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Abstract In this paper, we present an efficient set of moment invariants, named Direct
Krawtchouk Moment Invariants (DKMI), for 3D objects recognition. This new set of invari-
ants can be directly derived from the Krawtchouk moments, based on algebraic properties
of Krawtchouk polynomials. The proposed computation approach is effectively compared
with the classical method, which rely on the indirect computation of moment invariants by
using the corresponding geometric moment invariants. Several experiments are carried out
so as to evaluate the performance of the newly introduced invariants. Invariability property
and noise robustness are firstly investigated. Secondly, the numerical stability is discussed.
Then, the performance of the proposed moment invariants as pattern features for 3D object
classification is compared with the existing Geometric, Krawtchouk, Tchebichef and Hahn
Moment Invariants. Finally, a comparative analysis of computational time of these moment
invariants is illustrated. The obtained results demonstrate the efficiency and the superiority
of the proposed method.
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1 Introduction

Moment invariants are defined as a function of the image moments, which have the property
to remain unchangeable or invariant under certain group of image transformations, like
rotation, translation, scaling, convolution, etc [16]. Due to this property, one can represent
object features independently of the aforementioned deformations. As a result, the moment
invariants descriptors have been attracting the interest of the scientific community and have
become an important tool for the recognition and the classification of deformed objects.
Indeed, the notion of moment invariants has been effectively applied in various domains
such as image analysis [4, 28, 37, 53, 60, 64–66], pattern recognition [5, 15, 19, 50], image
retrieval [2, 3, 46, 47], medical image analysis [6, 13, 20] and image watermarking [14,
54, 62]. In this diversity of applications the moment invariants were proved to be a very
powerful tool for feature representation and extraction.

Generally, the family of moments and moment invariants can be categorized into two
main groups: (1) non-orthogonal moments that is based on non-orthogonal kernel function,
such as the geometric or the complex basis. (2) the orthogonal moments, where the basis
function is typically represented by a continuous or discrete orthogonal polynomials. As
well-known, the orthogonality property insures that no information redundancy over the
extraction features and provide high description capability, which is considered as a major
advantage over non-orthogonal ones. Moreover, according to the definition domain of the
used polynomials basis, orthogonal moments can be further divided into moments defined
in polar coordinate or Cartesian coordinate. One advantage of the moments defined in the
Cartesian coordinate is the facility of obtaining scale and translation invariants in compari-
son with those defined in polar coordinate. While rotation invariants can be easily achieved
in polar coordinate. A complete classification of the existing families of image moment is
illustrated in Fig. 1.

Recently, the rapid development of the 3D imaging technologies and scanning devices,
such as Computer Tomography (CT), Magnetic Resonance Imaging (MRI) and Light Detec-
tion And Ranging (LiDAR). Has leads to a variety of applications, like 3D surface image
reconstruction [55] and 3D image registration [30], to tackle the problem of 3D object
recognition and representation. As one of the most important tools in 3D image analysis,
three-dimensional moment invariants has gained an increasing interest in latest years, espe-
cially in pattern recognition applications [7, 34, 43, 51, 59]. The reason is due to their
capability to extract shape features independently of 3D geometric deformations. Actually,
there are three methods for deriving invariants: (1) The normalization method, which is
based on image normalization and aims to transform a distorted image input into its corre-
sponding normal form, such that it is invariant to certain deformations [17, 18, 21, 39, 61].
(2) The indirect method, it relies on the algebraic relation between the image moments and
geometric ones, in order to express moment invariants as a linear combination of Geomet-
ric Moment Invariants. Due to the simplicity of the indirect method, it has been extensively
discussed [4, 36, 37, 40, 60]. (3) The direct method, it seeks to directly derive invariants
from the image moments [9, 10, 56, 57, 67]. In fact, the main advantage of this method, is
that moment invariants can be algebraically derived from orthogonal moments without the
requirement of calculating the normalization parameters of the deformed image, or using
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Fig. 1 Classification of the categories of image moment invariants

the indirect methods to achieve the invariance through the Geometric Moment Invariants.
So far, only few research studies concerning the derivation of moments invariants utilizing
the direct method has been presented [38, 56], and no such paper dealing with the derivation
of three-dimensional Rotation, Scaling and Translation (RST) moment invariants, using the
direct method, has been published.

Motivated by the excellent properties of the Krawtchouk moments, which are the discrete
orthogonality, the simplicity of implementation, representation in matrix form, the capabil-
ity to extract local features and the high tolerance to different kinds of noise [4, 7, 60]. Also,
noticing that the orthogonal moments, especially discrete orthogonal moments, have shown
more robustness against image noise and high discrimination power for object detection and
recognition in comparison with the non-orthogonal moments [16]. In the top of that, the
study of the Krawtchouk Moment Invariants, using direct derivation method, for 3D image
analysis and representation has not been carried out in the literature.

In this paper, we introduce a new set of discrete orthogonal moment invariants, named
Direct Krawtchouk Moment Invariants (DKMI). This new set is algebraically derived from
Krawtchouk Moments based on the corresponding Krawtchouk polynomials. Moreover, the
proposed invariants can be used for the extraction of 3D shape features independently of
rotation, scaling and translation deformations. As already mentioned, this proposed set will
eliminate the need for the image normalization process or the computation of geometric
moments to achieve the desired invariants.

It is well-known that the description of deformed objects with respect to geometric trans-
formations as translation, scale and rotation, has a high significance in many computer
vision tasks and very useful in pattern recognition. Therefore, the potential applications of
the proposed three-dimensional moment invariants, can be found in variety of fields: such
as the recognition of complex activities [31, 32], human motion identification and computer
interaction [12, 33]. In addition, their applicability can be extended to object matching and
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tracking, where the tracked object usually encounters some appearance variations in-plane
rotation, translation and scale change [23–27].

In summary, we will initially provide a short overview of the indirect derivation method
of some existing moment invariants, namely Tchebichef, Krawtchouk and Hahn Moment
Invariants. Then, we will present the detailed process for the direct derivation of our new set
of invariants from 3D Krawtchouk Moments. Subsequently, several numerical experiments
are presented, so as to validate the effectiveness of the proposed DKMI. First, we investi-
gate their RST invariance and noise robustness. Second, the effect of image size on their
numerical stability is discussed. Then, the recognition performance of the new DKMI is
compared with the traditional indirect invariants in pattern recognition application. Finally,
a comparison of computational speed between the proposed descriptors and the traditional
ones is presented.

The rest of this paper is structured as follows: In Section 2, we present the traditional indi-
rect method for deriving discrete orthogonal moment invariants. In Section 3, we introduce
the proposed Direct Krawtchouk Moment Invariants. Section 4, is devoted to provide the
appropriate experiments to demonstrate the usefulness of our proposed invariants. Finally,
concluding remarks are presented in Section 5.

2 Classical 3D moment invariants

The usual method for obtaining rotation, scaling and translation moment invariants is to
express the image moments as a linear combination of geometric ones, and then make use
of rotation, scaling and translation geometric invariants instead of geometric moments.

2.1 Geometric moment invariants

The (n + m + k)-th order geometric moments mnmk of an image f (x, y, z) with the size
N × M × K is defined using the discrete sum approximation as:

mnmk =
N∑

x=1

M∑

y=1

K∑

z=1

xnymzkf (x, y, z). (1)

And the corresponding central geometric moments μnmk , which are translation invari-
ants, are given by:

μnmk =
N∑

x=1

M∑

y=1

K∑

z=1

(x − x0)
n(y − y0)

m(z − z0)
kf (x, y, z), (2)

where (x0, y0, z0) denotes the centroid coordinates of the 3D object, that are given by:

x0 = m100

m000
, y0 = m010

m000
, z0 = m001

m000
. (3)

The 3D image rotation is usually performed as a series of three 2D rotations about each
axis. In this section we consider the Euler Angle Sequence (x − y − z), which is commonly
used in aerospace engineering and computer graphics. The 3D rotation matrix associated
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with the Euler Angle Sequence (x − y − z), is defined by the rotation along x axis by angle
φ, along y axis by angle θ and along z axis by angle ψ :

Rxyz(φ, θ, ψ) = Rx(φ)Ry(θ)Rz(ψ) (4)

Rxyz(φ, θ, ψ) =
⎛

⎝
1 0 0
0 cosφ sinφ

0 −sinφ cosφ

⎞

⎠

⎛

⎝
cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

⎞

⎠

⎛

⎝
cosψ sinψ 0
−sinψ cosψ 0
0 0 1

⎞

⎠

=
⎛

⎝
cosθ cosψ cosθ sinψ −sinθ

sinφ sinθ cosψ − cosφ sinψ sinφ sinθ sinψ + cosφ cosψ cosθ sinφ

cosφ sinθ cosψ + sinφ sinψ cosφ sinθ sinψ − sinφ cosψ cosφ cosθ

⎞

⎠ . (5)

In general way, the 3D rotation matrix can be expressed as a linear transformation of the
3D object coordinates, by:

⎛

⎝
x ′
y′
z′

⎞

⎠ =
⎛

⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠

⎛

⎝
x

y

z

⎞

⎠ =
⎛

⎝
a11x + a12y + a13z

a21x + a22y + a23z

a31x + a32y + a33z

⎞

⎠ . (6)

Hence, in analogy with the geometric rotation invariants of the 2D case, we can obtain
the (n+m+k)-th order of 3D Geometric Moment Invariants (GMI), which are independent
of rotation, scaling and translation transforms, by the following formula:

νnmk = m
−γ

000

N−1∑

x=0

M−1∑

y=0

K−1∑

z=0

⎧
⎨

⎩

[a11(x − x0) + a12(y − y0) + a13(z − z0)]n
×[a21(x − x0) + a22(y − y0) + a23(z − z0)]m
×[a31(x − x0) + a32(y − y0) + a33(z − z0)]k

⎫
⎬

⎭ f (x, y, z),

(7)
where γ = n+m+k

3 + 1.
By using the trinomial theorem, which is given by:

(x + y + z)n =
n∑

i=0

n−i∑

s=0

n!
i!s!(n − i − s)!x

iyszn−i−s , (8)

the (7) can be further expressed in terms of central moments, as introduced in [7, 16], as
follows:

νnmk = m
−γ

000

n∑

i=0

n−i∑

s=0

m∑

j=0

m−j∑

t=0

k∑

e=0

k−e∑

f =0

n!
i!s!(n − i − s)!

m!
j !t !(m − j − t)!

k!
e!f !(k − e − f )!

×ai
21a

s
22a

n−i−s
23 a

j

21a
t
22a

m−j−t

23 ae
21a

f

22a
k−e−f

23 μi+j+e,s+t+f,n+m+k−i−s−j−t−e−f .

(9)

2.2 Indirect derivation of orthogonal moment invariants

Before presenting the traditional indirect method for deriving 3D Tchebichef, Krawtchouk
and Hahn Moment Invariants, using geometric moment invariants, let us introduce some
necessary notations and useful relations. Firstly, we need to provide the definition of the
generalized hypergeometric functions 2F1(·) and 3F2(·):

2F1(a1, a2; b; z) =
∞∑

k=0

(a1)k(a2)k

(b)k

zk

k! , (10)

3F2(a1, a2, a3; b1, b2; z) =
∞∑

k=0

(a1)k(a2)k(a3)k

(b1)k(b2)k

zk

k! , (11)
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where (a)k is the Pochhammer symbol, also called raising factorial, given by:

(a)k = a(a + 1)(a + 2)...(a + k − 1) = Γ (a + k)

Γ (a)
, (12)

and Γ (n) = (n − 1)! is the gamma function.
We can also introduce the falling factorial denoted by 〈x〉k defined as:

〈x〉k = (−1)k(−x)k. (13)

As mentioned in [11], 〈x〉k can be expanded as:

〈x〉k =
k∑

i=0

S1(k, i)xi, (14)

where S1(k, i) are the Stirling numbers of the first kind, obtained by the following
recurrence relation:

S1(k, i) = S1(k − 1, i − 1) − (k − 1)S1(k − 1, i), k ≥ 1, i ≥ 1, (15)

with S1(k, 0) = S1(0, i) = 0, and S1(0, 0) = 1.

2.2.1 Indirect Tchebichef moment invariants

The Tchebichef polynomials was introduced by Pafnuty Chebychev in [52], and firstly used
in image analysis by Mukundan et al. [37] as a basis function for image moments. The
(n + m + k)-th order 3D Tchebichef Moments, for an image function f (x, y, z) of the size
N × M × K is defined as:

T Mnmk =
N−1∑

x=0

M−1∑

y=0

K−1∑

z=0

t̄n(x, N)t̄m(y,N)t̄k(z,N)f (x, y, z), (16)

where t̄n(x; N) is the n-th order weighted Tchebichef polynomials defined by:

t̄n(x; N) = tn(x; N)

√
wt(x)

ρt (n)
, (17)

and tn(x;N) is n-th order discrete orthogonal Tchebichef polynomials, with respect to the
weight function wt(x) and normalization function ρt (n), which are defined respectively by :

wt(x) = 1, (18)

and

ρt (n) = 2n!
(

N + n

2n + 1

)
. (19)

The classical Tchebichef orthogonal polynomials with x = 0, 1, ..., N − 1, are defined
in terms of generalized hypergeometric function as:

tn(x; N) = (1 − N)n 3F2(−n,−x, 1 + n; 1, 1 − N; 1), (20)

and can be expanded as:

tn(x; N) =
n∑

i=0

An,ix
i, (21)

with

An,i =
n∑

k=i

(−1)n−k(N − 1 − k)!(n + k)!
(k!)2(N − 1 − n)!(n − k)! S1(k, i). (22)
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Substituting (21) to (16), the Tchebichef Moments can be written in terms of geometric
moments as:

T Mnmk = 1

ρt (n)ρt (m)ρt (k)

n∑

p=0

m∑

q=0

k∑

r=0

An,pAm,qAk,rmpqr , (23)

and by replacing mpqr in (23) by νpqr of (9) we can obtain Tchebichef Moment Invariants
(TMI) of the order n + m + k, which are rotation, scaling and translation invariants of
Tchebichef Moments.

2.2.2 Indirect Krawtchouk moment invariants

The Krawtchouk polynomials was introduced by Mikhail Kravchuk in [22], and applied
in image analysis by Yap et al. [60] as a basis function of discrete Krawtchouk Moments.
The (n + m + k)-th order 3D Krawtchouk Moments, for an image f (x, y, z) of the size
N × M × K is defined as:

KMnmk =
N−1∑

x=0

M−1∑

y=0

K−1∑

z=0

k̄n(x; px, N)k̄m(y; py,N)k̄k(z; pz,N)f (x, y, z), (24)

where k̄n(x; p,N) is the n-th order weighted Krawtchouk polynomials defined by:

k̄n(x; p,N) = kn(x; p,N)

√
wk(x)

ρk(n)
, (25)

and kn(x;p,N) are the Krawtchouk polynomials with x = 0, 1, ..., N − 1, 0 < p < 1,
which forms a discrete orthogonal basis, with respect to the weight function:

wk(x) =
(

N

x

)
px(1 − p)N−x, (26)

and the squared norm:

ρk(n) = (−1)n
(

1 − p

p

)n
n!

(−N)n
. (27)

Generally, the Krawtchouk polynomials of the n-th order can be expressed in terms of
the generalized hypergeometric function (10) as follows:

kn(x;p, N) = 2F1

(
−n, −x; −N; 1

p

)
, (28)

where x, n = 0, 1, ..., N − 1, N > 0, 0 < p < 1. And can be expanded as a linear
combination of monomials xi as:

kn(x;p, N) =
n∑

i=0

Cn,ix
i , (29)

with

Cn,i =
n∑

k=i

(−1)kn!(N − k)!
(p)kN !(n − k)!k!S1(k, i), (30)

According to [60], the Krawtchouk Moments can be written in terms of geometric
moments as:

KMnmk = 1

ρk(n)ρk(m)ρk(k)

n∑

p=0

m∑

q=0

k∑

r=0

Cn,pCm,qCk,rmpqr , (31)



27524 Multimed Tools Appl (2018) 77:27517–27542

by replacing mpqr in of (31) by νpqr (9) we can obtain Krawtchouk Moment Invariants
(KMI) of the order n + m + k, which are rotation, scaling and translation invariants of
Krawtchouk Moments.

As well-known the Krawtchouk moments are well suited for extracting local features
according to any ROI (Region Of Interest) of the 3D image [7]. In fact, the 3D Krawtchouk
Moments (24) involves three binomial distribution parameters px , py and pz of Krawtchouk
polynomials, which correspond respectively to the x-axis, y-axis and z-axis.

These parameters can be used to shift the Region of Interest to the desired position.
Where, px is used to shift the ROI horizontally along x-axis, if px < 0.5 the ROI is shifted
to the left, while for px > 0.5 the ROI is shifted to the right. While, py is used to shift the
ROI horizontally along y-axis, for py < 0.5 we shift the ROI to the left, while for py > 0.5
the ROI is shifted to the right. Finally, pz is used to shifting the ROI vertically along z-axis,
when pz < 0.5 the ROI is shifted to bottom while pz > 0.5 the ROI is shifted to top.

For detailed discussion about the Krawtchouk Moments, we refer readers to [4, 7, 60].

2.2.3 Indirect Hahn moment invariants

The discrete orthogonal Hahn polynomials has been firstly introduced in the field of image
analysis by Zhu et al. in [64]. Similarly to 3D Tchebichef and Krawtchouk Moments, we
can define the (n + m + k)-th order 3D Hahn Moments, for an image f (x, y, z) of the size
N × M × K , as follows:

HMnmk =
N−1∑

x=0

M−1∑

y=0

K−1∑

z=0

h̄(a,b)
n (x; N)h̄(a,b)

m (y; N)h̄
(a,b)
k (z; N)f (x, y, z), (32)

where h̄
(a,b)
n (x; N) is the normalized Hahn polynomials h

(a,b)
n (x; N), which can be obtained

by utilizing the squared norm and weight function as:

h̄(a,b)
n (x; N) = h(a,b)

n (x; N)

√
wh(x)

ρh(n)
, (33)

ρh(n) denotes the squared norm, defined by:

ρh(n) = Γ (a + n + 1)Γ (b + n + 1)(a + b + n + 1)N

(a + b + 2n + 1)n!(N − n − 1)! , (34)

and wh(x) is the weight function associated with the discrete Hahn polynomials:

wh(x) = Γ (N + a − x)Γ (b + 1 + x)

Γ (N − x)Γ (x + 1)
. (35)

The n-th order Hahn polynomials is defined by using hypergeometric function as:

h(a,b)
n (x;N) = (−1)n(b + 1)n(N − n)n

n! 3F2(−n,−x, n+1+a+b; b+1, 1−N; 1), (36)

with x, n = 0, 1, ..., N − 1, a > −1 and b > −1.
The h

(a,b)
n (x; N) can be expanded as:

h(a,b)
n (x; N) =

n∑

i=0

Bn,ix
i , (37)
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with

Bn,i =
n∑

k=i

(b + n)!(a + b + k + n)!
(n − k)!(b + k)!(a + b + n)!k!S1(k, i). (38)

In a similar way to the 3D Krawtchouk Moments, the 3D Hahn Moments can be written
in terms of the geometric moments as:

HMnmk = 1

ρh(n)ρh(m)ρh(k)

n∑

p=0

m∑

q=0

k∑

r=0

Bn,pBm,qBk,rmpqr , (39)

To obtain 3D Hahn Moment Invariants (HMI), we can simply replace the geometric
moments mpqr in (39) by the geometric moment invariants νpqr defined by (9).

3 Proposed approach: direct derivation of 3D moment invariants

In the previous section we have briefly discussed the indirect method for obtaining rota-
tion, scale and translation invariance of some existing discrete orthogonal moments, which
make use of the respective invariants of the geometric moments. In this current section, we
introduce a direct derivation method of a new set of 3D object shape descriptors based on
Krawtchouk polynomials, where the rotation, scaling and translation invariants are achieved
directly from the Krawtchouk Moments. It worth noting that, the proposed method could be
easily generalized in order to derive invariants from the other discrete orthogonal moments.

As previously mentioned in Section 2.2.2, the Krawtchouk polynomials can be defined
in terms of monomials xi :

kn(x;p, N) =
n∑

i=0

Cn,ix
i , (40)

with

Cn,i =
n∑

k=i

(−1)kn!(N − k)!
(p)kN !(n − k)!k!S1(k, i). (41)

For notation simplicity, we introduce a matrix representation of (40) as:

Km(x) = CmXm(x), (42)

where Km(x) = (k0(x;p, N), k1(x; p, N), ..., kn(x;p, N))T , Xm(x) = (x0, x1, ... , xn)T

and Cm = (Cn,i) with 0 ≤ i ≤ n ≤ m.
From (41) we can deduce that Cm is a lower triangular matrix, and since all its diago-

nal elements Ci,i =
(−1

p

)i
(N−1)!

N ! are different from zero, the matrix Cm is non singular

(invertible). As a result of the above analysis, we can give the following Lemma.

Lemma 1 The corresponding inverse formula of (40), which can be used to represent xi in
terms of Krawtchouk polynomials ks(x; p,N) with s ≤ i, is given by:

xi =
i∑

s=0

Di,sks(x; p,N), (43)



27526 Multimed Tools Appl (2018) 77:27517–27542

where Di,s is an element of the matrix Dm = (Di,s) with 0 ≤ s ≤ i ≤ m, and Dm is the
inverse matrix of Cm of (42). The elements of the matrix Dm are given as follows:

Di,s =
i∑

m=s

S2(i, m)
(−1)sm!N !pm

(m − s)!(N − m)!s! , (44)

and S2(i, m) is the Stirling numbers of the second kind, which can be computed by using
the following recurrence relation:

S2(i, m) = S2(i − 1, m − 1) − iS2(i − 1,m), i ≥ 1,m ≥ 1, (45)

with S2(i, 0) = S2(0,m) = 0, and S2(0, 0) = 1.

Similar proof of Lemma 1 can be found in [63], with slight modifications.
It is important to note, that the Stirling numbers of the first and second kinds can be

considered inverses of one another, and satisfy the following property:

max(k,j)+1∑

l=0

S1(l, j)S2(k, l) = δj,k (46)

and
max(k,j)+1∑

l=0

S1(k, l)S2(l, j) = δj,k, (47)

where δj,k is the Kronecker delta.

3.1 3D translation invariants

Let f t (x, y) be the translated version of the original image f (x, y), we have:

f t (x, y) = f (x − x0, y − y0). (48)

We can define the Krawtchouk Moments KMt
nm of the translated image as follows:

KMt
nmk =

N−1∑

x=0

M−1∑

y=0

K−1∑

z=0

kn(x − x0; p,N)km(y − y0;p,M)kk(z − z0; p,K)f (x, y, z).

(49)
To simplify the previous expression, we give the following proposition:

Proposition 1 The Krawtchouk Moments KMt
nmk of a translated image f t (x, y, z) can be

written in terms of KMuvw of the original image f (x, y, z) as:

KMt
nmk =

n∑

i=0

m∑

j=0

k∑

e=0

i∑

s=0

j∑

t=0

e∑

f =0

s∑

u=0

t∑

v=0

f∑

w=0

(
i

s

)(
j

t

)(
e

f

)

×Cn,iCm,jCk,eDs,uDt,vDf,w(−1)i−s+j−t+e−f xi−s
0 y

j−t

0 z
e−f

0 KMuvw.

(50)

The proof of Proposition 1 is given in Appendix A.
As can be concluded from the Proposition 1, the Krawtchouk Moments of any translated

image by a translation vector (x0, y0, z0) can be expressed in terms of the Krawtchouk
moments of the original image.



Multimed Tools Appl (2018) 77:27517–27542 27527

At this point, the translation moment invariants can be directly derived from the
Krawtchouk moments, by replacing the vector (x0, y0, z0) by the image centroid coordi-
nates (x̄, ȳ, z̄). Where the centroids of x-, y- and z-coordinate, denoted respectively by x̄,
ȳ, z̄, and can be derived as:

x̄ = C0,0KM100 − C1,0KM000

C1,1KM000
, ȳ = C0,0KM010 − C1,0KM000

C1,1KM000

and z̄ = C0,0KM001 − C1,0KM000

C1,1KM000
.

(51)

Hence, any effect of image translation on the KMt
nmk , can be canceled by this translation

normalization. Which makes KMt
nmk translation invariant. And along this paper, will be

denoted by I t
nmk:

I t
nmk =

n∑

i=0

m∑

j=0

k∑

e=0

i∑

s=0

j∑

t=0

e∑

f =0

s∑

u=0

t∑

v=0

f∑

w=0

(
i

s

)(
j

t

)(
e

f

)

×Cn,iCm,jCk,eDs,uDt,vDf,w(−1)i−s+j−t+e−f (x̄)i−s(ȳ)j−t (z̄)e−f KMuvw.

(52)

3.2 3D Rotation and scale invariants

In this subsection, we discuss the direct derivation of rotation and scaling invariants of a 3D
object from the Krawtchouk Moments.

Suppose that f d(x, y, z) is a deformed version of the original object f (x, y, z), which
has been transformed according to (6), we have

f d(x, y, z) = f (a11x + a12y + a13z, a21x + a22y + a23z, a31x + a32y + a33z). (53)

The Krawtchouk Moments of the deformed object f d(x, y, z) is defined as

KMd
nmk =

N−1∑

x=0

M−1∑

y=0

K−1∑

z=0

kn(a11x + a12y + a13z; p,N)km(a21x + a22y + a23z; p,M)

×kk(a31x + a32y + a33z; p,K)f (x, y, z),

(54)
To simplify the previous equation, we give the following proposition:

Proposition 2 The Krawtchouk Moments KMd
nmk of any deformed image f d(x, y, z) can

be written in terms of KMuvw of the original image f (x, y, z) as:

KMd
nmk =

n∑

i=0

m∑

j=0

k∑

e=0

i∑

s=0

j∑

t=0

e∑

f =0

s∑

u=0

t∑

v=0

f∑

w=0

δ∑

r=0

σ∑

l=0

ε∑

d=0
i!

s!u!(i − s − u)!
j !

t !v!(j − t − v)!
e!

f !w!(e − f − w)!Cn,iCm,jCk,e

×Dδ,rDσ,lDε,das
11a

u
12a

i−s−h
13 at

21a
v
22a

j−t−v

23 a
f

31a
w
32a

e−f −w

33 KMrld ,

(55)

where δ = s + t + f , σ = u + v + w and ε = i − s − h + j − t + e − f − w.

The proof of Proposition 2 is given in Appendix B.
The above Proposition 2 shows that The Krawtchouk Moments of any 3D scaled and

rotated object, can be expressed as a linear combination of The Krawtchouk Moments
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KMrld of the original object. Based on this relationship, we can construct a set of rotation
and scaling invariants I rs

nmkfrom the Krawtchouk Moments, as follows:

I rs
nmk =

n∑

i=0

m∑

j=0

k∑

e=0

i∑

s=0

j∑

t=0

e∑

f =0

s∑

u=0

t∑

v=0

f∑

w=0

δ∑

r=0

σ∑

l=0

ε∑

d=0
i!

s!u!(i − s − u)!
j !

t !v!(j − t − v)!
e!

f !w!(e − f − w)!Cn,iCm,jCk,e

×(λ)γ Dδ,rDσ,lDε,das
11a

u
12a

i−s−h
13 at

21a
v
22a

j−t−v

23 a
f

31a
w
32a

e−f −w

33 KMrld ,

(56)

where γ = − i+j+e+3
3 and λ = KM000 are used for scale normalization. And aij are cor-

responding to the elements of the rotation matrix (5). Where it’s angles vales are given
by φ = 1

2 tan−1((uKM011 − vKM000)/(KM020 − KM002)) , θ = 1
2 tan−1((uKM101 −

vKM000)/(KM200 − KM002)) and ψ = 1
2 tan−1((uKM110 − vKM000)/(KM200 −

KM020)) with u = 2C22C00/(C11)
2 and v = 2C22(C10)

2/C00(C11)
2.

Based on (56), we can directly derive the 3D rotation, scaling and translation invariants
of Krawtchouk moments I rst

nmk , if we replace the Krawtchouk Moments KMrld on the right
sides of (56) by the direct translation invariants I t

nmk of (52). The 3D moment invariants
I rst
nmk developed in this section, will be denoted along the rest of this paper by the Direct

Krawtchouk Moment Invariants (DKMI).

4 Experimental results and discussion

In this section, several numerical experiments are carried out to validate the effectiveness of
the newly introduced moment invariants. This section is divided into four subsections. In the
first one, we investigate the invariability property of the proposed Moment Invariants against
different geometric deformations and noise degradation. In the second subsection, we will
demonstrate the numerical stability of the proposed invariants, conjointly with the illustra-
tion of the image size effect on the traditional moment invariants. In the third subsection, the
classification performance of the proposed moment invariants is effectively compared with
the traditional Geometric, Tchebichef, Krawtchouk and Hahn Moment Invariants, using the
McGill 3D Shape Benchmark [45]. Finally, we provide a comparative analysis concerning
the computational time in the last subsection.

It is important to note that all algorithms are implemented in MATLAB 8.5, and all
numerical experiments are performed under Microsoft Windows environment on a PC with
Intel Core i3 CPU 2.4 GHz and 4 GB RAM.

4.1 Invariability

In this experiment, the property of invariability of the proposed invariants is examined under
various sets of rotation, scaling and translation transformations. Moreover, the effect of dif-
ferent densities of noise on their numerical accuracy is investigated. As well, the influence
of the Krawtchouk polynomials parameter p on the invariability of our introduced invariants
have been also illustrated in this subsection.

The 3D Airplane and Vertebra Model, which shown in Fig. 2, are firstly affected by
various deformations of rotation, scaling, translation and noise adding. Then, moment
invariants of the original and the transformed objects are computed up to the sixth order
(n, m, k ≤ 2), using three cases: (A) p1 = p2 = p3 = 0.4, (B) p1 = p2 = p3 = 0.5
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Fig. 2 3D test objects: Airplane (a), Medical Vertebra Model (b), of size 128 × 128 × 128 voxels

and (C) p1 = p2 = p3 = 0.6. Subsequently, the relative error between moment invariants
coefficients of the original and the transformed images is calculated as follow:

RelativeError(f, g) = ||MI(f ) − MI(g)||
||MI(f )|| , (57)

where ||·||, f and g denote respectively the Euclidean norm, the original and the transformed
images. It worth noting that a low relative error leads to high numerical accuracy.

To verify translation invariance, the test objects are transformed according to a transla-
tion vector that takes values between (-16, -16, -16) and (16, 16, 16) with step (4, 4, 4).
Consequently, the relative errors of the invariants are presented in Fig. 3. Similarly, scale
invariance of the proposed invariants is examined by using the test objects, which are trans-
formed by scaling factors starting from 0.75 to 1.25 with step 0.05. Then, the corresponding
results are depicted in Fig. 4.

To demonstrate the rotation invariance, we are conducted in this experiment to verify the
rotation invariability about each of the three axis (x-axis, y-axis and z-axis). In fact, the
test images is rotated about each axis by a rotation angle varying between 0◦ and 90◦ with
interval 10◦. Accordingly, the relative errors of the introduced invariants about the x-axis,
y-axis z-axis are respectively presented in Figs. 5, 6 and 7.

Finally, in order to depict the noise robustness of the proposed moment invariants. In a
similar way to the previous experiments, the test objects have been corrupted by different
densities of Salt-and-Pepper noise varying from 0% to 5% with interval 0.5%. Then, the
corresponding results are presented in Fig. 8.

Examining the Figs. 3–8, it is clear that the relative error rates is very low (in the order of
10−5), which indicate that the proposed moment invariants exhibit good performance and
express high numerical accuracy under different geometric transformations, as well as, in
the presence of noisy effects. Moreover, one can observe the influence of the parameter p

on the invariability property of DKMI, where the special case (B) p1 = p2 = p3 = 0.5
gives the best performance, which could help in choosing the best parameters for pattern
recognition applications. As a conclusion, this new set of invariants could be highly useful
to extract features for pattern recognition and 3D object classification.
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Fig. 3 Relative errors for Airplane (a) and Vertebra Model (b) of the proposed invariants between the
original objects and the translated versions

4.2 Numerical stability

Generally, the computation of moments and moment invariants includes a significant num-
ber of factorial and power terms, which can undoubtedly leads to overflow and finite
precision errors, especially for moment invariants of high orders. Consequently, the clas-
sification accuracy will be highly influenced by numerical instability, when higher order
moment invariants are required to provide additional description of the image contents [8,
48].

Therefore, in this subsection we will examine the image size effects on the numerical
stability of the proposed moment invariants. In fact, we will use the Airplane test image,
shown in Fig. 2, with variety of sizes: 32 × 32 × 32, 48 × 48 × 48, · · · , 128 × 128 × 128.
Indeed, we are particularly interested, in this experiment, to the maximum moment’s order,
which can be correctly computed without overflow.

In Table 1, we depict respectively in the second, third and fourth columns the maximum
computation order (n + m + k), concerning GMI, KMI and the proposed DKMI for dif-
ferent image sizes. It worth noting that, the computation of (n + m + k)-th order of RST
moment invariants , using (9) or (56), depends on computing translation invariants up to the
(3n + 3m + 3k)-th order, which means that the maximum order that could be theoretically
computed is equal to (N−1

3 + M−1
3 + K−1

3 ).
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Fig. 4 Relative errors for Airplane (a) and Vertebra Model (b) of the proposed invariants between the
original objects and the scaled ones
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Fig. 5 Relative errors for Airplane (a) and Vertebra Model (b) of the proposed invariants against rotation
about the x-axis by different angle varying from 0◦ to 90◦

The results presented in Table 1 clearly show that the computation of GMI is numerically
unstable which is reflected in the limited number of moment invariants that can be correctly
computed. Whereas, Geometric Moment Invariants up to the order (N−1

3 + M−1
3 + K−1

3 )

must be theoretically computed. This limitation is practically associated with the finite
precision errors and overflow conditions. Moreover, the traditional KMI produce similar
results, which is mainly inherited the use of Geometric Moment Invariants. And can be jus-
tified by the fact that the traditional KMI is expressed as a linear combination of Geometric
Moment Invariants. In the contrary, the proposed invariants presents high numerical stability
due to the reason that these invariants are explicitly derived from the Krawtchouk Moments,
which have the orthogonality property. In fact, the main advantage of Direct Krawtchouk
Moment Invariants, relies on the fact that the Krawtchouk polynomials kn(x; p,N) have
a limited range of values and can be computed exactly for any value of x ∈ [0, N − 1],
while the geometric basis xn can leads to overflow problem for large values of x. Finally,
it is important to note that, although the computation of DKMI is very accurate, we can not
achieve the theoretical maximum moment’s order.

4.3 3D object recognition

In the current subsection, the recognition accuracy of the proposed moment invariants is
evaluated on the public 3D image database [45], where all images are of size 128×128×128
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Fig. 6 Relative errors for Airplane (a) and Vertebra Model (b) of the proposed invariants against rotation
about the y-axis by different angle varying from 0◦ to 90◦
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Fig. 7 Relative errors for Airplane (a) and Vertebra Model (b) of the proposed invariants against rotation
about the z-axis by different angle varying from 0◦ to 90◦

voxels. In fact, this experiments is conducted on a testing set composed of ten classes,
each one contains three different objects. All images in this set are affected by different
transformations (4 translations + 4 scaling + 4 rotations + 4 mixed transforms), in order to
generate 480 objects per database, some samples are shown in Fig. 9. Moreover, to study
the noise robustness of proposed invariants, five additional testing sets are created by adding
different densities of Salt-and-Pepper noise {1%; 2%; 3%; 4%; 5%}.

The recognition performance of our proposed method is compared with the classical
Geometric, Tchebichef, Krawtchouk and Hahn Moment Invariants. In addition, the k-
Nearest Neighbors classifier with k = 1 is employed for the classification task with 5-folds
cross validation, where moment invariants up to the 9-th order (n,m, k ≤ 3) are used to
construct the features vector. For each testing set, the correct recognition rates are obtained
and summarized in Table 2.

As can be clearly observed from Table 2, the average recognition accuracy of our pro-
posed method are significantly higher than those obtained by classical methods. In addition,
experimental results on the datasets corrupted by additive noise, demonstrate that the pro-
posed descriptors are more effective than the existing ones. Eventually, our new invariants
could be a highly useful in the field of 3D object recognition.
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Fig. 8 Relative errors for Airplane (a) and Vertebra Model (b), between the corrupted 3D objects and the
original test objects, by using the proposed invariants
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Table 1 Image size effect on the maximum computation order of the proposed invariants in comparison
with the traditional Geometric and Krawtchouk moment invariants, for different image sizes

Maximum order (n + m + k)

Image size of moment invariants computation

N × M × K GMI KMI DKMI

32 × 32 × 32 10 + 10 + 10 10 + 10 + 10 10 + 10 + 10

48 × 48 × 48 15 + 15 + 15 15 + 15 + 15 15 + 15 + 15

64 × 64 × 64 21 + 21 + 21 21 + 21 + 21 21 + 21 + 21

80 × 80 × 80 21 + 21 + 21 21 + 21 + 21 26 + 26 + 26

96 × 96 × 96 20 + 20 + 20 20 + 20 + 20 30 + 30 + 30

112 × 112 × 112 19 + 19 + 19 19 + 19 + 19 31 + 31 + 31

128 × 128 × 128 19 + 19 + 19 19 + 19 + 19 31 + 31 + 31

4.4 Computational time

To test the computational efficiency of the proposed method. In this current numerical
experiment, we have used a set of five test images, shown in Fig. 10, selected from the

Fig. 9 Some examples from the used dataset
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Table 2 Comparative analysis of 3D object classification accuracy by using the Geometric, Tchebichef,
Krawtchouk, Hahn and the proposed Direct Krawtchouk Moment Invariants

Moments Salt and Pepper noise

invariants Noise-free 1% 2% 3% 4% 5% Average

GMI 78.92 57.92 54.71 52.10 52.00 50.83 57.75

TMI 81.25 60.92 57.29 54.17 55.00 54.58 60.54

KMI 79.70 60.00 58.13 57.25 53.75 53.06 60.32

HMI 81.87 60.21 58.38 56.02 55.10 53.78 60.89

DKMI 82.50 61.14 58.31 57.92 57.18 55.00 62.01

public McGill 3D Shape Benchmark [45]. The average computational time of the proposed
invariants and the existing methods, is measured for the five images using two different res-
olutions 64×64×64 and 128×128×128 voxels. Subsequently, the T RR (Time Reduction
Rate) of our proposed invariants is calculated using the following formula:

T RR = 1 − T ime1

T ime2
× 100, (58)

where T ime1 and T ime2 are respectively the average times of the proposed and the
traditional moment invariants. Moreover, this experiment is conducted for different maxi-
mum moment invariants orders 3, 6 and 9. The corresponding average times and TRR are
summarized in Table 3.

It should be noted that in this experiment, we will compare the results of the proposed
method with only the classical Krawtchouk Moment Invariants. Since the Tchebichef and
Hahn Moment Invariants follow the same computational process for extracting invariants
from the geometric moments.

Based on the results of Table 3, it can be clearly seen that the computation of the proposed
invariants is much faster than traditional method. Moreover, the presented time reduction
rates was very significant for both resolutions 64 × 64 × 64 and 128 × 128 × 128 voxels.
In fact, this improvement in speed is achieved because the computation of the translation
invariants are performed by transforming the original 3D image to the geometric center, and
then the calculation of Krawtchouk moments is carried out. Instead of computing translation
invariants by using (52), which is very time consuming. Eventually, this introduced new set
of invariants could be very useful for object classification and recognition, especially for
real time applications or when large databases are used.

Fig. 10 The five test images used in computational time evaluation
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Table 3 Comparative analysis of average computation times in (Second) and Time Reduction Rate, between
the proposed moment invariants and the traditional one for different image sizes

Maximum Image size 128 × 128 × 128 Image size 64 × 64 × 64

order KMI DKMI TRR KMI DKMI TRR

3 0.3961 0.3960 0.02% 0.0600 0.0585 2.50%

6 0.4793 0.4201 12.36% 0.1313 0.1003 23.61%

9 0.8428 0.6248 25.87% 0.4835 0.3481 28.00%

5 Conclusion

The main contribution of this paper relies on the derivation of a new set of moment
invariants, namely Direct Krawtchouk Moment Invariants. Where we have established a
theoretical framework for the direct computation of this set of moment invariants from
the Krawtchouk Moments, using some algebraic properties of Krawtchouk polynomials.
This new set can be used for extracting shape features independently of geometric rotation,
scaling and translation distortions, and can be employed as pattern features for 3D object
classification applications.

Accordingly, several numerical experiments are performed, including invariability to
geometric transforms and noise robustness, numerical stability, object classification accu-
racy and computational efficiency. As demonstrated in the numerical experiment section,
the proposed 3D invariants DKMI are not only accurate, but also provide very fast com-
putation even for high moment invariants orders. In addition, this new set shows sufficient
stability and discrimination power to be used as pattern feature. To conclude, the proposed
Direct Krawtchouk Moment Invariants are potentially useful as features descriptor for 3D
object recognition, and the method described in this paper can be easily generalized for the
construction of moment invariants from other discrete orthogonal moments.

In our future works, we plan to introduce new sets of 3D moment invariants based on
the proposed direct method and other orthogonal polynomials, like Racah, and dual Hahn
orthogonal polynomials. Also, we will concentrate on generalizing the proposed method for
extracting 3D affine moment invariants. Finally, we will focus on some potential applica-
tions of the proposed 3D invariants in the fields of action recognition, 3D image retrieval
and medical image analysis.
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Appendix A: Proof of proposition 1

With the help of (41), the translated version of Krawtchouk polynomials can be expressed
by a linear combination of monomials as

kn(x − x0; p,N) =
n∑

i=0

Cn,i(x − x0)
i , (59)

According to the binomial theorem, it is possible to expand any power of x − x0 into a sum
of the form:

(x − x0)
i =

i∑

s=0

(
i

s

)
(−1)i−sxsxi−s

0 , (60)

and with the help of Proposition 1 we can express xs in terms of Krawtchouk polynomials.
Hence, (59) can be written as:

kn(x − x0;p, N) =
n∑

i=0

i∑

s=0

s∑

u=0

(
i

s

)
Cn,iDs,u(−1)i−sxi−s

0 ku(x; p,N). (61)

Similarly we can deduce that,

km(y − y0;p, M) =
m∑

j=0

j∑

t=0

t∑

v=0

(
j

t

)
Cm,jDt,v(−1)j−t y

j−t

0 kv(y; p,M) (62)

and

kk(z − z0; p,K) =
k∑

e=0

e∑

f =0

f∑

w=0

(
e

f

)
Ck,eDf,w(−1)e−f z

e−f

0 kw(z;p, N). (63)

As a consequence, by substituting (61), (62) and (63) into (49), we can write KMt
nmk of

a translated image in terms of KMuvw of the original image as:

KMt
nmk =

n∑

i=0

m∑

j=0

k∑

e=0

i∑

s=0

j∑

t=0

e∑

f =0

s∑

u=0

t∑

v=0

f∑

w=0

(
i

s

)(
j

t

)(
e

f

)

×Cn,iCm,jCk,eDs,uDt,vDf,w(−1)i−s+j−t+e−f xi−s
0 y

j−t

0 z
e−f

0 KMuvw.

(64)

Therefore, the proof is completed.

Appendix B: Proof of proposition 2

With the help of (40), the deformed version of Krawtchouk polynomials can be expressed
as follows:

kn(a11x + a12y + a13z; p,N) =
n∑

i=0

Cn,i(a11x + a12y + a13z)
i . (65)

By using the trinomial theorem, it is possible to write the (65) as:

kn(a11x+a12y+a13z; p,N) =
n∑

i=0

i∑

s=0

s∑

u=0

i!
s!u!(i − s − u)!Cn,ia

s
11a

u
12a

i−s−h
13 xsyuzi−s−h.

(66)



Multimed Tools Appl (2018) 77:27517–27542 27537

Similarly, we can deduce that,

km(a21x+a22y+a23z; p,M) =
m∑

j=0

j∑

t=0

t∑

v=0

j !
t !v!(j−t−v)!Cm,j a

t
21a

v
22a

j−t−v

23 xtyvzj−t−v,

(67)
and

kk(a31x+a32y+a33z; p, K)=
k∑

e=0

e∑

f =0

f∑

w=0

e!
f !w!(e−f −w)!Ck,ea

f

31a
w
32a

e−f −w

33 xf ywze−f −w.

(68)

Hence, by substituting (66), (67) and (68) into (54), we can write KMt
nmk of a deformed

image in terms of KMuvw of the original image as:

KMd
nmk =

n∑

i=0

m∑

j=0

k∑

e=0

i∑

s=0

j∑

t=0

e∑

f =0

s∑

u=0

t∑

v=0

f∑

w=0

δ∑

r=0

σ∑

l=0

ε∑

d=0
i!

s!u!(i − s − u)!
j !

t !v!(j − t − v)!
e!

f !w!(e − f − w)!Cn,iCm,jCk,e

×Dδ,rDσ,lDε,das
11a

u
12a

i−s−h
13 at

21a
v
22a

j−t−v

23 a
f

31a
w
32a

e−f −w

33 KMrld ,

(69)

where δ = s + t + f , σ = u + v + w and ε = i − s − h + j − t + e − f − w.
The proof is completed.
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