-annotation problem. Unlike typical learning to rank algo-
rithms for image auto-annotation which directly rank annotations for image, our approach
consists of two phases. In the first phase, neural ranking models are trained to rank image’s
semantic neighbors. Then nearest-neighbor based models propagate annotations from these
semantic neighbors to the image. Thus our approach integrates learning to rank algo-
rithms and nearest-neighbor based models, including TagProp and 2PKNN, and inherits
their advantages. Experimental results show that our method achieves better or comparable
performance compared with the state-of-the-art methods on four challenging benchmarks
including Corel5K, ESP Games, IAPR TC-12 and NUS-WIDE.
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1 Introduction

With the booming of the number of digital images, effectively and efficiently searching for
these images has become an urgent and hot research issue in the multimedia community.
Users used to input several key words to the search engine and the search engine returns a
number of images who have same or similar annotation words. The search results are largely
depend on these annotations. However, annotating images manually requires time and effort,
and it is difficult for people to annotate all relevant words for each image. Thus automatic
image annotation emerged. Given an input image, the goal of image auto-annotation is
to predict a few relevant words to the image which can mainly reflect its semantic con-
tents. Assigning richer, more relevant words to images can help web image search engines
improve their fast indexing and retrieval ability [21].

In the past decades, many automatic image annotation methods have been proposed.
Most of them focus on mining the image-tag relation [56], image-to-image relation [30, 38],
tag-to-tag relation [33] individually or simultaneously [42]. And nearest-neighbor based
approaches which predict annotations for testing images by evaluating their relation to
training images, have primarily dominated image auto-annotation domain for several years.
These approaches can benefit from metric learning techniques [26, 57]. Although these
nearest-neighbor based approaches model the image-tag and image-to-image relation, they
ignore the tag-to-tag relation which is helpful to improve image annotation performance. On
the other hand, learning to rank models which are mainly applied in information retrieval
have been adopted to address image auto-annotation [22, 41, 61]. The work in [61] pro-
posed WSABIE to jointly embed images and annotations in a low dimension space and
trained WSABIE by learning to rank with the WARP loss and it yielded low memory usage
and fast computation time. Li et al. [41] proposed a semi-supervised learning framework
called MLRank to simultaneously explore the visual similarity between images and seman-
tic relevance among tags. Inspired by deep learning, Gong et al. [22] designed and trained
a deep convolutional ranking network to achieve end-to-end image auto-annotation. How-
ever, these ranking models can not achieve better results than traditional nearest-neighbor
based models.

In this paper, we design a simple but effective approach to address image auto-annotation
problem. Our approach consists of two phases. In the first phase, the tag-to-tag relation is
used to train neural ranking models for ranking image’s semantic neighbors. Then nearest-
neighbor based models propagate annotations from these semantic neighbors to the image.
Thus our approach integrates learning to rank algorithms [43] and nearest-neighbor based
models and inherits their advantages. Specially, We propose two neural ranking models
including pair-wise neural ranking model and list-wise neural ranking model. The pair-
wise neural ranking model is achieved by training neural networks using cross-entropy loss
function while the list-wise neural ranking model is trained with our proposed visual and
semantic neighbors ranking loss function. Both of these loss functions evaluate the simi-
larity error or ranking error based on the images’ tag-to-tag relation. We argue that neural
ranking models can help images find more semantically similar neighbors in their neighbor
list. These ranking models are then integrated with several state-of-the-art nearest-neighbor
like models including TagProp [26] and 2PKNN [57]. Our approach is similar to the work
in [22, 41, 61]. In contrast to these work which design ranking models to directly rank tags
for testing images, our approach trains neural ranking models to rank training images for
testing images and tags are then propagated from these ranked training images. We will also
detail how to train such neural ranking networks. To evaluate our approach, we conduct
several experiments on four image datasets, including Corel 5k, IAPR TC-12, ESP Game
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and NUS-WIDE and report comparable or better results, compared with the state-of-the-art
methods. Our main contributions are as follows.

– We proposed a visual and semantic neighbors ranking loss function which can minimize
the divergence between visual and semantic neighbors ranking.

– We designed and trained both pair-wise neural ranking models and list-wise neural
ranking models. Unlike existing learning to rank models for image annotation which
directly rank tags for image, our neural ranking models aim to help images find more
semantically similar neighbors.

– We integrated our neural ranking models with several nearest-neighbor based models
to predict image’s annotations on four benchmark datasets and achieved better results
than the state-of-the-art models.

The rest of this paper is organized as follows: We first review the development course and
latest progress both in automatic image annotation and learning to rank domains in Section
2. Then in Section 3, we briefly introduce our method. Then we present our proposed neural
ranking models and visual and semantic neighbors ranking loss function and detailed the
network architecture and implementation details in Section 4 followed by demonstrating the
nearest-neighbor based label propagation models in Section 5. The experimental setup and
results will be given in Section 6. And we conclude our work in the end.

2 Related work

As our work falls both in the areas of automatic image annotation and learning to rank, we
review the development course and latest progress both in these two areas.

2.1 Automatic image annotation

Automatic image annotation is a multi-label classification task while most existing works
focus on single-label classification where each image is classified into only one category
[13, 39, 48, 62]. From this view, image auto-annotation is a much more challenging prob-
lem and has become a hot research topic. In last decades, a number of techniques [3, 9, 15,
25, 26, 30, 38, 45, 53, 60, 61, 65] have been proposed and evaluated on standard datasets.
In early works in this field, image auto-annotation was considered as special machine trans-
lation problem, which tried to establish a relationship between images and annotations.
Cross Media Relevance Models(CMRM) [30], Continuous Relevance Model(CRM)[38],
and Multiple Bernoulli Relevance Model(MBRM) [15] assume different, non-parametric
density representations of the joint word-image space. They approximate the probability of
observing a set of blobs and annotations in a given image. Recently, non-parametric nearest
neighbor like models [26, 40, 45, 57] have illustrated marked success mainly because pat-
terns in the data can be adapted by the high capacity of these models. These models have
two bases. The first is how to design visual features to represent images. These features
should be able to reflect the semantic content of the images. Thus low-level features includ-
ing color, texture etc. and mid-level features, such as GIST [50], SIFT [44], which show
their power in many computer vision problems, have been tried. The second basis is finding
the visual neighbors which are also semantic neighbors. Furthermore, these models can be
enhanced by using metric learning to find a more reasonable distance metric for the image
features [26, 57, 61]. However, designing and selecting hand-crafted features are usually
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difficult. These models suffer from semantic gap mainly because visual features can not
completely abstract the semantic content of the images.

Several recent embedding methods [23, 24] based on Canonical Correlation Analysis
(CCA) [27] have been proposed to bridge the semantic gap by finding linear projections
to maximize the correlation between visual features and textual features. Kernel CCA [27],
as an extension of CCA, has also been tried, in which visual features and textual features
are nonlinearly projected into embedding space [2, 56]. However, CCA or KCCA based
embedding methods are hard to scale to large datasets because of the high computational
cost to compute the eigenvalues.

Very recently, researchers adopt deep learning algorithms, which have shown its great
power in single-label image classification [37] to automatically learning image features
extraction and showed significant performance gain in large image datasets [22, 32, 35, 37].
And deep learning has also been adopted to solve image auto-annotation task. Kiros et al.
[35] use convolutional neural network (CNN) [37] to build a hierarchical model for learning
image representations from the pixel level and then added an autoencoder which has only
one hidden layer to learn binary codes for annotations. Literature [56] proposes a method
which directly used a pre-trained network to extract visual features and experimental results
show the CCA based model gained remarkable benefit from these deep learning features.
Furthermore, literature [59] proposes a CNN-RNN framework to learn a joint image-label
embedding to exploit the label dependency and image-label relevance. However, these mod-
els still can not achieve even comparable results with the models combing CCA or KCCA
embedding and nearest-neighbor based label propagation models.

Different from embedding methods, our proposed learning to rank models aim to rank
semantically similar training images for a testing image. These models are based on neural
networks and can achieve pair-wise or list-wise ranking by using different network architec-
tures and loss functions. These networks can be trained using Stochastic Gradient Descent
(SGD) or Adam [34] and easily scale to large scale amount of data. We also use pre-trained
CNN to extract visual features. Inspired by [2, 56], we then applied our neural ranking mod-
els to TagProp and 2PKNN to finally predict tags for testing images. Thus our approach
inherits the advantages of learning to rank and nearest-neighbor based models.

2.2 Learning to rank

Learning to rank models, mainly applied in information retrieval, adopt machine learning
algorithms to rank the retrieved documents to response the user’s query based on their rel-
evance. For the importance of the ranking problem especially in the field of information
retrieval, numerous learning to rank models have been proposed. These models can be cat-
egorized into three classes based on their training objectives [43]. The first class is the
point-wise model which is trained to estimate the relevance of query-document pair. Lin-
ear Regression [63] and Random Forests [4] are typical point-wise learning to rank models.
RankSVM [55] and RankNet [5] falls into the second class - pair-wise model, which learns
to predict relevance information in the form of preferences between pairs of documents with
respect to the same query. And the third class is list-wise model which directly optimizes
the entire retrieved list by minimizing ranking loss, such as ListNet[8]. Recently, Lamb-
daRank and LambdaMART are proposed to combine pair-wise with list-wise approaches
[6]. Furthermore, active learning methods [64] and semi-supervised learning methods [7,
66, 67] have been employed to learning to rank models. These methods can take advantage
of unlabeled training instances and other privileged information to boost the performance
of information retrieval system.
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Learning to rank has also been used to address automatic image annotation problem in
recent years. WSABIE [61] trains an ranking model with the WARP loss and it yields low
memory usage and fast computation time. Gong et al. [22] respectively train convolutional
ranking networks using three loss functions - Softmax [26], Pairwise Ranking [31], and
WARP [61]. The trained CNNs then directly rank the tags for testing images. Training a
deep CNN needs not only a large labeled image dataset, but also expensive computational
time. And, to date, these SGD trained models are frustratingly difficult to beat CCA based
models [36]. Different from them, we designed and trained both pair-wise neural rank-
ing model and list-wise neural ranking model, aiming to rank semantically similar training
images for a given testing image. Then nearest-neighbor based models are used to predict
testing image’s annotations by propagating tags from its neighbors.

3 Model

In this section, we detail the proposed image auto-annotation approach. Figure 1 illustrates
the framework of our method which mainly comprises two components: neural ranking
and nearest-neighbor based label propagation. The key idea of our method is to learn neu-
ral ranking networks to bridge the semantic gap. Specially, We propose two neural ranking
models including pair-wise neural ranking model and list-wise neural ranking model. The
pair-wise neural ranking model is achieved by training neural networks using cross-entropy
loss function while the list-wise neural ranking model is trained with our proposed visual
and semantic neighbors ranking loss function which minimizes the divergence between
visual and semantic neighbors ranking. Both of these loss functions evaluate the similarity
error or ranking error based on the images tag-to-tag relation. In training phase, training
instances (pair-wise or list-wise) are used to train neural ranking networks with these tag-
to-tag relation as supervision information. In testing phase, these trained neural ranking
networks rank testing image’s semantic neighbors. Then nearest-neighbor based models,
such as TagProp [26], 2PKNN [57], et al., propagate tags from testing image’s nearest
neighbors appearing in its neighbor ranking list. In our method, image’s visual features
are extracted using pre-trained convolutional neural networks (CNN) [28] for its success
in many computer vision tasks. Semantic features are coded with word embedding and
fisher vector. In detail, associated annotations are converted into real-valued vectors by word
embedding (Word2Vec) [47] and then word2vec embedding of each tag will be pooled using
Fisher vector [36, 52] which provides state-of-the-art results on many vision and natural
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Fig. 1 Framework of our proposed model. Testing image’s semantic neighbors are ranked by neural ranking
models trained with visual and semantic relation information. Then nearest-neighbor model propagates tags
from testing image’s nearest neighbors appearing in its neighbor ranking list
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language processing tasks [10, 51]. We use the cosine similarity of fisher vectors to rank
semantic neighbors.

4 Neural ranking models

In this section, we first introduce our proposed neural ranking networks. Then we detail the
architectures of these networks and explain how we train these neural ranking networks.

4.1 Ranking architectures

Pair-wise model Given a query image q and a pair of images < d1, d2 >, such that d1 �q

d2 (d1 is more semantically similar to q), this pair-wise ranking model (see Fig. 2a) learns
a ranking function R(q, d1, d2; θ) that predicts the probability of image d1 to be ranked
higher than d2 in the neighbor ranking list of image q. θ is the parameter of the model. To
train this model, training instances, each having five elements: (q, d1, d2, s

S
q,d1

, sS
q,d2

), are

sampled which will be introduced in Section 4.3. sS
q,di

denotes the semantical similarity of
image q and di , which can be calculated using the cosine similarity between fisher vectors
of their annotations:

sS
q,di

= cos(FVq, FVdi
) = FV T

q · FVdi

||FVq || · ||FVdi
|| (1)

where FVq and FVdi
is the fisher vector representation of annotations of image q and di

respectively, which will be detailed in Section 4.3. Given a batch of training instances, we
define the following cross-entropy loss as the training objective:

L = −1

b

b∑

i=1

[
P {d1 �q d2}i log(R({q, d1, d2}i; θ))

+(1 − P {d1 �q d2}i ) log(R({q, d1, d2}i; θ))
]

(2)
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Fig. 2 Our pair-wise and list-wise neural ranking models
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P {d1 �q d2} is the ground-truth probability of image d1 being ranked higher than d2,
according to the semantical similarities in the training instance:

P {d1 �q d2} = sS
q,d1

sS
q,d1

+ sS
q,d2

(3)

When we use this pair-wise ranking model to rank testing image’s neighbors, we need
turn the model’s predictions into a similarity score for each training image. Following [12],
we calculate the average of predictions for each training image, against all other candidates,
resulting O

(
n2

)
time complexity which is unacceptable in large scale image datasets. Thus,

we use Balanced Rank Estimation (BRE) algorithm [14] to efficiently estimate scores.

List-wise model Similar to the previous one, for a given query image q, a list of images
< d1, ..., dn >, such that d1 �q d2 �q ... �q dn, our list-wise ranking model (shown as
Fig. 2b) learns to predict the ranking list of q. Our model is inspired by Siamese network
[11] which learns two networks sharing the same parameters that map two input images
into a low dimensional space such that the Euclidean distance in that space approximates
the semantic distance between this pair of images. Following the idea of Siamese network,
our list-wise ranking model is composed of n networks that share parameters θ and we train
these networks using our proposed visual and semantic neighbors ranking loss introduced
in Section 4.2, to minimize the divergence between visual and semantic neighbors ranking
lists.

4.2 Visual and semantic neighbors ranking loss

In the task of image auto-annotation, each training image has several annotations to describe
the semantic of the image. Thus there are two kinds of image neighbors. The first kind
is obtained by comparing images’ annotations (we call them semantic neighbors), and the
another is acquired by measuring similarities of images’ visual features (we call them visual
neighbors). When we predict the annotations of a testing image, we could only get the
testing image’s visual neighbors. To accurately predict tags for testing image, visual features
should reflect the image’s semantic contents as far as possible. Unfortunately visual features
especially hand-crafted features are not power enough to completely abstract the semantic
of the images. Thus traditional annotation models who find neighbors by visual features
suffer from semantic gap. In this paper we extract visual features using pre-trained CNN
and feed these visual features into our ranking networks. As discussed in previous section,
the goal of our list-wise model is to make the ranking of visual neighbors, obtained by
measuring images’ visual features’s distances, be similar as far as possible to the ranking of
semantic neighbors. In this section we introduce the visual and semantic neighbors ranking
loss function that is used to train our list-wise model.

Each training instance is given in the form of
(
q, d1, ..., dn, s

S
q,d1

, ..., sS
q,dn

)
in our list-

wise model, where semantical similarity sS
q,di

can be calculated using (1). Two images
having higher semantical similarity have more similar semantics. Then the semantic rank
ordering of image di with respect to query image q can be computed using the following
equation.

rS
q,di

=
n∑

k=1

I
(
sS
q,di

< sS
q,dk

)
(4)

where I(·) is an indicator function (I(true)=1, I(f alse)=0).



22392 Multimed Tools Appl (2018) 77:22385–22406

Similarly, visual rank of image di with respect to query image q can be obtained using
the following equation.

rV
q,di

=
n∑

k=1

I
(
sV
q,di

< sV
q,dk

)
(5)

where sV
q,di

means the visual similarity between di and q. In this paper, we also use cosine
similarity to compute this distance.

sV
q,di

= ψθ(φ(q))T · ψθ(φ(di))

||ψθ(φ(q))|| · ||ψθ(φ(di))|| (6)

φ(·) is the pre-trained CNN [28] without any modification. ψθ(·) is the ranking network
with parameter θ . In our method, we aim to train this ranking network to minimize the
difference between semantic and visual neighbors ranking lists. Therefore, given a batch of

training instances
(
q, d1, ..., dn, s

S
q,d1

, ..., sS
q,dn

)

i
, i = 1, ..., b, we propose the visual and

semantic neighbors ranking loss function to train this network.

L = 1

2b

b∑

i=1

n∑

j=1

∣∣∣rV{q,dj }i − rS{q,dj }i
∣∣∣
2

(7)

Unfortunately, the (7) is a non-differentiable loss function because of the indicator func-
tion. In this paper, we adopt the solution proposed by [68] in which logistic function
δ(x) = log2(1 + 2−x) is used to replace indicator function, and the loss function can be
rewrote as follows:

L = 1

2b

b∑

i=1

n∑

j=1

∣∣∣∣∣

n∑

k=1

δ
(
sV{q,dj }i − sV{q,dk}i

)
−

n∑

k=1

δ
(
sS{q,dj }i − sS{q,dk}i

)∣∣∣∣∣

2

(8)

4.3 Network structure and training method

Network structure As shown in Fig. 2, both of our pair-wise and list-wise models are
composed of several linear layers with weight matrices Wl, l = 1, ..., N . Each layer is a
fully-connected layer computing the following transformation:

xl = f (BN(Wl · xl−1 + bl)); l = 1, ..., N − 1 (9)

whereWl and bl is the weight matrix and the bias of the lth layer respectively, and f (·) is the
activation function. Here we use x0 to denote the input of the network. Specially, sign expan-
sion root (SER) [16, 17] layers, rather than Rectified Linear Unit (ReLU), are add to separate
these successive fully-connected layers,1 to perform activation function f (·). Typical neu-
ral activation ReLU used in CNN denoted as f (x) = max{0, x} only keeps the positive
activations and drops the negative activations. Experience in action recognition [19, 20]
shows that negative activations should be considered for they contain some useful informa-
tion when CNN features are used [16, 17]. Therefore, we adopt SER to nonlinearly project
the activation of each fully connected layer. Suppose the activation is x = [x1, x2, ..., xn],
then SER is denoted as

f (x) =
(√

x+,
√
x−

)
(10)

1We also tried to use ReLU which perform slightly inferior than using SER (F1 values decrease %4 ∼ %7
in our experiments on four datasets.)
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where x+ = [
x+
1 , x+

2 , ..., x+
n

]
is the positive part of feature x, namely x+

i = max{0, xi},
while x− = [

x−
1 , x−

2 , ..., x−
n

]
is the negative part of feature x, namely x−

i = max{0, −xi}.
This operation doubles the dimensionality of feature x allowing us to capture important
nonlinear information from both positive and negative activations. BN in (9) is the batch
normalization introduced in [29]. For the pair-wise model, we empirically use sigmoid func-
tion as the activation function of the last fully connected layer. For the list-wise model,
the output of the last fully connected layer go through L2 normalization layer. Further-
more, we add a cosine layer to calculate visual similarities (see (6)) between the output
vectors of each network to get visual ranking. It is notable that, the size of input vector
is 3 × length(φ(·)) in the pair-wise setting while the list-wise model is feeded with input
vector whose size is length(φ(·)).

It is noteworthy that our networks are different from that used in recent hot research
topics, such as image question answering [1] and video question answering [70]. A common
approach to image or video question answering is to map both the input image/video and
question to a common embedding space. Visual feature extract from image or video and
textual feature extracted from question are combined in an output stage, which can take the
form of a classifier (e.g. a multilayer perceptron) to predict short answers from predefined
set or a recurrent network (e.g. an LSTM) to produce variable-length phrases. However
our neural ranking models are not trained based on two channels. The input of the neural
network only includes the visual feature extracted from image and the semantic feature is
used to generate ground-truth probability of one image being ranked higher than another
with respect to a query image. These ground-truth probabilities will supervise the training
of neural networks.

Semantic features For each tag of a training image, we use Word2Vec [47] to encode it
as a 300 dimensional real valued vector. Then we use Fisher vector representation of Hybrid
Gaussian-Laplacian mixture model (HGLMM) proposed by Klein et al. [36] to encode the
Word2Vec vectors of a training image’s all tags into one vector. Following literature [36],
Independent Component Analysis (ICA) is applied to construct a codebook with 50 cen-
ters using first and second order information. Then HGLMM and Fisher vector are used
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to produce a 300*50*2 = 30000 dimensional vector to represent one training image’s tags.
Furthermore, we apply Principal Component Analysis (PCA) on these 30000 dimensional
vectors to reduce them to 10000 dimensions. This operation help us save memory and train-
ing time. Finally, semantical similarity between training images can be calculated based on
these 10000 dimensional fisher vectors using (1).

Training instance sampling Our loss function of pair-wise model involves all triplets
consisting of a query image q and two relevant images d1 and d2. Given a mini-batch having
m images, we can obtain a training set consisting of C3

m training instances. It is compu-
tationally infeasible to optimize over all such instances. Hence, we first randomly select t

query images from the mini-batch, then randomly select k pairs of images from the rest of
the mini-batch, resulting b = t · k training instances within each mini-batch. For our list-
wise model, we also first select t query images randomly. And then we select k lists of
images, the length of each list is L (L < m − 1), from the remaining m − 1 images in the
mini-batch. We will analyze the effectiveness of this training instance sampling method in
our experiments.

Training details To train our list-wise model, we are given a number of training images
with tags, denoted as T. We use Adam [34] to update the network’s parameters. For one
training epoch, we randomly partition the training set into N mini-batches. Then we use
training instance sampling method to generate b training instances in each mini-batch. For
each image, we resize it and put it into a pre-trained ResNet [28] and the get the 2048 dimen-
sional activations of the layer right before the last fully-connected layer as the CNN feature
φ(I) of the image. Our list-wise ranking network nonlinearly projects φ(I) into ψθ(φ(I )).
Semantical and visual similarities then can be obtained to rank neighbors. Although our
neural ranking networks can have many layers in general, we select the number of layers
and the size of each layer from [1,2,3,4] and [256, 512, 1024, 2048, 4096] respectively.
These hyper-parameters are tuned on the validation set using batched GP bandits with an
expected improvement acquisition function [54]. In our work, Adam with initial learning
rate 0.001 is used to update the parameters of ranking networks. The size of mini-batch is
fixed to be 128. Algorithm 1 gives the pseudo-code of our list-wise ranking network train-
ing (The training process of our pair-wise model is similar and more simple, and we do not
give the pseudo-code here). In our experiments, we first train both of these two networks on
the large-scale dataset NUS-WIDE, and annotate the testing images in this dataset. When
we predict labels for testing images in the other smaller datasets, we fine-tune these net-
works using their training images, after initializing the networks with the weights learned
from NUS-WIDE.

5 Label propagation

For each testing image, both of our pair-wise and list-wise neural ranking networks can gen-
erate ranking list in which semantically similar training images are ranked top. This property
is one of the basis of many nearest-neighbor based models and can effectively improve their
performance. Following this key idea, we apply our ranking networks to several popular
nearest-neighbor based image auto-annotation models including Tagprop [26], 2PKNN [57]
because they report the state-of-the-art results on several datasets and their source codes are
opened.
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5.1 TagProp

TagProp2 is proposed by Guillaumin [26] which learns weighted nearest neighbor model
or word-specific logistic discriminant model by maximizing the log-likelihood of the tag
predictions in the training set. When using weighted nearest neighbor model, the probability
of tag t appearing in the annotations of testing image I is:

PT agP rop(I, t) =
∑

J∈N (I )

wIJI(J, t) (11)

where I(J, t) is an indicator function who equals one if image J has label t , zero otherwise.
wIJ is a learned weight of image J for propagating tags to image I .N (I ) is the neighbors
of image I . This weight can be learned from image rank, referred to as the TagProp-RK, or
image distance, referred to as the TagProp-SD for single distance and TagProp-ML for mul-
tiple distances combined by metric learning.When using word-specific logistic discriminant
model, tag t annotates image I with probability:

PT agP rop(I, t) = σ

⎛

⎝βt + αt

∑

J∈N (I )

wIJI(J, t)

⎞

⎠ (12)

where σ(·) is sigmoid function and {αt , βt } can be trained per tag. The resulting vari-
ants are referred to as TagProp-σRK, TagProp-σSD, TagProp-σML, respectively. When
we integrate pair-wise model with TagProp, the normalized estimated similarity score can
be considered as w. And the visual similarity (see (6)) can be considered as w when we
build TagProp on list-wise model. Because both the estimated similarity score and visual
similarity can be considered as a single distance between images, we finally integrate
our models with TagProp-σSD in our experiments, denoted as PNR+TagProp-σSD and
LNR+TagProp-σSD.

5.2 2PKNN

Verma and Jawahar [57] proposed 2PKNN3 model to address image auto-annotation task.
2PKNN is composed of two phases. Given a testing image I , the first phase is to identify
its neighbors N (I ) from each semantic group which is a subset of training images with
one common label. The second phase of 2PKNN is to predict labels for testing image by
weighted summing over the reference images inN (I ):

P2PKNN(I, t) =
∑

J∈N (I )

exp

(
−

n∑

i=1

ωid
i
I,J

)
I(J, t) (13)

where di
I,J is the distance between the ith feature of image I and J . The default value of

weight ωi is 1/n. Furthermore, this distance can be improved by metric learning which
learns the weight ωi , leading to 2PKNN-ML model. When we integrate our models with
2PKNN, we use (14) to predict tags for testing image, where sV

I,J is the normalized simi-
larity score estimated by pair-wise model or visual similarity generated by list-wise model.

2The source code of TagProp is available at: http://lear.inrialpes.fr/people/guillaumin/code.php#tagprop
3The source code of 2PKNN is available at: http://researchweb.iiit.ac.in/yashaswi.verma/eccv12/2pknn.zip

http://lear.inrialpes.fr/people/guillaumin/code.php#tagprop
http://researchweb.iiit.ac.in/ yashaswi.verma/eccv12/2pknn.zip
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We denote our models integrated with 2PKNN as PNR+2PKNN and LNR+2PKNN in our
experiments.

P2PKNN(I, t) =
∑

J∈N (I )

sV
I,JI(J, t) (14)

6 Experiments

6.1 Datasets

We conduct a series of experiments to examine the performance of our proposed image
auto-annotation method on four widely used standard image datasets. Statistics of these four
datasets are shown in Table 1.

Corel 5k This image set is the first and has become a basic dataset for image auto-
annotation [9, 15, 26, 38, 45, 57]. It contains 5000 images, falling into 50 categories and
each category has 100 images on the same topic. 1 to 5 tags are manually annotated for
each image and there are 260 tags in total in the dataset. We extract 4500 images for train-
ing (10% of the training images are used as validation set for hyper-parameter tuning) and
others for testing.

ESP game It is collected from a computer game, which need two players to predict same
tags for a given image to gain points. This dataset is very challenging for it’s wide variety of
image contents. We follow [26] and split this image set into training set with 18689 images
and testing set with 2081 images. We also randomly select 10% of the training images as
validation set.

IAPR TC12 It is originally used for cross-lingual retrieval. Researchers extract common
nouns using natural language processing techniques to generate tags for each image which
has been used in [45]. And now it is also a benchmark for image auto-annotation task [15,
45]. This dataset has 17665 images for training (10% of this set are chosen as validation set)
and 1962 images for testing. Each image is annotated with an average of 5.7 labels.

NUS-WIDE This dataset has 269648 images collected from Flickr. Most of these images
are manually annotated with several labels, leading to 81 labels in total for the whole dataset.
Following [22], we have 209347 images after discarding images with no labels and we
select a subset of 150k images for training and the others are left for testing. 15k images in
the training set are selected as validation set.

Table 1 Statistics of the four image sets. The ”Tags per image” row is in the format ”mean, median”

Corel 5K ESP Game IAPR TC-12 NUS-WIDE

Total number of images 5000 20770 19627 209347

Total number of tags 260 268 291 81

Training/testing images 4500/500 18689/2081 17665/1962 150000/59347

Tags per image 3.4, 4 4.7, 5 5.7, 5 2.4, 2
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6.2 Baselines and evaluation protocols

In this paper, we propose neural ranking networks including pair-wise model and list-wise
model, to help testing images find more semantically similar neighbors. And we adopt
nearest-neighbor based label propagation models to annotate the testing image by weighted
propagating tags from these neighbors. Thus we consider the following models as baselines:
(1) TagProp-σSD based on bare CNN features, and (2) 2PKNN based on bare CNN features

For fair comparison, we follow previous works [2, 26, 35, 57], using the following
popular protocols to evaluate our method:

Mean word recall With a given tag, word recall calculates the number of correctly anno-
tated images, divided by the number of images whose ground-truth annotations include this
tag. Suppose cw is the number of images correctly annotated with tag w and gw denotes the
number of images having tag w in the ground truth. Then word recall measures the com-
pleteness of annotating images with word w. We separately calculate the word recall for
each tag and then report the mean word recall:

R = 1

|W |
∑

w∈W

cw

gw

(15)

where W is the fixed vocabulary of annotations and |W | means the size of this vocabulary.

Mean word precision Word precision is the number of correctly annotated images with a
given tag w, divided by the total number of images annotated with tag w including correctly
annotated ones and wrong ones. We use tw to denote the number of images annotated with
tag w by the model (correctly or not). Follow the mean word recall calculation, we report
the mean word precision as follows:

P = 1

|W |
∑

w∈W

cw

tw
(16)

F1 It is the trade-off between mean word precision and recall which combined them for
easier comparability. We also report this measure of our method and several state-of-the-art
methods. It can be obtained by using the following equation:

F1 = 2 ∗ P ∗ R

P + R
(17)

N+ It is the number of tags with non-zero recall value. This parameter aims to measure the
ability of the model to annotate images with rare tags which are hard to predict due to the
low frequency of occurrence in the training set.

Note that, for Corel5k, ESP-Game, and IAPR TC12, we predict 5 labels for each testing
image, while 3 labels are predicted for each testing image in NUS-WIDE since images in
this dataset only have averagely 2.4 labels (see Table 1).

6.3 Effectiveness of neural ranking models

In this paper, we argue that both of our pair-wise and list-wise neural ranking networks
can generate ranking list in which semantically similar training images are ranked top. And
this property makes our neural ranking models able to boost the annotation performance of
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Fig. 3 Mean Jaccard similarity between testing images and their neighbors build using bare CNN features
and our ranking models respectively.

nearest-neighbor based models. To validate this idea, we conduct an experiment on NUS-
WIDE here. For each image I in the testing set, we respectively use the similarity scores
estimated by our pair-wise ranking model, visual similarities generated by our list-wise
ranking model and visual similarities based on bare CNN features, to retrieve its top N most
similar images {I1, ..., IN }. We then average the Jaccard similarity between image I and Ii

as follows:
1

N

N∑

i=1

J (I, Ii) = 1

N

N∑

i=1

|TI ∩ TIi
|

|TI ∪ TIi
| (18)

where TI and TIi
denote the set of labels of image I and Ii respectively. Finally we compute

this measure for all the testing images and report the average values using different N in
Fig. 3. Experimental results show that both of our neural ranking models achieve higher
mean Jaccard similarity, compared with baseline which uses visual similarities of bare CNN
features. It means that our neural ranking models can help testing images retrieve more
semantically similar neighbors.

6.4 Overall comparison of image annotation models

In this experiment, we analyse the performance of our methods. We apply our neural rank-
ing models to TagProp-σSD and 2PKNN respectively, resulting four models: Pair-wise
neural ranking + TagProp-σSD (PNR+TagProp-σSD), List-wise neural ranking + TagProp-
σSD (LNR+TagProp-σSD), Pair-wise neural ranking + 2PKNN (PNR+2PKNN), List-wise
neural ranking + 2PKNN (LNR+2PKNN). For each method, we use the activations of
the last second layer as visual features of images and feed them to neural ranking mod-
els. To demonstrate the effectiveness of our methods, we also compare our results with
several state-of-the-art image auto-annotation models, including TagProp-σSD, TagProp-
σML [26], JEC [46], GS [69], RF-opt [18], 2PKNN [57], 2PKNN-ML [57], KSVM-VT
[58], MLRank [41], SKL-CRM [49], CMM [2], CCA-KNN [56]. The features used by
these methods are all hand-crafted4 and these methods span the wide range of model types
discussed in Section 1.

4These features are available at: http://lear.inrialpes.fr/people/guillaumin/data.php

http://lear.inrialpes.fr/people/guillaumin/data.php
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Table 2 shows the annotation performance of our proposed methods on Corel5k, ESP
Game, and IAPR TC-12 datasets, against with two baselines and some state-of-the-art meth-
ods proposed in recent years. The results of our experiments demonstrate that our best
method LNR+2PKNN outperforms all these state-of-the-art methods we have reviewed
while our other three methods also achieve comparable performance with a number of
recently proposed methods. Our method LNR+2PKNN achieves P, R, F1 and N+ scores of
43, 52, 47 and 192 on the Corel 5K dataset, 48, 34, 40 and 258 on the ESP Game dataset,
44, 38, 41 and 276 on the IAPR TC-12 dataset. Comparing the results of our methods
and the baselines, we also find that our proposed ranking networks supervised by semantic
features can significantly boost the annotation performance, probably because of the effec-
tiveness of our neural ranking networks and image’s semantic representation using fisher
vector of HGLMM. We also observe that our list-wise ranking network is more effective
than pair-wise ranking network, for both TagProp-σSD and 2PKNN.

Table 3 shows the comparison of our methods and the state-of-the-art methods on the
large-scale imageset NUS-WIDE. The 634D visual features used by MLRank is a set of

Table 2 Comparison of annotation performance of our methods with the state-of-the-art methods and base-
lines in terms of mean word recall (R), mean word precision (P), F1 and N+ on Corel 5K, ESP Game, IAPR
TC-12 dataset

Method Feature Corel5k ESP Game IAPR TC-12

Visual Textual R@5 P@5 F1 N+ R@5 P@5 F1 N+ R@5 P@5 F1 N+

State of the art:

TagProp-σSD[26] H − 35 28 31 145 24 39 30 232 30 41 35 259

TagProp-σML[26] H − 42 33 37 160 27 39 32 239 35 46 40 266

JEC[46] H − 32 27 29 139 25 22 23 224 29 28 29 250

GS[69] H − 33 30 31 146 − − − − 29 32 30 252

RF-opt[18] H − 40 29 34 157 26 41 32 235 31 44 36 253

2PKNN[57] H − 40 39 40 177 23 51 32 245 32 49 39 274

2PKNN-ML[57] H − 46 44 45 191 27 53 36 252 37 54 44 278

KSVM-VT[58] H − 42 32 36 179 32 33 33 259 29 47 36 268

MLRank[41] H − 32 37 34 151 − − − − 32 38 35 259

SKL-CRM[49] H − 46 39 42 184 26 41 32 248 32 51 39 274

CMM[2] H BOW 46 42 44 179 − − − − 30 59 40 259

CCA-KNN[56] V BV 51 39 44 192 32 44 37 254 34 41 37 273

Baselines:

TagProp-σSD R − 34 29 31 141 28 34 31 237 28 39 33 251

2PKNN R − 44 38 41 167 32 43 37 246 30 40 35 261

Our methods:

PNR+TagProp-σSD R FV 35 32 33 168 28 36 32 240 29 40 34 255

LNR+TagProp-σSD R FV 49 39 43 181 30 48 37 252 32 46 38 270

PNR+2PKNN R FV 45 38 41 182 32 44 37 246 32 45 37 274

LNR+2PKNN R FV 52 43 47 192 34 48 40 258 38 44 41 276

H: Hand-crafted features, R: ResNet activations, V: VGG16 activations, BOW: Bag of Words, BV: Binary
vector, FV: Fisher vector of HGLMM
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Table 3 Comparison of annotation performance of our methods with the state-of-the-art methods and
baselines in terms of mean word recall (R), mean word precision (P), F1 and N+ on NUS-WIDE dataset

Method Feature NUS-WIDE

Visual Textual R@3 P@3 F1 N+

State of the art:

MLRank[41] 634D − 28 24 26 −
CNN+Softmax[22] AlexNet − 31 32 31 80

CNN+WARP[22] AlexNet − 36 32 34 78

CNN+KNN[32] CaffeNet − 31 44 36 −
CNN+Logistic[32] CaffeNet − 43 41 42 −
CNN-RNN[59] VGG16 LSTM 30 41 35 −

Baselines:

TagProp-σSD ResNet − 35 42 38 77

2PKNN ResNet − 39 42 40 79

Our methods:

PNR+TagProp-σSD ResNet FV 40 42 41 79

LNR+TagProp-σSD ResNet FV 44 44 44 80

PNR+2PKNN ResNet FV 41 43 42 79

LNR+2PKNN ResNet FV 46 44 45 80

FV: Fisher vector of HGLMM

hand-crafted features.5 CNN+Softmax and CNN+WARP models train convolutional neural
networks from scratch using softmax and WARP loss to achieve end-to-end image annota-
tion, obtaining an inferior performance with respect to the models, including CNN+KNN
and CNN+Logistic which use pre-trained CNN features. Wang et al. attempted to learn
joint image-label embedding using CNN-RNN framework [59], getting unsatisfactory per-
formance. The best performance is observed in our model LNR+2PKNN, improving P , R,
F1, and N+ to 44, 46, 45 and 80. This suggests that nearest-neighbor based model inte-
grated with our neural ranking networks is effective to address image annotation task for
such a large image set.

6.5 Impact of neighborhood size

One of the most important parameters need to be set manually in our methods is K which
is the size of the neighborhoodN (see (12) and (13)). To evaluate the impact of K on anno-
tation performance of our methods, we also conduct a number of experiments. For Corel
5K, ESP Game and IAPR TC-12 datasets, We set the parameter K to be 50, 70, 100, 200,
300, 500, 700, 900, 1000 respectively and record the performance of our methods, while K

is set to be 100, 200, 300, 500, 600, 700, 800, 900, 1000 for NUS-WIDE dataset. Figure 4
shows how the parameter K affects the performance of our methods and baselines on these
four datasets. It is obviously that small value of K leads to low annotation performances
for all the methods on all these datasets. It is because we get a small number of neighbors

5These features can be find at: http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Fig. 4 F1 scores of our models (solid lines) and baselines (dash lines) on Corel5K, ESP Game, IAPR TC-12
and NUS-WIDE datasets varying the neighborhood size K

and some important information may be lost when we propagate tags from weighted neigh-
bors to testing image using small K . Furthermore, we see that annotation performance will
remain almost the same or rise slowly with increasing the value of K after some point ( 200
for ESP Game and IAPR TC-12, 500 for NUS-WIDE). Specially, annotation performance
will deteriorate slightly with setting K greater than about 500 for Corel5K dataset, probably
because selecting too many neighbors from Corel5K’s small training set brings in irrelevant
images to the testing image. Big neighborhood size K will increase the computational cost.
Hence, we set K to be 200 for Corel 5K, ESP Game, IAPR TC-12 datasets and 500 for
NUS-WIDE dataset, obtaining the results in Tables 2 and 3. Furthermore, as expected, we
observe that annotation performance of each of our methods is higher than the correspond-
ing baseline. This again confirms that our neural ranking networks can boost annotation
performance of nearest-neighbor based models.

6.6 Effectiveness of training instance sampling

In this section, we analyze the effectiveness of our training instance sampling method on
the large scale imageset NUS-WIDE. In our experiments, we first randomly select k query
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Fig. 5 Analysis of training instance sampling. a The curve of F1 of pair-wise models on NUS-WIDE. b
The curve of F1 of list-wise models on NUS-WIDE

images, and then select t pairs of images to generate b (b = k · t) training instances to
train our pair-wise models. For our list-wise models, we also randomly choose k query
images, and then select t lists of images (the length of each image list is fixed to be 64).
We vary the value of parameter b for both pair-wise and list-wise models, and report the
performance in Fig. 5. It is observed that 2PKNN based on neural ranking is slightly bet-
ter than TagProp-σSD using same number of training instances. The experimental results
also suggest that increasing training instances can boost annotation performance, but the
improvement saturates finally. Therefore, we set b to be 250 and 500 for pair-wise model
and list-wise model respectively, to achieve compromise between annotation performance
and training time cost. The results in Table 3 is obtained using this parameter setting. For
the other datasets, we also use this parameter setting to fine-tune the networks.

7 Conclusion and future work

In this paper, we formulate automatic image annotation into a learning to rank frame-
work. Explicitly, we propose pair-wise and list-wise neural ranking networks and apply
them to nearest-neighbor based models to address image auto-annotation task. These net-
works share the similar architecture which is composed of several fully-connected layers.
The pair-wise ranking network is trained to minimize cross-entropy loss, while the list-
wise ranking network is trained using our proposed visual and semantic neighbors ranking
loss. These networks can help images find more semantically similar neighbors. This
property improves the performance of the nearest-neighbor based models lying on our
embedding network. Our experimental results on four standard datasets including Corel 5K,
ESP Game, IAPR TC-12, and large-scale NUS-WIDE demonstrate that our methods make
remarkable improvements on all of these datasets, compared with existing state-of-the-art
methods.

In our future work, we will consider to build a new image dataset in which each image
has privileged information, such as sounding text that describing the image. And only part of
the training images have labels. Then active learning [64] or other semi-supervised learning
methods [7, 67] can be employed to use these privileged information and instances without
labels to boost the performance of automatic image annotation.

Acknowledgements This work is supported by the Natural Science Foundation of China (No. 61572162)
and the Zhejiang Provincial Key Science and Technology Project Foundation (No. 2018C01012).



Multimed Tools Appl (2018) 77:22385–22406 22403

Compliance with ethical standards

Conflict of interests The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed
by any of the authors.

References

1. Agrawal A, Lu J, Antol S (2015) Vqa: Visual question answering. Int J Comput Vis 123(1):4–31
2. Ballan L, Uricchio T, Seidenari L, Bimbo AD (2014) A cross-media model for automatic image

annotation. In: ACM ICMR, pp 73–80
3. Blei D, Jordan M (2003) Modeling annotated data. In: ACM SIGIR, pp 127–134
4. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
5. Burges C (2005) Learning to rank using gradient descent. In: ICML, pp 89–96
6. Burges C (2010) From ranknet to lambdarank to lambdamart: An overview. In: Technical report,

Microsoft Research
7. Cai D, He X, Han J (2007) Semi-supervised discriminant analysis. In: ICCV
8. Cao Z, Qin T (2007) Learning to rank: from pairwise approach to listwise approach. In: ICML, pp

129–136
9. Carneiro G, Chan A, Moreno P, Vasconcelos N (2007) Supervised learning of semantic classes for image

annotation and retrieval. IEEE Trans Pattern Anal Mach Intell 29(3):394–410
10. Chatfield K, Lempitsky V, Vedaldi A, Zisserman A (2011) The devil is in the details: an evaluation of

recent feature encoding methods. In: BMVC, pp 1–12
11. Chopra S, Hadsell R, LeCun Y (2005) Learning a similarity metric discriminatively, with application to

face verification. In: CVPR, pp 539–546
12. Dehghani M, Zamani H, Severyn A, Kamps J, Croft WB (2017) Neural ranking models with weak

supervision. In: ACM SIGIR, pp 65–74
13. Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image

database. In: CVPR, pp 248–255
14. Fabian L, Michael J, Nebojsa J (2013) Efficient ranking from pairwise comparisons. In: ICML, pp 109–

117
15. Fenga S, Manmatha R, Lavrenko V (2004) Multiple bernoulli relevance models for image and video

annotation. In: CVPR, pp 1002–1009
16. Fernando B, Anderson P, Hutter M, Gould S (2016) Discriminative hierarchical rank pooling for activity

recognition. In: CVPR, pp 1924–1932
17. Fernando B, Gawes E, Oramas J, Ghodrati J, Tuytelaars T (2017) Rank pooling for action recognition.

IEEE Trans Pattern Anal Mach Intell 39(4):773–787
18. Fu H, Zhang Q, Qiu G (2012) Random forest for image annotation. In: ECCV, pp 86–99
19. Gao Z, Nie W, Liu A (2016) Evaluation of local spatial-temporal features for cross-view action

recognition. Neurocomputing 173(1):110–117
20. Gao Z, Zhang H, Liu A (2016) Human action recognition on depth dataset. Neural Comput Applic

27(7):2047–2054
21. Gao Z, Zhang L, Chen M (2014) Enhanced and hierarchical structure algorithm for data imbalance

problem in semantic extraction under massive video dataset. Multimedia Tools Appl 68(3):641–657
22. Gong Y, Jia Y, Leung T, Toshev A, Ioffe S (2014) Deep convolutional ranking for multilabel image

annotation. arXiv:13124894
23. Gong Y, Ke Q, Isard M, Lazebnik S (2014) A multi-view embedding space for modeling internet images,

tags, and their semantics. Int J Comput Vis 106(2):210–233
24. Gong Y, Wang L, Hodosh M, Hockenmaier J, Lazebnik S (2014) Improving image-setence embeddings

using large weakly annotated photo collections. In: ECCV, pp 529–545
25. Gu Y, Xue H, Yang J (2016) Cross-modal saliency correlation for image annotation. Neural Process Lett

45(3):777–789
26. Guillaumin M, Mensink T, Verbeek J, Schmid C (2009) Tagprop: Discriminative metric learning in

nearest neighbor models for image auto-annotation. In: ICCV, pp 309–316

http://arxiv.org/abs/13124894


22404 Multimed Tools Appl (2018) 77:22385–22406

27. Hardoon D, Szedmak S, Shawe-Taylor J (2004) Cannonical correlation analysis: An overview with
application to learning methods. Neural Comput 16(12):2639–2664

28. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp 770–
778

29. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In: ICML, pp 448–456

30. Jeon J, Lavreko V, Manmatha R (2003) Automatic image annotation and retrieval using cross-media
relevance models. In: ACM SIGIR, pp 119–126

31. Joachims T (2002) Optimizing search engines using clickthrough data. In: ACM SIGKDD, pp 133–142
32. Johnson J, Ballan L, Fei-Fei L (2015) Love thy neighbors: Image annotation by exploiting image

metadata. In: ICCV, pp 4624–4632
33. Kang F, Sukthankar R (2006) Correlated label propagation with application to multi-label learning. In:

CVPR, pp 1719–1726
34. Kingma D, Ba J (2014) Adam: A method for stochastic optimization. arXiv:14126980
35. Kiros R, Szepesvari C (2015) Deep representations and codes for image auto-annotation. In: NIPS, pp

917–925
36. Klein B, Lev G, Sadeh G, Wolf L (2015) Fisher vectors derived from hybrid gaussian-laplacian mixture

models for image annotation. arXiv:14117399
37. Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural

networks. In: NIPS, pp 1106–1114
38. Lavrenko V, Manmatha R, Jeon J (2004) A model for learning the semantics of pictures. In: NIPS, pp

553–560
39. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: Spatial pyramid matching for

recognizing natural scene categories. In: CVPR, pp 2169–2178
40. Li X, Snoek C, Worring M (2007) Learning social tag relevance by neighbor voting. IEEE TMM

11(7):1310–1322
41. Li Z, Liu J, Xu C, Lu H (2013) Mlrank: Multi-correlation learning to rank for image annotation. Pattern

Recogn 46(10):2700–2710
42. Liu J, Li M, Liu Q, Lu H, Ma S (2009) Image annotation via graph learning. Pattern Recogn 42(2):218–

228
43. Liu T (2009) Learning to rank for information retrieval. Found Trends Inf Retr 3(3):225–331
44. Lowe D (2004) Distinctive image features from scale-invariant keypoints. IJCV 60(2):91–110
45. Makadia A, Pavlovic V, Kumar S (2008) A new baseline for image annotation. In: ECCV, pp 316–329
46. Makadia A, Pavlovic V, Kumar S (2010) Baselines for image annotation. Int J Comput Vis 90(1):88–105
47. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector

space. arXiv:13013781
48. Montazer G, Giveki D (2017) Scene classification using multi-resolution waholb features and neural

network classifier. Neural Process Lett 46(2):681–704
49. Moran S, Lanvrenko V (2014) Sparse kernel learning for image annotation. In: ACM ICMR, p 113
50. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial

envelope. IJCV 42(3):145–175
51. Peng X, Zou C, Qiao Y, Peng Q (2010) Action recognition with stacked fisher vectors. In: ECCV, pp

581–595
52. Perronnin F, Sanchez J, Mensink T (2010) Improving the fisher kernel for large scale image classifica-

tion. In: ECCV, pp 143–156
53. Song Y, Zhuang Z, Li H, Zhao Q, Li J, Lee W, Giles CL (2008) Real-time automatic tag recommenda-

tion. In: ACM SIGIR, pp 515–522
54. Thomas D, Andreas K, JoelW (2014) Parallelizing exploration-exploitation tradeoffs in gaussian process

bandit optimization. J Mach Learn Res 15(1):3873–3923
55. Thorsten J (2006) Training linear svms in linear time. In: KDD, pp 217–226
56. Venkatesh N, Subhransu M, Manmatha R (2015) Automatic image annotation using deep learning

representations. In: ACM ICMR, pp 603–606
57. Verma Y, Jawahar C (2012) Image annotation using metric learning in semantic neighbourhoods. In:

ECCV, pp 836–849
58. Verma Y, Jawahar C (2013) Exploring svm for image annotation in presence of confusing labels. In:

British Machine Vision Conference, pp 1–11
59. Wang J, Yang Y, Mao J, Huang Z, Huang C, Xu W (2016) Cnn-rnn: A unified framework for multi-label

image classification. In: CVPR, pp 2285–2294

http://arxiv.org/abs/14126980
http://arxiv.org/abs/14117399
http://arxiv.org/abs/13013781


Multimed Tools Appl (2018) 77:22385–22406 22405

60. Wang L, Liu L, Khan L (2004) Automatic image annotation and retrieval ussing subspace clustering
algorithm. In: ACM International Workshop Multimedia Databases, pp 100–108

61. Weston J, Bengio S, Usunier N (2011) Wsabie: Scaling up to large vocabulary image annotation. In:
IJCAI, pp 2764–2770

62. Wu F, Jing X, Yue D (2017) Multi-view discriminant dictionary learning via learning view-specific and
shared structured dictionaries for image classification. Neural Process Lett 45(2):649–666

63. Yan X, Su XG (2009) Linear regression analysis: Theory and computing. World Scientfic Publishing
Co, Inc, River Edge

64. Yan Y, Nie F, Li W, Gao C, Yang Y, Xu D (2016) Image classification by cross-media active learning
with privileged information. IEEE Trans Multimedia 18(12):2494–2502

65. Yang C, Dong M, Hua J (2007) Region-based image annotation using asymmetrical support vector
machine-based multiple-instance learning. In: CVPR, pp 2057–2063

66. Yang Y, Xu D, Nie F, Yan S, Zhuang Y (2010) Image clustering using local discriminant models and
global integration. IEEE Trans Image Process 19(10):2761–2773

67. Yang Y, Nie F, Xu D, Luo J, Zhuang Y, Pan Y (2012) A multimedia retrieval framework based on
semi-supervised ranking and relevance feedback. IEEE Trans Pattern Anal Mach Intell 34(4):723–742

68. Yun H, Raman P, Vishwanathan S (2014) Ranking via robust binary classification. In: NIPS, pp 2582–
2590

69. Zhang S, Huang J, Huang Y (2010) Automatic image annotation using group sparsity. In: CVPR, pp
3312–3319

70. Zhu L, Xu Z, Yang Y, Hauptmann AG (2017) Uncovering the temporal context for video question
answering. Int J Comput Vis 124(3):409–421

Weifeng Zhang received his B.S degree in Electronic Information Engineering from Beijing University
of Technology in 2009, and got his M.S degree in Pattern Recognition from Beihang University in 2012.
Now he is a Ph.D student of Hangzhou Dianzi University. His research interests include machine learning,
multimedia modeling.



22406 Multimed Tools Appl (2018) 77:22385–22406

Hua Hu is a full professor of Hangzhou Dianzi University, China. He received the Ph.D., M.S. and
B.S. degree in Computer Science from Zhejiang University, China in 1998, 1992 and 1989, respectively.
His research interests mainly include parallel computing and distributed system and pervasive computing.
His research results have been published in more than 50 papers in international journals and conference
proceedings.

Haiyang Hu received the Ph.D., M.S. and B.S. degrees in Computer Science from Nanjing University, China
in 2006, 2003 and 2000, respectively. Currently, he is a professor of the Hangzhou Dianzi University, China.
His research interests include mobile computing and distributed computing. His research results have been
published in more than 20 papers in international journals and conference proceedings.


	Neural ranking for automatic image annotation
	Abstract
	Introduction
	Related work
	Automatic image annotation
	Learning to rank

	Model
	Neural ranking models
	Ranking architectures
	Pair-wise model
	List-wise model


	Visual and semantic neighbors ranking loss
	Network structure and training method
	Network structure
	Semantic features
	Training instance sampling
	Training details



	Label propagation
	TagProp
	2PKNN

	Experiments
	Datasets
	Corel 5k
	ESP game
	IAPR TC12
	NUS-WIDE


	Baselines and evaluation protocols
	Mean word recall
	Mean word precision
	F1
	N+


	Effectiveness of neural ranking models
	Overall comparison of image annotation models
	Impact of neighborhood size
	Effectiveness of training instance sampling

	Conclusion and future work
	Acknowledgements
	Compliance with ethical standards
	Conflict of interests
	Ethical approval
	References


