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Abstract Computer-aided diagnosis (CAD) of schizophrenia based on the analysis of brain
images, captured using functional Magnetic Resonance Imaging (fMRI) technique, is an
active area of research. The main problem lies in the identification of brain regions that
contribute to differentiating between a healthy subject and a schizophrenia affected subject.
The problem becomes complex due to the high dimensionality of the fMRI data on the one
hand and the availability of data for only a small number of subjects on the other hand.
In this paper, we propose a three-stage evolutionary based framework for feature selection.
It comprises application of general linear model, followed by statistical hypothesis testing,
and finally application of Non-dominated Sorting Genetic Algorithm (NSGA-II) to arrive
at a small set of about fifty features. Experiments show that the feature set generated by the
proposed approach yields accuracy as high as 99.5% in classifying fMRI dataset of healthy
and schizophrenia subjects, and can identify the relevant brain regions that are affected in
schizophrenia.
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1 Introduction

Schizophrenia is a chronic brain disorder that disrupts the process of normal thinking,
speech, and behavioral characteristics of a person. Functional magnetic resonance imaging
(fMRI) plays a pivotal role in the design of automated tools for diagnosis of schizophrenia.
It is a neuro-imaging technique that captures brain activity in small units of the brain vol-
ume called voxels, by measuring the change in blood-oxygen-level dependent (BOLD) [41]
signals over time. The brain activities are closely linked to the supply of oxygen to vari-
ous regions of the brain. As the blood oxygenation level of a brain region varies according
to the neural activity, these differences play an important role. The difference in the mag-
netic properties causes small differences in the magnetic resonance (MR) signal of blood
depending on the degree of oxygenation.

Functional magnetic resonance imaging is used to detect biomarkers within the brain
for different types of task-related activations enabling detection of several brain disor-
ders such as schizophrenia, Parkinson’s disease, Alzheimer’s disease, mild traumatic brain
injury, addiction, and bipolar disorder. Several models based on machine learning tech-
niques have been proposed [17, 18, 26, 39, 45] for investigating the fMRI data to identify
different ailments. High dimensionality poses a major challenge in applying machine learn-
ing techniques to fMRI data. The fMRI data are typically 4-dimensional consisting of 3-D
images across time. A 3-D fMRI image may be thought of as a sequence of 2-D images
(slices) across the whole brain. Further, each slice comprises small units of brain vol-
umes, called voxels. Thus, a voxel represents a particular position in the brain. Another
issue that confronts the researchers is the non-availability of sufficient number of sub-
jects/ data samples. The curse of dimensionality [5] and the small sample size render
most models very sensitive to changes in data. To deal with high-dimensional fMRI data,
most models employ some feature reduction/ selection techniques for the problem under
investigation.

In this paper, we propose a three-stage feature selection model to classify schizophrenics
and healthy subjects using fMRI Data. The study is based on fMRI data, acquired during
auditory oddball (AUD) task. The first stage deals with the application of General Linear
Model (GLM) followed by paired student’s t-test in the second stage, and finally, we employ
the Non-dominated Sorting Genetic Algorithm (NSGA-II) [14] to generate a feature set (set
of voxels) that has low cardinality and yields high classification accuracy. The proposed
model achieves classification accuracies in the range 92.6% - 99.5% for FBIRN phase-
II dataset [30] having healthy and schizophrenia subjects. Using the proposed model, we
are able to identify relevant regions in the brain affected by schizophrenia. To the best of
our knowledge, evolutionary approach has not been used in the bi-objective framework for
fMRI data to build a computer-aided diagnosis model for schizophrenia subjects.

The rest of the paper is organized as follows: in Section 2, we summarize the related
work; in Section 3, we describe the data sets and the details of the proposed methodology;
in Section 4, we describe the experimental settings and the results, and finally in Section 5,
we summarize the conclusions and outline the scope of future work.
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2 Related work

Acquisition of fMRI data is a complex process that generates huge volumes of data.
Knowledge extraction from this data involves several steps including preprocessing, fea-
ture reduction, and modelling, often using machine learning techniques. Several machine
learning algorithms like Principal Component Analysis (PCA) [8, 16, 18, 28, 49], Fisher
Linear Discriminant (FLD) analysis [17, 45], Singular Value Decomposition (SVD) [4, 27],
deep neural networks [31, 52], Convolution Neural Network (CNN) [42] are often used for
feature extraction and feature selection.

Ford et al. [17] combined both structural and functional MRI scans for classifying the
schizophrenia and healthy individuals. They extracted hippocampal formation by applying
a mask and used Fisher linear discriminant analysis (FLDA) to reduce the feature set with
the objective of maximizing the ratio of between-class and within-class variability. Using
Leave-One-Out Cross-Validation (LOOCYV), they obtained an accuracy of 83% - 87% on
a group of 23 subjects (15 schizophrenic and 8 healthy). In another study, Ford et al. [18]
proposed the application of Principal Component Analysis (PCA) to lower the dimensional-
ity of the data, and applied FLD to distinguish between healthy subjects and schizophrenia
patients, obtaining an accuracy of 60% - 80% for different principal components. They also
demonstrated the effectiveness of the approach for differentiating the healthy subjects from
Alzheimer’s disease patients and patients with a mild traumatic brain injury. Shi et al. [45]
used regional homogeneity [54] as a measurement of regional coherence of brain sponta-
neous activity. They used the anatomical template on ReHo map to organize it into 116
brain regions. Mean and standard deviation of ReHo values in each region were used as fea-
tures for the classification model. Pseudo Fischer linear discriminant (PFLD) was applied in
LOOCYV manner to classify the healthy subjects and schizophrenia patients achieving cor-
rect prediction rate of 80%. Dermici et al. [15] proposed projected pursuit (PP) algorithm
for feature selection and used Independent Component Analysis (ICA) for separating the
data into maximally independent groups to identify the networks which are related to the
schizophrenia. They applied three group ICA operations on the data from three different
tasks and obtained 20 independent spatial components. The classification was performed
using LOOCV. Arribas et al. [4] used a two-step method — one-sample t-test, followed by
Singular Value Decomposition (SVD) to reduce the number of features of the fMRI scans
with AUD task for classification of healthy subjects, patients with bipolar disorder, and
patients with schizophrenia. They trained four classifiers using stochastic gradient learn-
ing rule and obtained average three-way correct classification rate (CCR) in the range 70%
- 72%. Using the resting state and task-related fMRI data, Du et al. [16] classified the
schizophrenia patients and healthy control. They used three-level feature selection approach.
In the first step, they used hypothesis testing based on t-test. In the second step, they used the
kernel principal component analysis (K-PCA) to compute a low-dimensional representation
of significant voxels, and finally applied FLD to further extract features which maximize
the ratio of the between-class variability to the within-class variability. Classification was
done using LOOCYV approach. Using majority voting, they achieved accuracy of 98% and
93% for the AUD task and the rest data, respectively.

In a study, Castro et al. [10] used a combination of Multiple Kernel Learning (MKL)
machines and proposed a new MKL (v-MKL) algorithm for achieving a tunable sparse
selection of feature sets which resulted in improvement in the classification accuracy while
using functional brain imaging dataset. They obtained a classification accuracy of 85% and
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90% using [,-norm and L-norm, respectively. Juneja et al. [27] have used pattern recog-
nition techniques for dimension reduction for fMRI data to classify schizophrenia and
healthy subjects. They proposed a three-phase method for analysing the fMRI data. In the
first phase, they generated 3-D spatial maps using GLM and ICA to generate independent
components. In the second phase, they used clustering to retain local spatial contiguity fol-
lowed by singular value decomposition (SVD) on each cluster, thus reducing the number of
features substantially. In the third phase, a novel hybrid multivariate forward feature selec-
tion method was used to extract the features. Finally, schizophrenia and healthy control
were classified using SVM with LOOCYV policy, achieving 92.6% and 94% classification
accuracy for the two fMRI datasets from FBIRN.

In another study, Juneja et al. [26], applied statistical paired t-test on the contrast map
images created by SPM to develop a computer-aided diagnosis (CAD) tool to distinguish
between the schizophrenic patients and the healthy controls. Having obtained the minimal
set of features from statistical significance testing, they used the selected features for the
classification task using Support Vector Machine (SVM). Using the LOOCV method, they
obtained an accuracy of around 80% and 88% on the two fMRI datasets from FBIRN. In
another study, Juneja et al. [28] proposed a three-phase dimension reduction technique com-
prising segmentation of 3-D spatial maps (ICA and § maps) into anatomical brain regions,
followed by feature extraction carried out using fuzzy kernel PCA, and finally used the
filter cum wrapper feature selection for finding reduced set of features. In their model, clas-
sification of schizophrenia and healthy subjects was done in LOOCV manner using SVM,
resulting in accuracy of 95.6% and 96% on two fMRI data set from FBIRN.

Some works have also been reported for computer aided diagnosis of schizophrenia using
resting state (rs) fMRI. Chyzhyk et al. [13] used Pearson’s correlation based features selec-
tion method, followed by application of genetic algorithm, to find an optimal set of features.
Subsequently, they applied ensemble of extreme learning machine classifiers resulting in
an accuracy of around 86%. Savio et al. [43], worked on rs-fMRI data of schizophrenia
subjects and healthy controls. They computed different local activity measures, followed
by application of three feature selection algorithms, namely, Pearson’s correlation measure,
Bhattacharyya distance [6] and Welch’s t-test [50]. Finally, they used SVM to carry out the
classification task and obtained maximum accuracy of around 80%.

Recently, multi-objective optimization approaches have been used for analysis of fMRI
data. Aaberg et al. [1] proposed an evolutionary approach to select the features for multi-
variate pattern analysis. They used a single subject fMRI dataset having task conditions of
brushing and resting state alternatively. Multiple Linear Regression (MLR) classifier was
applied to the subjects individually using only five voxels to obtain an accuracy of 74.3%.
Niiniskorpi et al. [39] used particle swarm optimization (PSO) in conjunction with simple
MLR classifier and SVM with the linear kernel for the classification task for identifying
the brain regions. They built two datasets, one having a single subject healthy control (a
brushing task and resting state alternately), and another dataset comprising nine healthy
controls (fingertapping task). They achieved a classification score of 83.5% on a group
level 3D fMRI data from the fingertapping study. Ulker et al. [47] used a combination
of an active method [38] and genetic algorithm for feature selection. Using a set of 300
voxels they obtained classification accuracy of around 90%. A genetic algorithm was also
used by Shahamat et al. [44] for feature selection on fMRI images, followed by Linear
Discriminant Analysis (LDA) to classify schizophrenia patients and healthy controls. The
authors obtained an average classification accuracy of 83.0%, but they did not identify
the regions in the brain that are responsible for the schizophrenia. Smart et al. [46] stud-
ied the application of Genetic Programming (GP) in feature selection using intracranial
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Table 1 Demographic details of the dataset D1 (1.5 Tesla)

No. of Subjects Age Group(Mean +£Std. Dev) Male/Female
Healthy 30 40.4 £12.29 20/10
Schizophrenia 30 42.3 £10.81 24/6

electroencephalography (iEEG) and fMRI data of epilepsy patients. They observed the
need for patient-specific feature selection for better classification results. Using nearest-
neighbour classification and 30 GP generations, they achieved over 60% median sensitivity
and over 60% median selectivity for fMRI data. Ma et al. [37] carried out Multi-Voxel
Pattern Analysis (MVPA) as a Multi-Objective (MO) pattern classification problem. They
integrated a hierarchical heterogeneous PSO (HHPSO) scheme with SVM to propose a fea-
ture interaction detection framework for voxel selection. In this framework, the first stage
finds a subset of interacted features while the second stage further eliminates interaction (or
connectivity) redundancy, improving the classification accuracy.

3 Materials and methods
3.1 Dataset

All the data used for this study were obtained from the Function BIRN Data Repository.
FBIRN repository contains the multi-site fMRI dataset which includes schizophrenia and
healthy subjects. The data was acquired using 1.5T and 3T scanners keeping all other param-
eters same for the subjects. In this study, we have used BOLD fMRI data of Auditory
oddball (AUD) task, where all subjects had regular hearing levels, sufficient eyesight, and
were able to perform cognitive task. Healthy subjects were excluded if they had a current or
past history of head injury or major medical illness. Only those subjects with schizophrenia
and schizoaffective disorder were allowed who met the criteria as per the Diagnostic and
Statistical Manual of Mental Disorders (DSM-IV) [20].

3.1.1 Dataset details

In our study, we have used two datasets, namely, D1 and D2. The dataset D1 contains fMRI
data of 30 schizophrenia patients and 30 healthy subjects (available at site 0009 and site
0010 of FBIRN repository), which were acquired with 1.5T scanner. Four runs of each
subject’s scan have been used for the experiments. Table 1 shows the demographic details
of the dataset.

The dataset D2 comprises fMRI data of 25 schizophrenia patients and 25 healthy subjects
(available at site 0005, site 0006 and site 0018 of FBIRN repository) acquired with 3T
scanner. Four runs of each subject’s scan have been used for the experiments. Table 2 shows
the demographic details of the dataset.

Table 2 Demographic details of the dataset D2 (3 Tesla)

No. of Subjects Age Group(Mean =+ Std. Dev) Male/Female
Healthy 25 40.08 + 11.35 15/10
Schizophrenia 25 44.8 £10.77 19/6
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3.1.2 Task details

Auditory oddball task is a common task [3, 25, 29, 36, 40] used to detect alterations in
brain activation patterns that help to differentiate between schizophrenic and healthy sub-
jects. A subject is presented with a continuous stream of sound, and he/ she must identify
the sequence of discrete stimuli comprising standard tones and deviant (i.e. oddball) tones.
Standard tones, i.e., 1000 Hz appear for 95% of trials. Deviant (i.e. oddball) tones (1200 Hz)
that are distinct from standard tones, appear occasionally (5% of trials). The FBIRN con-
ducted the Auditory oddball task consisting of four experimental runs, each having duration
of 280 seconds. During the experiment, in each run, the subjects were asked to see a gray
screen with a black fixation cross in the middle. They were asked to press button ‘1’ each
time they heard a deviant tone while focusing on the cross and listening to the tones. The
task began with a fixation block of the silence of 15 seconds. Then a sequence of standard
tones (duration = 100 ms) were presented. The deviant tone (duration = 100 ms) was pre-
sented every 6 to 15 seconds. A period of silence (duration = 15 seconds) ended each task
run. In each experimental run, 140 brain scans were acquired with repetition time (TR) of 2
seconds.

3.1.3 Imaging parameters

According to FBIRN repository, the functional scans were T2*-weighted gradient EPI
(Echo Planar Imaging) sequences. Pulse sequence parameters were closely matched based
on pilot studies carried out by FBIRN research group: Orientation: anterior commissure-
posterior commissure line; the number of slices: 27; slice thickness: 4 mm; TR: 2 seconds ; time
to echo: 40 ms for 1.5 T scanners; matrix: 64 x 64; field of view: 22 cm; and flip angle: 90°.

3.2 Theoretical background

Genetic algorithms (GA), often used for solving optimization problems, are evolutionary
algorithms based on natural or biological evolution processes. They follow Darwin’s “sur-
vival of the fittest” concept and evolve to find the optimal solution from a set of candidate
solutions. A genetic algorithm starts with an initial population of candidate solutions rep-
resented by vectors of strings or alphabets, mainly binary alphabets (0,1). These vectors,
also called chromosomes, are randomly initialized. Once the chromosomes are generated,
the genetic algorithm finds the fitness values of each of them for the optimization problem
at hand. The next generation of solutions (also called child chromosomes), is created using
selection, crossover, and mutation operations. The selection step imitates the survival of the
fittest by giving preference to the better individuals. The selected chromosomes are placed
in a common mating pool. In the crossover step, a crossover point is randomly selected and
the crossover is done by recombining the portions of the two individuals to create two new
offspring. The mutation step involves flipping one or more bits of the individuals. The pur-
pose of the mutation is to maintain diversity amongst the chromosomes with the objective
of avoiding premature convergence. The steps are repeated until no significant improvement
is observed in successive generations, or the time-out condition is reached.

A bi-objective optimization problem is modelled using two conflicting objective func-
tions f! and f2 as:

—  f!: To be maximized or minimized
—  f2: To be maximized or minimized
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The optimal solutions to the above problem can be modelled as a vector valued objective
function f as:

fiX =R f0) =), FAanT

where a point x* € X denotes a feasible solution, and ¥ € R? (solution space) denotes
the image of X (decision space). Since the objectives are conflicting in nature, no single
solution can optimize both the objective functions simultaneously. A solution x* € X is
said to be Pareto optimal [14] if and only if there is no other solution x € X that is equally
good or better than x* on both the objectives.

The fMRI dataset dimensions are too large for a classification model to distinguish
between healthy and schizophrenic patients. Therefore, one needs to select an appropriate
feature set for the efficacy of a decision model. To the best of our knowledge, evolution-
ary approaches have not been effectively applied to select relevant features that help to
differentiate between schizophrenic and healthy subjects. Moreover, there is a conflict-
ing relationship between classification accuracy and feature set size. This paper is the
first attempt towards bi-objective modelling of the fMRI data analysis in schizophrenia
to address the above mentioned conflicting issues. In this paper, we make use of Non-
Dominated Sorting Genetic Algorithm (NSGA-II) [2, 14] to arrive at the Pareto optimal
front. It is an evolutionary algorithm to solve the bi-objective optimization problem that aims
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J

Fig. 1 Stages in the proposed approach
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at improving the fitness and adaptability of the population of candidate solutions towards
the Pareto front.

The runtime complexity of NSGA-II mainly lies in the non-dominated sorting — the most
expensive part of the algorithm, and the little time spent in computing the objective func-
tions is insignificant. Thus, the runtime complexity of the algorithm is of the order O (mN?),
where m is the number of objective functions and N is the population size [14]. As NSGA-
II dominates the computation time of the proposed approach, the run-time complexity of
the overall approach is also O (mN?). The space complexity of the NSGA-II is of the order
O(mN + N?) [14, 19]. In this study, we are proposing a three-step feature selection algo-
rithm. In the first step, we use standard general linear model (GLM) [21] approach. The
second step involves the application of the paired Students’ t-test. Finally, we apply the
NSGA-II to select the features useful for the classification task.

In this study, we have identified the following two conflicting objective functions:

f1: Maximization of classification accuracy
f2: Minimization of number of features

In the next section, we will discuss each step of our feature selection methodology in detail.
3.3 Our approach
For classification of schizophrenic patients and healthy subjects, we adopted a three-stage

approach as shown in Fig. 1. Each stage of the proposed approach is described in the
following subsections.

Algorithm 1 Non-dominated Sorting Genetic Algorithm (NSGA-IT)
INPUT:

1. S = Number of chromosomes (population size)

2. MaxGen = Maximum number of generations allowed
3. f! = Objective function to be maximized

4. f2 = Objective function to be minimized

OUTPUT: Pareto-optimal set of chromosomes

1: Randomly generate initial binary population, Py, of size S
2: Compute fitness values for f1(Py) and f2(Pp) // For each chromosome be-
longing to Py

3: for ¢ = 0 to MazGen do

4: S; < BinaryTournamentSelection (P;) // S; represents the popu-
lation after tournament
selection

5. C; < Crossover (S;) // C; represents the pop-
ulation after one-point
crossover

6:  M; < Mutation (C;) // M; represents the mu-
tated population

7:  Compute fitness values for f1(M;) and f2(M;) // For each mutated chromo-
some belonging to M;

8: T, +— P, U M; // T; denotes the pooled
population

9: P;4+1 < NonDominatedSort (75)
10: end for
11: Generate set of pareto-optimal solutions x*
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3.3.1 Data pre-processing

The raw datasets taken from FBIRN repository have been preprocessed using Statistical
Parametric Mapping (SPM) toolbox version 8 (SPMS8, Wellcome Trust Centre for Neu-
roimaging, University College London, UK).! Raw scans were collected at voxel size of
3.4 x 3.4 x 4 mm>. These are realigned with the first scan as a reference. The slice timing
correction is done to correct the possible errors by temporal variations during the acquisi-
tion of fMRI datasets. Subsequently, the fMRI scans are spatially normalized into standard
Montreal Neurological Institute (MNI) space using an EPI template available in SPMS.
This transforms the initial voxel’s dimension to 3 x 3 x 3 mm? and yields each volume of
53 x 63 x 46 voxels. Finally, spatial smoothing is done with a9 x 9 x 9 mm? full width at
half maximum (FWHM) Gaussian kernel to get the smoothed volumes.

3.3.2 Stage-1: st level analysis

The 4-D fMRI scans of each subject obtained from the preprocessing steps are analyzed by
employing general linear model (GLM) using SPMS8 toolbox in MATLAB. GLM analysis
is carried out by specifying the condition pair of deviant tone response versus standard tone
response.

GLM analysis generates a 3-D contrast map, also called activation map. In a contrast
map, the value at a particular voxel estimates the difference between the activation of that
voxel amongst the conditions. Zero value at a voxel indicates that the particular voxel is not
activated during the task condition [26]. GLM analysis is carried out for each of the four
runs corresponding to each subject. Thereafter, for each subject, an average 3-D contrast
map having only the activated voxels, is generated by averaging the contrast maps obtained
for each of the four runs. Though, this stage reduces the feature vector size considerably,
the dimensionality is still too large to efficiently distinguish the two classes.

3.3.3 Stage-2: the statistical testing

We linearised each subject’s data into a one-dimensional vector. In the second stage of
analysis, we have used the popular two sample t-test for selecting the relevant features. T-
test is applied feature-wise to find the statistical significance of a feature between the two
groups of data. The null hypothesis (Hp), mean value of a feature between the two groups
being the same, is tested at « = 0.01. Let d be the total number of features selected in the
first stage, then the t-test value will be computed for each i’ feature as:

i — M
f = Ms, M )

2 2

ol o,

ng nn

Vi=1,2,3,..,d
where i, 0‘5 are the mean and variance for the schizophrenia patients and p,, a}i_ denote
the mean and variance values for healthy subjects respectively, corresponding to i feature.
ng and nj, are the number of schizophrenia and healthy subjects respectively. Higher t-test
value signifies higher relevance of a feature. The t-test values are considered for ranking

ISPM Version 8: http://www.fil ion.ucl.ac.uk/spm/software/spm8
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the features and they have been sorted accordingly. Based on experimental exploration with
selection of different numbers of features, finally top 300 features (rank wise) were passed
to stage-3 of our approach.

3.3.4 Stage-3: application of GA

The third stage of the proposed approach involves the application of the non-dominated
sorting genetic algorithm (NSGA-II) [14] which is outlined in Algorithm 1. Based on the
features selected in stage-2, we have created a population of binary chromosomes. Each
chromosome is 300 bits long. A one (zero) at a position in the chromosome indicates the
presence (absence) of the corresponding feature. Initial chromosome is randomly generated
with 20% of the bits being one. For our experiments, the population size (S) is fixed at
200. The fitness value of a chromosome for the first objective function (!, maximization
of classification accuracy), is independently evaluated by employing three different classi-
fiers, namely, support vector machine (SVM) with linear kernel, SVM with sigmoid kernel
and k-NN classifier (with k=1). The fitness value of the second objective function ( f 2 min-
imization of number of features) for a chromosome is computed by counting the number of
ones in the chromosome. Offspring population (M;) is generated using binary tournament
selection, followed by one-point crossover and mutation. The mutation is applied at the rate
of 0.01. The fitness value of the child population (M;) generated after mutation step is com-
puted, and a pooled population (7;) of the initial (P;) and child population (M;) is formed.
The pooled population (7;) is then sorted to find the set of non-dominated solutions along
the Pareto-Front. The chromosomes representing the trade-off solutions (P;4) are passed
to the next generation. The maximum number of iterations (Max Gen) has been set to 100.

We have used the LOOCV scheme for feature selection. In LOOCYV, one data sample
is used for testing and rest are used for training purpose. This process is repeated N times
(where N is the sample size) in such a way that each sample is chosen as a test sample
exactly once. The feature selection process is carried out only on the training data to avoid
the danger of double dipping [33]. We have repeated each experiment 10 times to capture the
variability of the evolutionary approach. The feature selection process is shown in Algorithm 2.

Algorithm 2 Proposed feature selection approach

INPUT: GLM analysis generated N contrast images comprising healthy subjects (HS) and
schizophrenia patients (SP).

OUTPUT: Set of voxels that distinguish between healthy and schizophrenic sub-
jects.

1: for all i in NumO f Runs do

2 for each fold j in LOOCYV cross-validation do

3: Select the jt* element as a test sample and the others as training samples

4: k=N-—j

5 Fj < T-Test(HSy, SPy) // Fj is the feature set se-
lected by applying Two-
sample t-test at o = 0.01

6 Rank F}; according to t-score and select top ranked features

7 x;f < NSGA-II (HSy(Fy), SP,(F;)) // x;f is the optimal solution

8: Store x;f

9: end for

10: end for

11: Obtain the final set of relevant features or voxels by extracting unique voxels across all
the solution sets
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4 Experimental results and discussion

Experiments are carried out using MATLAB-R2014a (Mathworks Inc., Natick, MA, USA)
in Ubuntu 14.04LTS environment on a machine having Intel ® Xeon having 2.10GHz x17
processor with 32GB RAM. We have used SPMS toolbox for preprocessing and general
linear modeling; libsvm [11] package for the classification task; Talairach Daemon for
mapping; and Multi-image Analysis GUI (Mango) [35] for visualizing the mapped brain
regions.

We have used C-Support Vector Classification (C-SVC) [7], available in libsvm tool for
Matlab, by fine tuning its parameters. The regularization parameter C was fine tuned at
C=100 after evaluating the values of C from 0.01 to 1000 in steps of 10. C-SVC uses the
loss function,

1
. 1
my  jeeres ®

subject to yiwl¢p(xi)+b) >1—§&,
Ei>0, l:],,l

where ¢ (x;) maps x; into a higher-dimensional space, w is the vector variable, &; are the
slack variables, and C > 0 is the regularization parameter [11].

4.1 Experimental results

Each experiment in our three-stage evolutionary based approach was repeated ten times to
capture the variability. For dataset D1 (1.5 Tesla), we obtained mean classification accura-
cies 0f 99.0% , 99.5%, and 95.0% using SVM with sigmoid kernel, SVM with linear kernel,
and 1-NN classifier, respectively. Table 3 shows the results for each run of the experiments
on D1. It shows the mean and standard deviation of the number of features obtained in each
run along with classification accuracies of the models. Similar experiments were carried
out on dataset D2 (3 Tesla). For dataset D2, we obtained accuracies of 97.4%, 95.2% and
92.6% using SVM with sigmoid kernel and linear kernel, and 1-NN classifier, respectively.
Table 4 shows the results for dataset D2.

Figures 2 and 3 show the variability in the number of relevant features selected for
classification using linear SVM across 10 runs for dataset D1 and D2, respectively.

To evaluate the relevance of the proposed methodology, we have conducted experiments
without incorporating any feature selection method for datasets D1 and D2. The feature set
obtained after the GLM analysis was used for classification using SVM with linear kernel
and sigmoid kernel, and 1-NN classifiers in LOOCV manner. For datasets D1 and D2, we
obtained the mean classification accuracies of 45.0% and 44.0% in case of linear SVM,
accuracies of 53.33% and 40% in case of SVM with sigmoid kernel, and accuracies of
53.33% and 42% for the 1-NN classifier, respectively (see Table 5).

We have also conducted the experiments using principal component analysis (PCA) tool
available in Matlab2014b for feature selection. The feature set obtained on carrying out
GLM and t-test from the stage-1 and stage-2 analysis, was used as an input to the PCA. For
the purpose of classification, we have used linear kernel SVM and L1-regularized L2-loss
SVC in linear SVM in a LOOCV manner. We have experimented with the cost parameters
by changing the value of C from 0.01 to 1000 in an interval of multiple of 10 to obtain
the optimal accuracy. For dataset D1, using linear SVM and L1-regularized L2-loss SVC,
we obtained highest mean classification accuracy of 65% and 60% respectively. For dataset
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Variability in feature set size across 10 experimental runs for dataset D1
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Fig. 2 Variability in the number of selected features by linear SVM across the ten runs for dataset D1

D2, we have obtained highest mean accuracy of 50% and 52% with linear SVM and L1-
regularized L2-loss SVC respectively.

Variability in feature set size across 10 experimental runs for dataset D2
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Number_of_Features
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Number_of_Runs

Fig. 3 Variability in the number of selected features by linear SVM across the ten runs for dataset D2
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Table 5 Mean classification accuracy for dataset D1 and D2 without feature selection

Classifier Dataset D1 (1.5T) Dataset D2 (3T)
SVM with Linear Kernel 45.0% 44.0%
SVM with Sigmoid Kernel 53.33% 40.0%
k-NN where k = 1 53.33% 42.0%
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Fig. 4 Percentage wise distribution of affected voxels covering hemisphere regions for dataset D1
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Fig. 5 Percentage wise distribution of affected voxels covering the lobes for dataset D1
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Fig. 6 Percentage wise distribution of affected voxels covering gyral regions for dataset D1
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Fig. 7 Percentage wise distribution of affected voxels covering Brodmann’s areas for dataset D1
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Fig. 8 Percentage wise distribution of affected voxels covering hemisphere regions for dataset D2
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Fig. 10 Percentage wise distribution of affected voxels covering gyral regions for dataset D2
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Fig. 11 Percentage wise distribution of affected voxels covering Brodmann’s areas for dataset D2
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4.2 Discussion
Different runs of the experiment on dataset D1 (see Table 3) resulted in about 40-50 features

for each fold of the LOOCYV technique. The experiments, repeated ten times, yielded about
800 distinct voxels. These identified voxels represent the regions that help in distinguishing
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Fig. 12 Voxels identified by the proposed approach with variation in t-test values in different views of the
brain for dataset D1 (1.5 Tesla)
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between the schizophrenia patients and the healthy subjects. Brain regions, to which these
voxels belong, are identified using the Talairach Daemon [34] for carrying out multi-level
analysis — hemisphere level, lobe level, gyrus level and cell type (Brodmann Area) of the
human brain in Talairach’s space. Figures 4, 5, 6 and 7 represent the selected regions for
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Fig. 13 Voxels identified by the proposed approach with variation in t-test values in different views of the
brain for dataset D2 (3 Tesla)
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dataset D1. As shown in Fig. 4, majority of the selected voxels either belong to the left cere-
brum or right cerebrum region of the brain, or to the right brainstem. Figure 5 shows the
percentage wise of distribution of voxels among the lobes. It can be observed that the major-
ity of the voxels either lie in the frontal lobe, limbic lobe, mid brain or the temporal lobe.
Figure 6 represents gyrus level analysis. It can be observed that the identified voxels either
lie on the superior frontal gyrus, medial frontal gyrus, middle frontal gyrus, culmen, post-
central gyrus and thalamus. Figure 7 shows the percentage wise distribution of the identified
voxels among the Brodmann Areas (BA). We can observe that the majority of the identified
voxels either lie in BA 10, 6,37, 8,9, 2, 3, 19, substancia nigra, red nucleus or hypothalamus
regions.

Like the results on dataset D1, results on dataset D2 map to similar regions as shown in
Figs. 8,9, 10 and 11 except for red nucleus and hypothalamus regions. In addition, voxels from
anterior cingulate, parahippocampal gyrus, inferior frontal gyrus and precuneus regions are
also present in the results on dataset D2.

The regions identified by our proposed approach, are similar to previous studies on
schizophrenia [10, 24, 30, 48, 51, 53]. Several comparative studies between schizophre-
nia patients and healthy subjects were made to localise the brain regions, responsible for
the diseased state. Kim et al. [30] identified the regions like culmen, superior temporal
gyrus, middle temporal gyrus, inferior frontal gyrus, postcentral gyrus, parahippocampal
gyrus, precuneus, angular cingulate gyrus, and so on. In a similar study, Garrity et al. [22],
showed that the patients with schizophrenia exhibited similar brain connectivity between
the regions comprising posterior cingulate, precuneus and cingulate gyrus. The experiments
also marked the precuneus and the middle frontal gyrus regions that are involved in selec-
tive attention, which is an important characteristic of schizophrenia [48]. Neuropathological
alteration in substancia nigra region has been noticed in a previous study [51], and some
task-evoked hyperactivity in this region has also been observed in schizophrenia patients
[53]. In another study, Honea et al. [24] analysed the structural segment of MRI with
the objective of distinguishing between healthy and schizophrenia patients. Their findings
showed that the patients with schizophrenia had highly significant decreases in the frontal
cortex, mainly the bilateral medial frontal cortex and inferior frontal gyri regions. They
noted that the changes in the gray matter volume in the prefrontal and medial frontal cor-
tices were more evident. In another study, decrease in hypothalamus volume was noted from
structural point of view [32].

Figures 12 and 13 show the identified voxels in the brain for three different views of
the brain for dataset D1 and D2, respectively. Our study also points to the differences in
these regions between the schizophrenia patients and healthy subjects, as seen in Figs. 6, 7,
10, and 11. Moreover, several studies [9, 12, 23] have also identified regions similar to our
study.

The main contribution of the paper lies in the application of a bi-objective optimization
framework in classification of fMRI data. It uses NSGA-II to select a small set of features
(voxels) that improves the classification accuracy. Our study also identifies the relevant
regions of the brain which are potentially affected in schizophrenia. This study may throw
light on the conventional line of treatment of the disorder.

5 Conclusion and future scope

In this paper, we have addressed the problem of feature selection in fMRI data to improve
the classification accuracy in a bi-objective framework. We have proposed a three-stage

@ Springer



Multimed Tools Appl (2018) 77:26991-27015 27011

approach comprising of GLM analysis, statistical hypothesis testing, and NSGA-II to obtain
a small set of relevant features that yields high classification accuracy. Thus, using a small
set of 40 to 50 voxels, we achieved a mean classification accuracy of 99.5% over ten runs
of the experiment. Using brain atlases in the Talairach space, we have successfully identi-
fied the regions of the brain that are mostly affected in schizophrenia patients. Specifically,
we were able to identify the regions that are helpful to make a distinction between healthy
subjects and schizophrenia patients. In future, one may explore the applicability of other
evolutionary approaches like differential evolution, particle swarm optimization, and ant-
colony optimization for identifying the brain regions affected by schizophrenia. Further,
this study may be extended to incorporate the effect of different co-variates like age, gen-
der, smoking habit, and anti-psychotic medication. It may also be interesting to explore the
applicability of the proposed methodology to structural MRI analysis to find the volumetric
changes in brain.
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