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Abstract Fuzzy c-means (FCM) is one of the prominent method utilized for medical image
segmentation. In literature intuitionistic fuzzy c-means (IFCM) is suggested which is based
on intuitionistic fuzzy sets (IFSs) theory to handle uncertainty and vagueness associated
with real data. The objective function of which is defined using the hesitation degree along
with membership degree. However, instead of solving the objective function analytically,
the approximate solution is obtained using FCM. In this paper, we have proposed a modi-
fied intuitionistic fuzzy c-means algorithm (MIFCM) and solved analytically the objective
function of the MIFCM method using Lagrange method of undetermined multiplier. To
incorporate hesitation degree, two parametric intuitionistic fuzzy complements namely
Sugeno’s negation function and Yager’s negation function are investigated. The performance
of the MIFCM method is compared with three intuitionistic fuzzy clustering methods and
the FCM on two publicly available MRI dataset and a synthetic dataset. The performance
measures (average segmentation accuracy, dice score, jaccard score, false negative ratio
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and false positive ratio) are used to compare the performance of the MIFCM method with
three variants of intuitionistic fuzzy clustering methods and the FCM. Experimental results
demonstrate the superior performance of the MIFCM method over others.

Keywords Intuitionistic fuzzy sets · Fuzzy c-means · Intuitionistic fuzzy c-means ·
Hesitation degree · Image segmentation · Magnetic resonance imaging

1 Introduction

Image segmentation is one of the important phase in image analysis and pattern recognition
because of its wide real life applications such as medical image analysis, computer vision,
industrial inspections etc.. In last few years, medical image analysis is used for diagnosis of
various disease such as Parkinson, Alzheimer, Schizophrenia etc.. For this, many medical
imaging modalities, such as Computed Tomography (CT), Magnetic Resonance Imaging
(MRI), Positron Emission Tomography (PET), Mammogram, X-rays, Ultrasound etc., are
being utilized to analyze the human organs and further these images are used to examine
the diseases for clinical studies.

Among these modalities, MRI is a popular imaging modality as it is non-invasive and
does not have any harmful effects on human tissues. Segmentation of brain MRI into vari-
ous brain tissues namely white matter (WM), gray matter (GM), cerebrospinal fluid (CSF)
is important for diagnosis of various diseases. However, manual segmentation of brain MRI
image is not only time consuming but also difficult task due to complicated structure and
absence of well-defined boundary between different brain tissues. Hence, to reduce the time
and assist the radiologists for better analysis of MRI images, many segmentation approaches
have been proposed in literature such as level set [1, 21, 33], graph cut [9], region growing
[27] and clustering [4, 5, 11, 14, 17–19, 23, 25, 26, 34]. Among these segmentation tech-
niques, clustering based on fuzzy set theory [38] known as fuzzy c-means (FCM) [6] and
its variants are found to be better in comparison to conventional hard clustering algorithm.
The advantage of the FCM and its variants is that a given data point is assigned to more than
one cluster with membership grade in the interval of [0, 1]. The degree of membership of a
data point to a cluster is inversely proportional to the distance of data point from the cluster
centroid. However, in real world applications, there is always an uncertainty associated with
the localization of a data point as it is subject to uncertainty owing to its imprecise mea-
surement and noise. Due to this, an uncertainty arises in the computation of membership of
a data point to a given cluster and centroid [24]. To handle uncertainty in the localization of
a data point, Atanassov proposed intuitionistic fuzzy sets (IFSs) theory. IFSs are extension
of fuzzy sets which can deal with uncertainty and vagueness associated with real data as it
takes advantage of non-membership degree and hesitation degree along with membership
degree for representing the real data [28]. Recently, IFSs theory based clustering is uti-
lized for segmentation of images [2, 3, 8, 15, 35]. The intuitionistic fuzzy based clustering
is more accurate, robust to noise and converges faster in comparison to conventional FCM
[15].

The research work [8] used IFSs theory for medical image segmentation which utilizes
Yager’s negation function for calculating non-membership degree and hesitation degree of a
data point to a given cluster. The author defined an objective function which incorporated the
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hesitation degree along with membership degree. However, instead of solving the objective
function analytically, the approximate solution is obtained. To obtain the centroid of the
clusters, the membership value in the equation of centroid of the FCM algorithm is simply
replaced with the sum of membership and hesitation value in the research work [8]. Hence,
the cluster centroids and the membership so obtained are not reasonable.

In this work, we have solved analytically the objective function of modified intuitionistic
fuzzy c-means algorithm (MIFCM) using Lagrange method of undetermined multiplier.
To incorporate hesitation degree, two parametric intuitionistic fuzzy complements namely
Sugeno’s negation function and Yager’s negation function is utilized. The performance of
the MIFCM method is compared with three intuitionistic fuzzy clustering methods [8,
29, 35] and the FCM on two publicly available MRI datasets and a synthetic dataset. The
performance measures used for comparison are: average segmentation accuracy (ASA), dice
score (DS), jaccard score (JS), false negative ratio (FNR) and false positive ratio (FPR) [32].
Contributions of this research work can be summarized as follows:

– The hesitation is properly incorporated in modified intuitionistic fuzzy c-means algo-
rithm in contrast to the research work [8].

– Two negation functions are investigated namely Sugeno’s negation function and Yager’s
negation function for incorporating hesitation.

The paper is organized as follows. In Section 2, related work is described. The preliminaries
on the fuzzy set and intuitionistic fuzzy set are described in Section 3. In Section 4, the
proposed method is included. Details of datasets used for experiment and results are given
in Section 5. Finally the conclusion is drawn in Section 6.

2 Related work

The fuzzy c-means clustering (FCM), introduced by Bezdek, is a popular clustering algo-
rithm which works on the idea of belongingness of a given data point to more than
one cluster [6]. After clustering, all the obtained c clusters are represented as fuzzy sets
F = {F1, F2, F3, . . . , Fc} defined on the data points X = {x1, x2, x3, . . . , xn}. However,
the non-membership degree for a data point to a given cluster is just equal to 1 minus mem-
bership degree which may not always be the case with real data [2, 3]. In order to incorporate
more information about data, intuitionistic fuzzy set was proposed by Atanassov [2]. To
cluster the intuitionistic fuzzy sets, Intuitionistic fuzzy c-means (IFCM) [35] is proposed
which utilizes intuitionistic fuzzy distance measure [28]. In the research work [8], a novel
intuitionistic fuzzy c-means clustering algorithm is proposed using the intuitionistic fuzzy
set theory for calculating the hesitation degree that arises while defining the membership
function. Recently, another variant of IFCM was proposed to segment the MRI images,
termed as neighborhood intuitionistic fuzzy c-means clustering algorithm with genetic
algorithm (NIFCMGA), which exploits neighborhood membership to reduced the effect
of noise/outlier [14]. In the research work [29], possibilistic intuitionistic fuzzy c-means
(PIFCM) algorithm was proposed for clustering intuitionistic fuzzy sets which includes the
advantages of the possibilistic c-means (PCM) [20] and IFCM. Another variant of IFCM
algorithm, known as improved intuitionistic fuzzy c-means (IIFCM) which utilizes the local
spatial information in an intuitionistic fuzzy way for segmenting the brain MRI images was
proposed in the research work [30].
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3 Preliminaries

The description of notations used in this work and related definition is described here in this
section.

Definition 1 Fuzzy set: A Fuzzy set is a set in which each member element will have the
fractional membership via a membership function μA : X → [0, 1] which give its degree
of belongingness [38]. If A is a fuzzy set defined over a set X, it can be represented as:

A = {(x, μA(x)) : x ∈ X} (1)

Definition 2 Intuitionistic fuzzy set: A Intuitionistic fuzzy set B, is an extension of fuzzy
set over X which is represented as [2]:

B = {(x, μB(x), νB(x)) : x ∈ X and 0 ≤ μB(x) + νB(x) ≤ 1} (2)

where μB : X → [0, 1], νB : X → [0, 1] are membership and non-membership functions
of an element x in the set B. The IFS B is reduced to FS B when μB(x) + νB(x) = 1 for all
x in B.

Definition 3 Hesitation: Hesitation degree arises due to lack of knowledge in defining the
membership function corresponding to the elements in universe in IFS B [2]. Hesitation
degree πB(x) of an elements x in IFS B can be obtained as [2]:

πB(x) = 1 − μB(x) − νB(x) (3)

where μB : X → [0, 1], νB : X → [0, 1] are respectively membership and non-
membership functions of an element x in the IFS B. This hesitation degree πB(x) forces the
membership value to lie in the interval [μB(x), μB(x) + πB(x)].

Definition 4 A continuous function φ(μ) can be called intuitionistic fuzzy generator [7] if:

φ(μ) ≤ (1 − μ) f or all μ ∈ [0, 1] and φ(0) ≤ 1 and φ(1) ≤ 0 (4)

Using this generating function, one can define the fuzzy complement function or negation
function N(μ) as [7]:

N(μ) = g−1(g(1) − g(μ)) (5)

where g : [0, 1] → [0, 1] is a intuitionistic fuzzy generator and g(.) is an increasing
function.

Definition 5 A Sugeno class can be generated by using the following generating function
[22]:

g(μ) = 1

λ
log(1 + λμ) (6)

Using the above definition of negation function, the non-membership values for a given
membership values for any element x in IFS B can be defined as follows:

νB(x) = N(μB(x)) = 1 − μB(x)

1 + λμB(x)
, λ > 0 (7)

Definition 6 A Yager class can be generated by using the following generating function
[36, 37]:

g(x) = xα (8)
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The negation function or non-membership values using this generating function is calcu-
lated as:

νB(x) = N(μB(x)) = (1 − μB(x)α)
1
α , α > 0 (9)

Definition 7 intuitionistic fuzzy distance between the elements xIFS
i = 〈μ(xi), ν(xi),

π(xi)〉 and xIFS
j = 〈μ(xj ), ν(xj ), π(xj )〉 of an IFS XIFS is defined as [28]:

‖xIFS
i − xIFS

j ‖ =
√

1

2
((μ(xi) − μ(xj ))2 + (ν(xi) − ν(xj ))2 + (π(xi) − π(xj ))2) (10)

3.1 Intuitionistic fuzzy image representation

Intuitionistic fuzzy generator defined above is used to construct the intuitionistic fuzzy
image for clustering [31]. Let X be the set of voxel intensity with intensity value xj at j th

pixel where j ∈ 1, 2, . . . N and N is total number of pixels. These voxel intensity values are
normalized to [0 1] for creating the IFSs corresponding to a given image. Let XIFS be the
IFS defined on set X with j th element xIFS

j as IFS element 〈μX(xj ), νX(xj ), πX(xj )〉 cor-

responding to j th voxel with intensity value xj , where μX(xj ) is the normalized intensity
value and νX(xj ) is calculated using one of the negation functions described above. U rep-
resents the fuzzy partition matrix defined as U = {μi(xj ) : μi(xj ) ∈ [0, 1]; ∑c

i=1μi(xj ) =
1; ∀j ∈ {1, 2, . . . N} and i ∈ {1, 2, . . . c}} which divides the image into c equiva-
lence classes with each class i representing the membership value μi(xj ) of j th voxel
∀j ∈ 1, 2, . . . N . νi(xj ) and πi(xj ) represent the non-membership values and hesitation
degree for j th voxel in ith class or cluster respectively. For simplicity, in rest of the paper,
μi(xj ), νi(xj ) and πi(xj ) are denoted as μij , νij and πij respectively.

3.2 Fuzzy c-means

Fuzzy clustering allows each data point to belong to more than one cluster. Let X be a set
of feature vectors with total N elements and c represents number of clusters. The FCM
algorithm is formulated as the minimization of objective function Jm(U,V : X) given by:

min Jm(U,V : X) =
c∑

i=1

N∑
j=1

μm
ij‖xj − vi‖2 (11)

subject to

c∑
i=1

μij = 1, 1 ≤ j ≤ N (12)

where m ∈ (1, inf) is fuzzifier constant, U = {μij }c×N is fuzzy partition matrix over the
set X into c equivalence classes with the cluster prototype V = {vi}. μij and vi represents
the membership of j th element to the ith cluster and cluster center of ith class respectively.
The solution of (11) is obtained using Lagrange method of undetermined multiplier, which
are given as:

μij = (‖xj − vi‖2)
−1

(m−1)

∑c
k=1(‖xj − vk‖2)

−1
(m−1)

(13)

vi =
∑N

j=1μ
m
ij xj∑N

j=1μ
m
ij

, 1 ≤ i ≤ c (14)
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4 Modified intuitionistic fuzzy c-means algorithm

The research work [35] used intuitionistic fuzzy distance in the objective function for clus-
tering. However, they have not included hesitation degree in the objective function. On the
other hand, the research work [8] utilized hesitation degree in the objective function for clus-
tering. Instead of the intuistionistic fuzzy distance, Euclidean distance is used in this work.
However, instead of solving the objective function analytically; the approximate solution is
obtained using FCM in the research work [8]. Hence, the cluster centroids and the member-
ship so obtained are not reasonable. In order to overcome the shortcomings of the research
works [8, 35], we have used both hesitation degree and intuitionistic fuzzy distance in the
modified objective function. We called this method as modified intuitionistic fuzzy c-means
algorithm (MIFCM). The optimization problem for the MIFCM method is defined by incor-
porating the hesitation degree πij which is another kind of uncertainty arises while defining
the membership degree μij as described in Definition 3 and IFS distance measure (Defi-
nition 7). The optimization problem to be solved for clustering the data using the MIFCM
method can be given as:

min Jm(U,V : X) =
c∑

i=1

N∑
j=1

(μij + πij )
m‖xIFS

j − vIFS
i ‖2 (15)

subject to

c∑
i=1

μij = 1, 1 ≤ j ≤ N (16)

Case I Using Sugeno’s negation function

Utilizing the Sugeno’s negation function, as defined in Definitions 3 and 5, we can write
the sum of μij and πij as follows:

μij + πij = (λ + 1)μij

1 + λμij

(17)

Hence the optimization problem (15) can be rewritten as,

min Jm(U,V : X, λ) =
c∑

i=1

N∑
j=1

(
(λ + 1)μij

1 + λμij

)m

‖xIFS
j − vIFS

i ‖2 (18)

subject to

c∑
i=1

μij = 1, 1 ≤ j ≤ N (19)

After solving the above equation using Lagrange method of undetermined multiplier, the
membership value μij and cluster center vIFS

i = 〈μV (vi), νV (vi), πV (vi)〉 can be given as:

μij = (1 + λμij )
m+1
m−1 (‖xIFS

j − vIFS
i ‖) −2

m−1

∑c
k=1(1 + λukj )

m+1
m−1 (‖xIFS

j − vIFS
k ‖) −2

m−1

(20)

μV (vi) =
∑N

j=1

(
(λ+1)μij

1+λμij

)m

μX(xj )

∑N
j=1

(
(λ+1)μij

1+λμij

)m , 1 ≤ i ≤ c (21)
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νV (vi) =
∑N

j=1

(
(λ+1)μij

1+λμij

)m

νX(xj )

∑N
j=1

(
(λ+1)μij

1+λμij

)m , 1 ≤ i ≤ c (22)

πV (vi) =
∑N

j=1

(
(λ+1)μij

1+λμij

)m

πX(xj )

∑N
j=1

(
(λ+1)μij

1+λμij

)m , 1 ≤ i ≤ c (23)

The derivation of the membership value and cluster prototype is included in Appendix A.

Case II Using Yagar’s negation function

From Definitions 3 and 6 the sum of μij and πij can be rewritten as follows:

μij + πij = 1 − (1 − μα
ij )

1
α (24)

The optimization problem (15) (using the Yagar’s negation function) is rewritten as:

min Jm(U,V : X, α) =
c∑

i=1

N∑
j=1

[1 − (1 − μα
ij )

1
α ]m‖xIFS

j − vIFS
i ‖2 (25)

subject to

c∑
i=1

μij = 1, 1 ≤ j ≤ N (26)

Solving (25) using Lagrange method of undetermined multiplier, we have

μij =
1

(tij d2
ij )

1
α∑c

k=1
1

(tkj d2
kj )

1
α

(27)

where tij and dij can be given as

tij = [1 − (1 − μα
ij )

1
α ](m−1)

(1 − μα
ij )

1
α

μij (1 − μα
ij )

and dij = ‖xIFS
j − vIFS

i ‖ (28)

the cluster center vIFS
i = 〈μV (vi), νV (vi), πV (vi)〉 can be computed as:

μV (vi) =
∑N

j=1[1 − (1 − μα
ij )

1
α ]mμX(xj )∑N

j=1[1 − (1 − μα
ij )

1
α ]m

, 1 ≤ i ≤ c (29)

νV (vi) =
∑N

j=1[1 − (1 − μα
ij )

1
α ]mνX(xj )∑N

j=1[1 − (1 − μα
ij )

1
α ]m

, 1 ≤ i ≤ c (30)

πV (vi) =
∑N

j=1[1 − (1 − μα
ij )

1
α ]mπX(xj )∑N

j=1[1 − (1 − μα
ij )

1
α ]m

, 1 ≤ i ≤ c (31)

Outline of the iterative procedure for finding the solution of the MIFCM method is given in
Algorithm 1. The flow diagram of general clustering process based on the MIFCM method
is summarized in Fig. 1.
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It is worth noting from Definitions 3, 5 and 6 that high (low) membership value μij and
the low (high) non-membership value vij leads to lesser hesitation value while assigning a
given data point xj to the ith cluster. On the other hand, the case when there is race condition
between membership value μij and non-membership value νij , hesitation will be high. In
this case actual membership value may lie in the interval [μij , μij +πij ]. The incorporation
of the hesitation value will help in determining the actual membership value of a data point
to different clusters. Hence, the role of hesitation comes when the data point belongs to
boundary region and has almost equal membership value to each cluster. In such a situation,
the hesitation value for such data points to each cluster may be high which arises uncertainty
as the intensity value corresponding to those voxels contribute to more than one cluster.

Figure 2a shows a cropped MR image from which voxels of 3 × 3 window i.e., 9 voxels
are selected from the boundary containing three tissues (WM, GM and CSF) and these
voxels are indicated using different color in Fig. 2b. The plots of membership vs iteration
for these 9 voxels for different brain tissues, obtained using the proposed method (Case I)
are shown in Fig. 2c–f. From Fig. 2c–f it can be noted that all the 9 voxels are assigned to
correct class. Here, the lower left four voxels assigned to CSF, the upper right two voxels
assigned to White Matter and rest of the three voxels assigned to Gray Matter. The voxel
intensity values are given as {149, 143, 191; 96, 101, 180; 69, 84, 175}.

5 Experimental setup and results

In order to check the efficacy of the proposed method, experiments are performed on a
synthetic dataset and two publicly available datasets. The performance is compared with
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Fig. 1 Flow diagram of the MIFCM method

conventional FCM, IFCM [8], IFCM [35] and PIFCM [29]. For synthetic dataset, we have
used two measures namely partition coefficient and partition entropy for comparison [10,
26]. Partition coefficient (PC) can be calculated as follows:

PC = 1

N

c∑
i=1

N∑
j=1

μm
ij (32)

Partition entropy (PE) can be calculated as follows:

PE = − 1

N

c∑
i=1

N∑
j=1

μij log μij (33)

where c is the number of cluster, N is the total number of datapoints, μij is the membership
of j th datapoint in ith cluster and m is the fuzzifier factor.

For other two publicly available datsets, the performance measures used for comparison
are average segmentation accuracy (ASA), dice score (DS), jaccard score (JS), false negative
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ratio (FNR) and false positive ratio (FPR) [32]. These performance measures are calculated
as:

ASA =
c∑

i=1

|Xi ∩ Yi |∑c
j=1|Xj | (34)

DS = 2|Xi ∩ Yi |
|Xi | + |Yi | (35)

JS = |Xi ∩ Yi |
|Xi ∪ Yi | (36)

Fig. 2 Plot of the membership
values for different brain tissues
in 3 × 3 window of image for
each iteration using the Case I
formulation
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(e) Membership value for CSF in each iteration.

(f) Membership value for Background in each iteration.

Fig. 2 (continued)

FNR = |Xi | − |Xi ∩ Yi |
|Xi | (37)

FPR = |Yi | − |Xi ∩ Yi |
|Xi | (38)

where Xi denote the pixels belonging to the manual segmented image (ground truth), Yi

denote the pixels belonging to the experimental segmented image and |Xi | denotes the
cardinality of Xi .
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Table 1 Value of parameter used for experiment for different datasets

Parameters

Algorithms Synthetic dataset BrainWeb simulated dataset IBSR dataset

FCM m = 2 m = 2 m = 2

IFCM [8] α = 0.95, m = 2 α = 0.95, m = 2 α = 0.9 m = 2

IFCM [35] m = 2 m = 2 m = 2

PIFCM m = 2, α = 1.5, a = 1, m = 2, α = 1.5, a = 1, m = 2, α = 1.5, a = 1,

b = 1, κ = 0.1, λ = 1.2, b = 1, κ = 0.1, λ = 1.73, b = 1, κ = 0.1, λ = 1.73,

ω = 1 ω = 3 ω = 3

MIFCM Sugeno m = 2, λ = 0.9 m = 2, λ = 0.9 m = 2, λ = 0.9

MIFCM Yager m = 2, α = 0.9 m = 2, α = 0.9 m = 2, α = 0.9

5.1 Datasets

A new synthetic dataset is generated assuming vertices of the equilateral triangle, whose
each side is of length 6 unit, to be the actual cluster centers. Around this assumed clus-
ter centers, we have generated the two dimensional data points inside a circular region of
radius 3 unit. We have generated the 300 data points around each of these vertices. Other
than this dataset, two publicly available datasets are utilized. BrainWeb simulated MRI
brain volumes, a publicly available dataset1 from the McConnell Brain Imaging Center of
the Montreal Neurological Institute, McGill University [11] is used for evaluation of the
proposed method. This dataset consist of several simulated T1-weighted brain volume data
with different intensity inhomogeneity (0, 20 and 40%) and noise (1, 3, 5, 7 and 9%) of
resolution 1 × 1 × 1 mm with 181 × 217 × 181 dimension with the given ground truth for
different tissues.

Another publicly available real MRI brain images has been acquired from the Internet
Brain Segmentation Repository (IBSR)2 along with the given ground truth. For all the MRI
images, scull striping is done using the brain extraction tool.3 Table 1 shows the parameter
value used for different methods for comparison. The stopping criterion value ε is set to
0.0001 for all the methods.

5.2 Experimental results

In this subsection, we have discussed and compared the performance on synthetic dataset
and two publicly available datasets using FCM, three different IFCM methods and the
MIFCM method.

5.2.1 Results on synthetic dataset

We have compared the MIFCM method with the conventional FCM algorithm and three
intuitionistic fuzzy set based IFCM methods on a synthetic dataset. Figure 3a shows the

1BrainWeb [online], available: http://www.brainweb.bic.mni.mcgill.ca/brainweb.
2IBSR [online], available: http://www.cma.mgh.harvard.edu/ibsr/
3Brain Extraction Tool (BET) [online], available: http://www.fmrib.ox.ac.uk/fsl/.
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(a) Original data point (b) Clusters using FCM clustering
algorithm

(c) Clusters using IFCM([8]) clustering
algorithm

(d) Clusters using IFCM([35]) clustering 
algorithm

(e) Clusters using PIFCM clustering 
algorithm

(f) Clusters using the MIFCM_Sugeno
algorithm

(g) Clusters using the MIFCM_Yager
algorithm

Fig. 3 Results obtained from various IFCM based algorithms on triangle dataset

original datapoint of this dataset and Fig. 3b–g indicate the qualitative results obtained from
the conventional FCM, three IFCM methods and proposed method respectively. Table 2
shows the partition coefficient (PC) and partition entropy (PE) obtained for conventional
FCM, different IFCM methods and proposed method. From Table 2, it can be noted that the
proposed method achieved the highest partition coefficient PC value and lowest clustering
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Table 2 Comparison in terms of cluster validity measures for synthetic data

FCM IFCM [8] IFCM [35] PIFCM MIFCM Sugeno MIFCM Yager

PC 0.69 0.68 0.67 0.83 0.90 0.89

PE 0.57 0.59 0.60 0.33 0.22 0.21

entropy PE, which indicates the superior clustering capability of the proposed method in
comparison to other methods.

5.2.2 Results on simulated brain images

We have considered the optimal parameter while comparing various IFCM methods, con-
ventional FCM with the proposed method on the simulated brain images. Table 3 shows
the average segmentation accuracy for synthetic brain MR images with 0, 20 and 40% INU
and with 7 and 9% noise level for axial slice 90. From Table 3, it can be observed that the
MIFCM method using Sugeno’s and Yager’s negation function, on an average outperformed
the existing methods. Tables 4, 5, 6 and 7 indicate comparison of the proposed method
with other methods in terms of the performance measures : DS, JS, FNR and FPR for
WM, GM and CSF. Table 8 shows the comparison of computation time taken for BrainWeb
MRI images over 30 runs for different methods (The best results among different methods
achieved are shown in bold). It can be noted that the proposed method with Yager’s nega-
tion function is computationally expensive in comparison to Sugeno’s negation function.
Though the computation time of the proposed method with Sugeno’s negation function is
higher with other state of the art methods, however the performance of proposed method
with Sugeno’s negation function is better in comparison to FCM, IFCM [8], IFCM [35] and
PIFCM (see Table 3).

5.2.3 Results on real brain images

We have compared the MIFCM Sugeno, MIFCM Yager with FCM and three different
IFCM methods on 2D axial slices of T1-weighted real brain images from IBSR where
ground truth are given. Table 9 shows the average segmentation accuracy for GM on 14
(case 100 23, case 110 3, case 111 2, case 112 2, case 11 3, case 12 3, case 13 3, case
17 3, case 191 3, case 1 24, case 202 3, case 205 3, case 7 8, case 8 4) IBSR real brain
MRI images on slice 134 for the proposed method and the other existing methods. From
Table 9, it can be noted that average segmentation performance measure ASA on individ-
ual images and overall average performance of the proposed method is better than the other

Table 3 Average segmentation accuracy for BrainWeb simulated MRI

INU Noise FCM IFCM [8] IFCM [35] PIFCM MIFCM Sugeno MIFCM Yager

0 7 0.8689 0.8677 0.8776 0.8737 0.8771 0.8698

9 0.8160 0.8121 0.8398 0.8329 0.8401 0.8207

20 7 0.8775 0.8765 0.8835 0.8824 0.8846 0.8782

9 0.8180 0.8155 0.8405 0.8319 0.8417 0.8204

40 7 0.8562 0.8555 0.8697 0.8653 0.8697 0.8573

9 0.8087 0.8060 0.8309 0.8268 0.8311 0.8124
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Table 4 Dice Score for BrainWeb simulated MRI

INU Noise FCM IFCM [8] IFCM [35] PIFCM MIFCM Sugeno MIFCM Yager

WM 0 7 0.9237 0.9237 0.9266 0.9257 0.9266 0.9267

9 0.8793 0.8786 0.8890 0.8878 0.8890 0.8899

20 7 0.9238 0.9238 0.9257 0.9251 0.9261 0.9270

9 0.8798 0.8798 0.8882 0.8879 0.8882 0.8883

40 7 0.9045 0.9045 0.9087 0.9076 0.9085 0.9096

9 0.8702 0.8698 0.8786 0.8770 0.8779 0.8811

GM 0 7 0.8655 0.8633 0.8753 0.8745 0.8754 0.8706

9 0.8000 0.7945 0.8251 0.8248 0.8269 0.8188

20 7 0.8718 0.8703 0.8782 0.8779 0.8804 0.8766

9 0.8000 0.7962 0.8225 0.8228 0.8263 0.8148

40 7 0.8455 0.8440 0.8602 0.8582 0.8614 0.8550

9 0.7912 0.7872 0.8148 0.8141 0.8169 0.8101

CSF 0 7 0.7999 0.7967 0.8117 0.8115 0.8085 0.8098

9 0.7533 0.7454 0.7931 0.7962 0.7919 0.7836

20 7 0.8231 0.8208 0.8292 0.8303 0.8304 0.8316

9 0.7590 0.7531 0.7983 0.8029 0.7995 0.7888

40 7 0.8050 0.8037 0.8309 0.8290 0.8304 0.8242

9 0.7534 0.7480 0.7936 0.7960 0.7937 0.7863

methods. Tables 10, 11, 12 and 13 show the the performance in terms of DS, JS, FNR and
FPR for GM on this dataset (The result in boldface shows the best performing method in
Tables). The performance of the proposed methods in terms of these measures for GM on
average is better than the FCM and other three IFCM methods.

5.3 Statistical test

Friedman test, a two way non-parametric statistical test is conducted to find out the signif-
icant difference among the proposed and other segmentation methods for both the publicly
available datasets. The null hypothesis (H0) of this test is that there is no significant dif-
ference in the performance of the proposed and other segmentation methods whereas the
alternative hypothesis (H1) defines as the performance of the proposed and other methods
are different. For a given performance measure M , the H0 and H1 can be defined as:

H0 : μM
FCM = μM

IFCM[8] = μM
IFCM[35] = μM

PIFCM = μM
MIFCM Sugeno = μM

MIFCM Yager

(39)
H1 : μM

FCM �= μM
IFCM[8] �= μM

IFCM[35] �= μM
PIFCM �= μM

MIFCM Sugeno �= μM
MIFCM Yager

(40)
where M ∈ {ASA,DS, JS, FNR,FPR}. The rank of different segmentation methods,
according to the different performance measures is obtained for comparing the methods
separately. In Friedman test, the average rank Rj of j th methods for a given N number of
images is obtained with respect to a given performance measure as:

Rj = 1

N

N∑
i=1

r
j
i (41)
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Table 5 Jaccard Score for BrainWeb simulated MRI

INU Noise FCM IFCM [8] IFCM [35] PIFCM MIFCM Sugeno MIFCM Yager

WM 0 7 0.8583 0.8583 0.8633 0.8618 0.8633 0.8634

9 0.7845 0.7835 0.8001 0.7983 0.8001 0.8017

20 7 0.8584 0.8584 0.8617 0.8607 0.8624 0.8640

9 0.7854 0.7854 0.7989 0.7983 0.7989 0.7990

40 7 0.8257 0.8257 0.8327 0.8309 0.8324 0.8342

9 0.7703 0.7695 0.7835 0.7810 0.7823 0.7874

GM 0 7 0.7630 0.7595 0.7783 0.7771 0.7785 0.7708

9 0.6667 0.6590 0.7023 0.7019 0.7048 0.6931

20 7 0.7728 0.7704 0.7829 0.7824 0.7864 0.7803

9 0.6667 0.6614 0.6985 0.6989 0.7040 0.6875

40 7 0.7324 0.7301 0.7547 0.7516 0.7565 0.7468

9 0.6546 0.6490 0.6875 0.6865 0.6904 0.6809

CSF 0 7 0.6665 0.6621 0.6831 0.6827 0.6785 0.6804

9 0.6042 0.5942 0.6572 0.6614 0.6554 0.6441

20 7 0.6994 0.6961 0.7082 0.7099 0.7100 0.7118

9 0.6116 0.6040 0.6643 0.6707 0.6660 0.6512

40 7 0.6737 0.6718 0.7107 0.7079 0.7101 0.7010

9 0.6043 0.5974 0.6578 0.6612 0.6580 0.6478

Table 6 FNR for BrainWeb simulated MRI

INU Noise FCM IFCM [8] IFCM [35] PIFCM MIFCM Sugeno MIFCM Yager

WM 0 7 0.0885 0.0885 0.0758 0.0802 0.0758 0.0708

9 0.1605 0.1618 0.1308 0.1359 0.1308 0.1252

20 7 0.0989 0.0989 0.0875 0.0912 0.0866 0.0815

9 0.1692 0.1692 0.1395 0.1434 0.1404 0.1375

40 7 0.1330 0.1330 0.1186 0.1226 0.1193 0.1128

9 0.1847 0.1860 0.1578 0.1631 0.1600 0.1503

GM 0 7 0.1416 0.1451 0.1294 0.1280 0.1266 0.1452

9 0.1875 0.1955 0.1607 0.1569 0.1553 0.1789

20 7 0.1216 0.1238 0.1129 0.1112 0.1079 0.1249

9 0.1829 0.1891 0.1599 0.1565 0.1504 0.1784

40 7 0.1363 0.1383 0.1173 0.1180 0.1127 0.1337

9 0.1832 0.1898 0.1572 0.1546 0.1496 0.1743

CSF 0 7 0.2431 0.2424 0.2560 0.2486 0.2659 0.2486

9 0.2516 0.2533 0.2543 0.2455 0.2659 0.2547

20 7 0.2016 0.2027 0.2193 0.2122 0.2275 0.2091

9 0.2210 0.2227 0.2234 0.2105 0.2360 0.2197

40 7 0.1976 0.1976 0.2006 0.1942 0.2098 0.1982

9 0.2329 0.2305 0.2353 0.2251 0.2458 0.2319
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Table 7 FPR for BrainWeb simulated MRI

INU Noise FCM IFCM [8] IFCM [35] PIFCM MIFCM Sugeno MIFCM Yager

WM 0 7 0.0620 0.0620 0.0706 0.0674 0.0706 0.0762

9 0.0701 0.0698 0.0864 0.0825 0.0864 0.0912

20 7 0.0497 0.0497 0.0589 0.0559 0.0592 0.0631

9 0.0578 0.0578 0.0771 0.0730 0.0760 0.0795

40 7 0.0501 0.0501 0.0585 0.0560 0.0580 0.0635

9 0.0585 0.0578 0.0748 0.0716 0.0737 0.0791

GM 0 7 0.1252 0.1256 0.1186 0.1222 0.1219 0.1089

9 0.2187 0.2208 0.1951 0.2012 0.1985 0.1846

20 7 0.1367 0.1374 0.1330 0.1360 0.1344 0.1215

9 0.2256 0.2260 0.2028 0.2069 0.2068 0.1952

40 7 0.1794 0.1803 0.1696 0.1736 0.1729 0.1600

9 0.2479 0.2484 0.2260 0.2315 0.2317 0.2127

CSF 0 7 0.1357 0.1442 0.0891 0.1006 0.0819 0.1044

9 0.2387 0.2567 0.1346 0.1408 0.1200 0.1571

20 7 0.1414 0.1455 0.1023 0.1098 0.0881 0.1112

9 0.2737 0.2870 0.1690 0.1772 0.1472 0.1982

40 7 0.1911 0.1945 0.1248 0.1384 0.1129 0.1438

9 0.2693 0.2880 0.1625 0.1721 0.1462 0.1857

where r
j
i ∈ {1, 2, . . . , k}(1 ≤ i ≤ N, 1 ≤ j ≤ k) is rank value for ith image and j th

method. Table 14 shows the average Friedman ranking of different segmentation methods
corresponding to ASA for 14 IBSR brain images and 6 BrainWeb brain images used for
experiment and other four performance measures evaluated for GM for same set of images
[12, 13]. Lowest rank for a segmentation method shows its better performance compared
to other methods for a given performance measure. On the basis of Friedman ranking the
MIFCM Sugeno performs better in terms of ASA,DS, JS, FNR except FPR. The statis-
tical hypothesis test proposed by Iman and Davenportis is used. The statistic FID is defined
by Iman and Davenport [16] as:

FID = (N − 1)χ2
F

N(k − 1) − χ2
F

(42)

which is distributed according to F-distribution with k − 1 and (k − 1)(N − 1) degrees of

freedom, where χ2
F is the Friedman’s statistic defined as 12N

k(k+1)

[∑
j R2

j − k(k+1)2

4

]
. In our

experiments k = 6 and N = 20. The p-values obtained by Iman and Davenport statistic
are 5.90E-13, 7.50E-9, 7.50E-9, 3.88E-20 and 1.49E-21 corresponding to the performance

Table 8 Average computation time (in sec.) taken by different methods

FCM IFCM [8] IFCM [35] PIFCM MIFCM Sugeno MIFCM Yager

0.68 1.39 0.40 0.68 2.06 4.21
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Table 9 Average segmentation accuracy for IBSR dataset

Cases FCM IFCM [8] IFCM [35] PIFCM MIFCM Sugeno MIFCM Yager

100 23 0.7666 0.7866 0.7396 0.7326 0.7933 0.7735

110 3 0.7713 0.7897 0.7633 0.7456 0.7769 0.7683

111 2 0.7614 0.7722 0.7714 0.7493 0.7816 0.7682

112 2 0.7576 0.7632 0.7686 0.7563 0.7732 0.7578

11 3 0.7859 0.7920 0.7752 0.7635 0.7982 0.7920

12 3 0.7950 0.8007 0.8021 0.7856 0.8138 0.7956

13 3 0.8461 0.8472 0.8485 0.8342 0.8485 0.8419

17 3 0.7188 0.7154 0.7631 0.7324 0.7587 0.7239

191 3 0.7763 0.7792 0.7866 0.7701 0.7969 0.7775

1 24 0.7510 0.7634 0.7699 0.7470 0.7727 0.7593

202 3 0.7784 0.7973 0.7707 0.7475 0.8055 0.7705

205 3 0.7667 0.7780 0.7514 0.7445 0.7730 0.7695

7 8 0.6912 0.6976 0.7401 0.7111 0.7361 0.7034

8 4 0.6462 0.6525 0.7052 0.6711 0.7046 0.6569

Average 0.7580 0.7668 0.7683 0.7493 0.7809 0.7613

measures ASA, DS, JS, FNR and FPR respectively, which advocate the rejection of null
hypothesis H0 as there is significant difference among different segmentation methods at
the significance level of 0.05. However, these p-values so obtained are not suitable for com-
parison with the control method, i.e. the one that emerges with the lowest rank. So adjusted
p-values [12] are computed which take into account the error accumulated and provide the
correct correlation. This is done with respect to a control method which is the proposed

Table 10 DS for IBSR dataset for GM

Cases FCM IFCM [8] IFCM [35] PIFCM MIFCM Sugeno MIFCM Yager

100 23 0.8191 0.8337 0.7858 0.7887 0.8298 0.8234

110 3 0.7951 0.8123 0.7750 0.7649 0.7887 0.7900

111 2 0.7793 0.7920 0.7832 0.7582 0.7948 0.7862

112 2 0.7729 0.7788 0.7796 0.7648 0.7865 0.7702

11 3 0.8151 0.8187 0.7904 0.7926 0.8122 0.8187

12 3 0.8129 0.8188 0.8145 0.8006 0.8301 0.8125

13 3 0.8564 0.8576 0.8532 0.8398 0.8532 0.8505

17 3 0.7296 0.7291 0.7501 0.7289 0.7530 0.7320

191 3 0.7963 0.7990 0.8030 0.7846 0.8147 0.7955

1 24 0.7481 0.7617 0.7634 0.7336 0.7667 0.7550

202 3 0.8331 0.8489 0.8210 0.8040 0.8529 0.8251

205 3 0.8081 0.8192 0.7867 0.7862 0.8080 0.8104

7 8 0.6800 0.6879 0.7148 0.6873 0.7130 0.6874

8 4 0.6307 0.6403 0.6731 0.6460 0.6743 0.6396

Average 0.7769 0.7856 0.7781 0.7629 0.7913 0.7783
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Table 11 JS for IBSR dataset for GM

Cases FCM IFCM [8] IFCM [35] PIFCM MIFCM Sugeno MIFCM Yager

100 23 0.6937 0.7148 0.6472 0.6511 0.7091 0.6998

110 3 0.6599 0.6839 0.6327 0.6192 0.6511 0.6530

111 2 0.6384 0.6557 0.6436 0.6106 0.6595 0.6478

112 2 0.6299 0.6377 0.6389 0.6192 0.6481 0.6263

11 3 0.6880 0.6930 0.6534 0.6565 0.6838 0.6930

12 3 0.6848 0.6931 0.6870 0.6676 0.7095 0.6842

13 3 0.7488 0.7507 0.7440 0.7239 0.7440 0.7399

17 3 0.5743 0.5737 0.6001 0.5734 0.6038 0.5773

191 3 0.6616 0.6653 0.6709 0.6456 0.6873 0.6604

1 24 0.5975 0.6151 0.6173 0.5792 0.6217 0.6065

202 3 0.7139 0.7375 0.6963 0.6722 0.7436 0.7023

205 3 0.6780 0.6937 0.6484 0.6477 0.6779 0.6812

7 8 0.5152 0.5243 0.5562 0.5236 0.5540 0.5237

8 4 0.4606 0.4709 0.5072 0.4771 0.5086 0.4701

Average 0.6389 0.6507 0.6388 0.6191 0.6573 0.6404

method MIFCM Sugeno (lowest rank for ASA, DS, JS, FNR). For this, a set of post-hoc
procedures are defined and adjusted p-values are computed. The most widely used post-
hoc method [12] to obtain adjusted p-values is Holm procedure. Table 15 shows the various
value of adjusted p-values obtained. From this Table, it is clear that there is statistical dif-
ference in terms of ASA,DS, JS and FNR between proposed method and other methods
except IFCM [35].

Table 12 FNR for IBSR dataset for GM

Cases FCM IFCM [8] IFCM [35] PIFCM MIFCM Sugeno MIFCM Yager

100 23 0.2631 0.2369 0.3004 0.3082 0.2319 0.2547

110 3 0.2877 0.2575 0.3092 0.3344 0.2875 0.2954

111 2 0.2974 0.2717 0.2924 0.3386 0.2708 0.2852

112 2 0.3260 0.3167 0.3226 0.3479 0.3079 0.3348

11 3 0.2547 0.2460 0.2824 0.2954 0.2465 0.2460

12 3 0.2604 0.2512 0.2621 0.2865 0.2294 0.2633

13 3 0.1728 0.1677 0.1778 0.2155 0.1778 0.1870

17 3 0.2995 0.2934 0.2802 0.3259 0.2598 0.2977

191 3 0.3054 0.3009 0.2999 0.3307 0.2795 0.3104

1 24 0.3379 0.3153 0.3204 0.3719 0.3129 0.3297

202 3 0.2613 0.2334 0.2755 0.3058 0.2260 0.2738

205 3 0.2819 0.2609 0.3059 0.3161 0.2749 0.2781

7 8 0.3929 0.3742 0.3497 0.3982 0.3497 0.3869

8 4 0.4649 0.4487 0.3977 0.4514 0.3948 0.4537

Average 0.3004 0.2839 0.2983 0.3305 0.2750 0.2997
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Table 13 FPR for IBSR dataset for GM

Cases FCM IFCM [8] IFCM [35] PIFCM MIFCM Sugeno MIFCM Yager

100 23 0.0623 0.0676 0.0810 0.0626 0.0832 0.0651

110 3 0.0794 0.0856 0.0919 0.0749 0.0944 0.0791

111 2 0.1007 0.1107 0.0994 0.0832 0.1057 0.1035

112 2 0.0700 0.0716 0.0603 0.0531 0.0678 0.0622

11 3 0.0834 0.0880 0.0983 0.0733 0.1018 0.0880

12 3 0.0800 0.0803 0.0740 0.0688 0.0860 0.0769

13 3 0.1048 0.1086 0.1051 0.0837 0.1051 0.0988

17 3 0.2198 0.2316 0.1994 0.1755 0.2259 0.2166

191 3 0.0499 0.0509 0.0436 0.0367 0.0482 0.0443

1 24 0.1081 0.1132 0.1009 0.0844 0.1053 0.1053

202 3 0.0347 0.0395 0.0404 0.0327 0.0410 0.0341

205 3 0.0591 0.0655 0.0706 0.0559 0.0696 0.0597

7 8 0.1784 0.1936 0.1692 0.1494 0.1738 0.1706

8 4 0.1618 0.1707 0.1873 0.1499 0.1899 0.1621

Average 0.0995 0.1055 0.1015 0.0846 0.1070 0.0976

Table 14 Friedman ranking of different methods

Measures\Methods MIFCM Sugeno IFCM [35] IFCM [8] MIFCM Yager FCM PIFCM

ASA 1.35 2.5 3.875 3.925 4.7 4.65

DS 1.675 3.025 3.425 3.525 4.25 5.1

JS 1.675 3.025 3.425 3.525 4.25 5.1

FNR 1.35 3.1 2.825 3.875 3.95 5.9

FPR 4.75 3.375 5.325 2.65 3.85 1.05

Table 15 Adjusted p-values (FRIEDMAN)

Algorithm FCM PIFCM MIFCM Yager IFCM [8] IFCM [35]

ASA Unadjusted p 1.49E-08 2.43E-08 1.35E-05 1.97E-05 0.051913

pHolm 7.46E-08 9.73E-08 4.04E-05 4.04E-05 0.051913

DS Unadjusted p 1.35E-05 7.07E-09 1.77E-03 3.10E-03 0.022494

pHolm 5.38E-05 3.53E-08 5.30E-03 6.19E-03 0.022494

JS Unadjusted p 1.35E-05 7.07E-09 1.77E-03 3.10E-03 0.022494

pHolm 5.38E-05 3.53E-08 5.30E-03 6.19E-03 0.022494

FNR Unadjusted p 1.11E-05 1.46E-14 1.97E-05 0.01266 3.10E-03

pHolm 4.43E-05 7.30E-14 5.92E-05 0.01266 6.19E-03
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6 Conclusion

In this paper, we have proposed modified IFCM for segmentation of brain MRI data to han-
dle uncertainty associated with it due to imprecise measurement and noise. We have solved
analytically the optimization problem using Lagrange method of undetermined multiplier.
The proposed method is not very sensitive to the parameter in contrast to the earlier similar
works. We have performed experiments on a synthetic dataset, BrainWeb dataset and real
brain IBSR dataset and compared the performance in terms of quantitative measures (ASA,
DS, JS, FNR and FPR) with the FCM and three variants of IFCM methods. The experimen-
tal evidences endorses the efficacy of the proposed method in comparison to the existing
methods. We have also performed the Friedman statistical test which shows the superior
performance of the proposed method.
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Appendix A: Derivation for the membership value and cluster center

The Lagrangian for the objective function (18) can be given as

L =
∑c

i=1

N∑
j=1

(
(λ + 1)μij

1 + λμij

)m

‖xIFS
j − vIFS

i ‖2 +
∑N

j=1
Yj (1 −

∑c

i=1
μij ) (43)

∂L

∂μij

= m

(
(λ + 1)μij

1 + λμij

)m−1 [
(λ + 1)

1 + λμij

− λ(λ + 1)μij

(1 + λμij )2

] (
‖xIFS

j − vIFS
i ‖2

)
− Yj = 0

⇒ m

(
(λ + 1)

1 + λμij

)m

μm−1
ij

[
1

(1 + λμij )

] (
‖xIFS

j − vIFS
i ‖2

)
− Yj = 0

⇒ μm−1
ij =

(
Yj

m(λ + 1)m

)⎡
⎣ (1 + λμij )

m+1(
‖xIFS

j − vIFS
i ‖2

)
⎤
⎦

⇒ μij =
(

Yj

m(λ + 1)m

) 1
m−1

⎡
⎢⎢⎣ (1 + λμij )

m+1
m−1

(
‖xIFS

j − vIFS
i ‖2

) 1
m−1

⎤
⎥⎥⎦

⇒
∑c

i=1
μij =

∑c

i=1

(
Yj

m(λ + 1)m

) 1
m−1

⎡
⎢⎢⎣ (1 + λμij )

m+1
m−1

(
‖xIFS

j − vIFS
i ‖2

) 1
m−1

⎤
⎥⎥⎦ = 1
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⇒
(

Yj

m(λ + 1)m

) 1
m−1 = 1

c∑
i=1

(1+λμij )
m+1
m−1

(
‖xIFS

j −vIFS
i ‖2

) 1
m−1

⇒ μij =

(1+λμij )
m+1
m−1

(
‖xIFS

j −vIFS
i ‖2

) 1
m−1

c∑
l=1

(1+λulj )
m+1
m−1

(
‖xIFS

j −vIFS
l ‖2

) 1
m−1

⇒ μij = 1

c∑
l=1

( ‖xIFS
j −vIFS

i ‖
‖xIFS

j −vIFS
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) 2
m−1 (

1+λulj

1+λμij

)m+1
m−1

(44)

∂L

∂μV (vi)
=

∑N

j=1

(
(λ + 1)μij

1 + λμij

)m

(μX(xj ) − μV (vi)) = 0 (45)

⇒
∑N

j=1

(
(λ + 1)μij

1 + λμij

)m

μX(xj ) −
∑N

j=1

(
(λ + 1)μij

1 + λμij

)m

μV (vi) = 0

⇒ μV (vi) =
∑N

j=1

(
(λ+1)μij

1+λμij

)m

μX(xj )

∑N
j=1

(
(λ+1)μij

1+λμij

)m (46)

∂L

∂νV (vi)
=

∑N

j=1

(
(λ + 1)μij

1 + λμij

)m

(νX(xj ) − νV (vi)) = 0 (47)

⇒
∑N

j=1

(
(λ + 1)μij

1 + λμij

)m

νX(xj ) −
∑N

j=1

(
(λ + 1)μij

1 + λμij

)m

νV (vi) = 0

⇒ νV (vi) =
∑N

j=1

(
(λ+1)μij

1+λμij

)m

νX(xj )

∑N
j=1

(
(λ+1)μij

1+λμij

)m (48)

∂L

∂πV (vi)
=

∑N

j=1

(
(λ + 1)μij

1 + λμij

)m

(πX(xj ) − πV (vi)) = 0 (49)

⇒
∑N

j=1

(
(λ + 1)μij

1 + λμij

)m

πX(xj ) −
∑N

j=1

(
(λ + 1)μij

1 + λμij

)m

πV (vi) = 0

⇒ πV (vi) =
∑N

j=1

(
(λ+1)μij

1+λμij

)m

πX(xj )

∑N
j=1

(
(λ+1)μij

1+λμij

)m (50)
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