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Abstract Fine-grained recognition is a challenging task due to small intra-category variances.
Most of the top-performing fine-grained recognition methods leverage parts of objects for better
performance. Therefore, part annotations which are extremely computationally expensive are
required. In this paper, we propose a novel cascaded deep CNN detection framework for fine-
grained recognition which is trained to detect a whole object without considering parts.
Nevertheless, most of the current top-performing detection networks use N+ 1 class (N object
categories plus background) softmax loss. The background category with much more training
samples dominates the feature learning progress where the features are not suitable for object
categorisation with fewer samples. To address this issue, we here introduce two strategies: 1) We
leverage a cascaded structure to eliminate the background. 2) We introduce a novel one-vs-rest loss
function to capture more minute variances from different subordinate categories. Experiments show
that our proposed recognition framework achieves comparable performance against the state-of-the-
art, part-free, fine-grained recognition methods on the CUB-200-2011 Bird dataset. Meanwhile, our
method outperforms most of the existing part annotation based methods and does not need part
annotations at the training stage whilst being free from any annotations at the test stage.
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1 Introduction

Recently, a large body of computer vision research has focused on the fine-grained image
recognition problem in several domains, such as animal breeds or species [3, 4, 27], plant
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species [17, 23] and architectural styles [21]. Fine-grained recognition concerns the task of
distinguishing subordinate categories of the same superordinate category. It is a challenging
task, as fine-grained subordinate categories share a high degree of visual similarity with small
intra-class variances caused by factors such as poses, viewpoints or lighting conditions [18,
30]. Moreover, fine-grained recognition algorithms perform well within specific fine-grained
domains that can provide valuable insight into a variety of challenging applications [2, 6, 14,
15, 34], such as the recommendation of relevant products in e-commerce, surveillance systems
and so on (Fig. 1).

Most of the current state-of-the-art fine-grained recognition systems [5, 33] are part-
based methods, as leveraging parts can capture the subtle appearance difference in
specific object parts and achieve better performance. However, part annotations are more
difficult to be obtained than object annotations. In this paper, we formulate the fine-
grained recognition problem as the object detection problem [7, 8] without considering
parts. When we train a standard Faster RCNN, the existence of many background
samples makes the feature representation less discriminative between different subordi-
nate categories and more confusing between an object category and the background. To
address this concern, we introduce a cascaded structure to eliminate excessive back-
ground samples. Our cascaded framework consists of a standard Faster RCNN and a
modified Fast RCNN with a one-vs-rest loss function. For simplicity, we denote the first
standard Faster RCNN as SFNet and the unified recognition framework as RFNet. An
overview of our proposed recognition framework for fine-grained recognition is shown
in Fig. 2. In our unified recognition framework, the standard Faster RCNN first generates
primitive detections which usually contain many background parts. So we first eliminate
primitive detections with low scores, which are more likely to be part of the background, and
then use the balanced data to further train a modified Fast RCNN. Finally, the predicted label of
the detected box with the highest score is used as the predicted label of the whole image. Our
unified framework is trained to detect only the whole object, so it does not need part annotations
at the training stage and is free from any annotations at the testing stage.

Fine-grained recognition tasks require distinguishing objects at the subordinate level.
A good fine-grained recognition framework should be able to capture variances among
different subordinate categories. However, Fast RCNN and Faster RCNN exploit the N +
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Fig. 1 The top row images show the minute intra-category variances among different subordinate categories of
the bird. The bottom row images show that Faster RCNN with softmax loss frequently misclassifies horses and
sheep into cows, since it focus on capturing more inter-category variances rather than intra-category variances
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Fig. 2 An overview of our RFNet. Red rectangle indicates SFNet (a standard Faster RCNN) and blue rectangle
indicates one-vs-rest Fast RCNN

1 class (N object categories plus background) softmax loss function that results in an
offset between detections and fine-grained recognition solutions, when referring to
feature learning. The feature learning of the softmax detection network is still affected
by the background class even though we have eliminated most of the background
samples using the cascaded structure. Besides, it is very difficult for the softmax
detection network to distinguish the objects with similar appearance or belonging to
semantically related genres. For example, Faster RCNN can distinguish animals from the
background, but it frequently misclassifies horses and sheep into cows (shown in Fig. 1),
since horse, sheep and cow are all subordinate categories of the animals and have
significant intra-category variances. To bridge this gap, we replace the softmax loss
function of Fast RCNN with a novel one-vs-rest loss function, which consists of N (the
number of subordinate categories) two-class cross entropy losses, each of which is
responsible for capturing the variances between one specific subordinate category and
its similar categories. This design enables the one-vs-rest loss function to focus on
capturing the variances between each category and its similar categories, suitable for
fine-grained recognition tasks.
The main contributions of this paper are as follows:

1) First, we propose a novel cascaded detection framework for fine-grained recognition
tasks. The unified recognition framework does not need expensive part annotations at
the training stage and is free from any annotations at the testing stage.

2) Second, we introduce a cascaded structure to eliminate excessive background samples,
then train a better detector using the balance data. The cascaded structure enables our
framework to be free from the influence of excessive background samples and the learned
features are suitable for object categorisation.

3) To the best of our knowledge, it is the first time to introduce one-vs-rest detection network
into fine-grained recognition tasks. Due to the ability of the one-vs-rest loss function to
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capture intra-category variances, the cascaded detection network is well adapted to fine-
grained recognition tasks.

2 Related work

Fine-grained recognition Current top-performing fine-grained recognition methods [5,
33] leverage object parts, as it is widely acknowledged that the subtle difference between
objects can help deliver better performance. [19, 31] focus on localizing and describing
discriminative object parts in the fine-grained domain and explicitly requires both box
and part annotations during the training and testing phases. Aiming at training fine-
grained classifiers without part annotations, [16] introduces co-segmentation to localize
the whole object and then performs alignment across all the images. [13] also leveraged
better segmentation [1, 9] to localize object parts, and proposes an efficient architecture
for inference, but it requires both bounding box and part annotations in training, and
even needs specific annotations during testing. Towards the goal of performing fine-
grained recognition without any annotations, some unsupervised methods have emerged.
[28] presented a visual attention model to support fine-grained classification without any
annotations. [24] reported a method to localize parts with a constellation model, which
incorporates CNN into the deformable part model. Although unsupervised methods [24,
28] are free from box and part annotations, their performance is still not comparable to
part-based methods. The comparison of part-based methods, bounding box-based
methods and unsupervised methods can be seen in Table 1. In order to well balance
the relationship between accuracy and annotation demands, we here propose a novel
cascade detection framework for fine-grained recognition.

Object detection RCNN [12] is one of the most notable region based frameworks for
object detection. It demonstrates state-of-the-art performance on standard detection
benchmarks at the early time and also inspires most of the state-of-the-art detection
methods. RCNN first exploits the standard selective search algorithm [26] to generate
hundreds or thousands of region proposals per image, and then trains a CNN to classify
these region proposals. To further boost the detection performance, the standard Fast
RCNN [11] and Faster RCNN [22] introduced a multi-task loss function simultaneously
to classify region proposals and regress the bounding box coordinates. However, most of
the current detection networks use the softmax loss function and produce a large number
of misclassification errors. Recently, [29] introduced a one-vs-rest loss function in order
to reduce misclassification errors in generic object detection. We here also use the one-
vs-rest loss function for fine-grained recognition. Different from [29], we propose a
novel cascaded detection framework for fine-grained recognition tasks and improve
system performance.

Table 1 The comparison of part-based methods, bounding box-based methods and unsupervised methods

Methods Advantage Disadvantage
Part-based methods High accuracy Need part annotations
Box-based methods Only need box annotations Not accurate enough
Unsupervised methods Without any annotations Low accuracy

@ Springer



Multimed Tools Appl (2019) 78:4381-4395 4385

3 The proposed method

Our proposed framework consists of a standard Faster RCNN [22], followed by a
modified Fast RCNN with the one-vs-rest loss function. The standard Faster RCNN first
generates primitive detections which usually contain a large number of background parts.
We first eliminate excessive backgrounds in the primitive detections, and then use the
balanced data to further train a one-vs-rest Fast RCNN. Finally, the predicted label of the
highest scored detection box is used as the predicted label of the whole image. The
cascaded structure enables the one-vs-rest Fast RCNN to be free from the influence of
excessive background components and the learned features are suitable for object
categorisation. Besides, the softmax loss function of the Fast RCNN is replaced by a
novel one-vs-rest loss function which can capture the variances between different
subordinate categories.

3.1 Cascaded detection network

In order to perform fine-grained recognition without part annotations, we propose a
cascaded detection framework to detect the whole object in the image so that it needs
only box annotations at the training stage and is free from any annotations at the testing
stage. Our cascaded framework consists of a standard Faster RCNN, followed by a one-
vs-rest Fast RCNN. When training the standard Faster RCNN, the existence of many
background samples allows the feature representation component to capture less intra-
category variance (i.e., variance between different subcategories) and more inter-category
variance (i.e., between the object category and background), causing many false posi-
tives between the ambiguous object categories (e.g., people mistakenly classify horses
and sheep as cows). When training a better detector, it is necessary to eliminate excessive
background samples to achieve good balance. So after eliminating the background in the
primitive detections of the standard Faster RCNN, we add another one-vs-rest Fast
RCNN and train it with the balanced data. The cascaded structure prevents our frame-
work from the influence of excessive background clutters. Ref. [33] shows a Fast RCNN
network to refine small semantic part candidates generated from a novel top-down
proposal method, a classification sub-network to extract features from the detected parts,
and combines them for recognition. In the same way, our cascaded detection network can
also incorporate object parts in addition to the whole object. Better system performance
is expected when considering image parts.

Previous work [31] reported a bottom-up selective search method to generate part and
object proposals, which used RCNN to perform object detection. In the experiments,
they discovered that the region proposals are the bottleneck for precise fine-grained
recognition. Salient differences among different fine-grained bird species are more likely
to attach to some small parts. Once the crucial discriminative small parts are lost due to
the unreliable proposal methods, it is hard for the sub-classification network to further
distinguish them. For example, as shown in Fig. 3, it is not straightforward to distinguish
between a Ringed-billed gull and a California gull without identifying the pattern of their
beaks. In our method, the Faster RCNN network can generate high quality proposals,
since it exploits an effective proposal generation network RPN. RPN exploits a multi-
task loss function used for classification and bounding-box regression of the translation-
invariant anchors. The loss function is defined as:
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Fig. 3 The salient difference between a California gull and a Ringed-billed gull lies in the pattern of their beaks
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L({p;}, {t:}) = N—CISZiLcls (Pivpi) +A 2P Lreg (t,», ti) (1)

where i is the index of an anchor in a mini-batch andp; is the predicted probability of
anchor i being an object. The ground truth label p; = 1if the anchor is positive, and p; =
0if the anchor is negative. ¢; is a vector representing the four parameterized coordinates
of the predicted bounding box, and ¢, is that of the ground truth box associated with a
positive anchor. The classification loss L is the log loss over the two classes (object vs.
background). The regression loss function L., is of a robust L1 form, defined as:

Lyeg (t1,1;) = Ysmoothy, (t;, 1) (2)

(3)

smoothy, (x) { 0.5x° iflx] < 1 }

|x—0.5| otherwise

The two terms are normalized with N;; andN,,¢N,,, and a balancing weight\.

In our experiments, SFNet can achieve 82.0% accuracy only with average 10 high quality
proposals per image, far less than thousands of bounding boxes produced from the selective
search method [26].

3.2 Objective function

3.2.1 Softmax loss

Both Fast R-CNN and Faster RCNN drop the one-vs-rest SVM in the RCNN in order
to obtain an end-to-end system. However, softmax loss encourages feature represen-

tation to learn inter-category variances instead of intra-category variances. This can be
explained by the definition of softmax loss in Eqs. 4 and 5.

N C etelne
L=- Z Z tn,clogpn,c’ Wherepn,c = (4)
n=Ic=1 > nety

ec=1
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Denotet,, .andp,, .as the ground truth label and the predicted label for thenth sample and
cth class. t, .=1if thenthsample belongs to thecthclass, ¢, .=O0otherwise. net, s the
classification prediction from the neural network. Denote fas the parameter of the network,
the derivative is:

oL onet,,
@ = nZC (Pn.c_tn.L’) T (5)

Eq.6 shows that the number of the samples belonging to class ¢ influences the
gradient of the parameters. Suppose the prediction errorsp, .—t, chave similar
magnitudes for all the samples, then we can infer that one class which has more
samples, the magnitude of the gradient from it will be much larger than the magnitude
of the gradient from the other classes. This results in the network parameters dom-
inated by the class which has much more samples. Therefore, the existence of the
dominated background samples (3/4 of all the training samples) leads to better feature
representation for capturing inter-category variances.

3.2.2 One-vs-rest loss

For the Fast RCNN in the proposed framework, we replace the softamx loss function
with a novel one-vs-rest loss, which is designed to capture variances among different
subordinate categories. One-vs-rest loss consists of N (the number of subordinate
categories) two-class cross entropy losses, and each two-class cross entropy loss
function focuses on capturing the variances between one specific subordinate category
and its similar categories. The objective function is the sum of N two-class cross
entropy losses. At the training time, primitive detections with low scores, which are
more likely to be the background, are discarded. This step is especially important
since it makes one-vs-rest Fast RCNN network learn more discriminative features of
different subordinate categories. Then each two-class cross entropy classifier is trained
using the detections which have high scores on that specific category, as those high
scored detections may be true positives or false positives (i.e. detections misclassified
by SFNet whose ground truth labels are similar to that specific category). In this way,
the negative training samples of each two-class cross entropy classifier are of the
categories similar to the specific category, allowing each specific two-class cross
entropy classifier to capture the variances between the specific category and its similar
categories. At the test time, after non maximum suppression (NMS) operation on the
primitive detections, less and higher quality detections are left. Then each of the left
detections is again classified and regressed by the one-vs-rest Fast RCNN, and the
output scores (N categories) are averaged (different from the multiply operation used
in [29]) over the primitive scores in a category-by-category way to retrieve the final
scores. Finally, the predicted label of the highest scored box is used as the predicted
label of the whole image. The whole training process and the testing stage of RFNet
are illustrated in Processes 1 and 2, accordingly.
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Process 1: RFNet training process

Input: Ground truth labels and bounding boxes of the training set
GT ={(L,,B)), ,(Ly,B))}, B, and L, (1<i < N) denote the ground truth bounding boxes
and its labels.

Output: Parameters of the SFNet W, and the one-vs-rest Fast RCNNw, .

Step1: Fine-tune SFNet using GT' and get the parameters of SFNet w,, .

Step2: Pass the image X from training set through SFNet, and get M primitive detections
D= ¢W\/ (x), ¢ is the SFNet function parameterized by Wy
D={(L,B,S,), - (L,,B,,S,)}, (L,B.,S,) are the predicted label, bounding box and
score of the ith(1 <i < M) primitive detection in image X .

Step3: Discard the primitive background detection (Z;,B;,S;), if S, <@, is a constant
threshold.
Stepd: Add primitive detection (L;,B,,S,) into the training set of the kth two-class cross

entropy losses classifier Ofm_ (responsible for classifying the kth subordinate category), if
L =k,
Step5: Train the kth two-class cross entropy losses classifier of one-vs-rest Fast RCNN

network using the training samples in O

ovs 2

and obtain the final parameters of the one-vs-rest

detection network w, .

Process 2: RFNet testing process

Input: Image X in the testing set, parameters of the SFNet and the one-vs-rest Fast RCNN
w, andw,,

Output: label V of image X .
Stepl: Pass image X through SFNet, and get N primitive detections D :¢W\/ (%), is well

trained SFNet function parameterized by W, at the training stage above.
D={(B,S,),",(By,Sy)}.B; and S are the predicted bounding box and the score of the
Jjth primitive detection in image X , here S; = (sl/.,-“,s_';) is a K — dimensional vector, K
is the number of classes( K =200 in CUB-200-2011 dataset), each element S'/‘ denotes the

probability of the jth detection being an object of class k,1<k <K .

Step2: Input image X and its N primitive detections D into the one-vs-rest Fast RCNN
network. Get N refined detections and D =4, (x,D) corresponding to N primitive
detections D . D' = {(B{,S{)y«~,(B:V,S:\,)},B} and S} are the refined bounding box and the
score of the j th primitive detection in image ¥, S', = (s'/l ) -~,S'/K) .

Step3:  Computer the final score S /f of the jth detection as
ST =((s)+5/)/2,+,(sf +5/)/2),1< j< N. Update the score and the label of the jth
detection S, =max(s/ Yand L, = argmax(S/), then P' = {(L,, B, S,),"+,(Ly, By, Sy )}-

Step4: Finally, the image X * s label y = L, wherei = arg max(s, «+,Sy).
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Fig. 4 Examples on the CUB-200-2011 dataset of SFNet detections (blue), RFNet detections (red) and ground
truth bounding box (green). Images misclassified by SFNet are rectified by one-vs-rest Fast RCNN network

4 Experimental results
4.1 Dataset

We evaluate the performance of our proposed framework for fine-grained recognition on
CUB-200-2011 dataset [27], which is generally considered as the most extensive and com-
petitive datasets in the literature. CUB-200-2011 contains 11,788 images of 200 bird species,
each image has a single bounding box annotation, rough segmentations and 15 key points
annotated, which is not used in our method.

4.2 Implementation details

The baseline models of our two networks are based on the VGG16 model [25], as done in
current state-of-the-art methods [5, 33]. All the experiments are performed on a single
NVIDIA K40 GPU. Parameters of the SFNet are initialized from the model pre-trained on
the ImageNet dataset. Parameters of the one-vs-rest Fast RCNN are initialized from the SFNet
model, and the new one-vs-rest loss layer is initialized from a Gaussian distribution.

4.3 Results and comparisons
We first conduct some ablation experiments to analyse the cascaded structure and the one-vs-

rest loss with regard to recognition performance, and then move on to the comparison against
the previous work.

Table 2 Recognition performance comparisons between SFNet, softmax RFNet and RFNet on CUB-200-2011,
softmax RFNet consists of a standard Faster RCNN (SFNet) and a standard Fast RCNN with softmax loss

Methods Cascaded structure One-vs-rest loss Accuracy
SFNet 82.0%
Softmax RFNet v 82.9%
RFNet v v 84.0%
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Table 3 Recognition performance comparisons of the current state of the art methods on CUB-200-2011, sorted
by the amount of annotation used

Method Train Anno. Test Anno. Acc.
Alignment [10] n/a n/a 53.6%
Attention [28] n/a n/a 77.9%
NAC [24] n/a n/a 81.0%
Bilinear [20] n/a n/a 84.1%
No parts [16] BBox n/a 82.0%
Our RFNet BBox n/a 84.0%
Alignment [10] BBox BBox 67.0%
No parts [16] BBox BBox 82.8%
PS-CNN [13] BBox+Parts BBox 76.6%
Deep LAC [19] BBox+Parts BBox 80.2%
SPDA [33] BBox+Parts BBox 84.55%
FOAF [32] BBox+Parts BBox+Parts 81.2%
Part RCNN [31] BBox+Parts BBox+Parts 82.0%
PN-CNN [5] BBox+Parts BBox+Parts 85.4%

RFNet refers to our unified cascade detection framework. “Parts” refers to using any annotation at the level of
parts at all. “BBox” and “Parts” refer to any annotation at the level of bounding box and part separately

4.3.1 Ablation experiments

How important is the cascade structure? To evaluate the effectiveness of the cascaded
structure, we compare SFNet with softmax RFNet, which consists of a standard Faster RCNN
(SFNet) and a standard Fast RCNN with the softmax loss function. For softmax RFNet, the
baseline model of the standard Fast RCNN is VGG16 and the parameters are initialized for the
SFNet model as the same as RFNet. From Table 2, we observe that softmax RFNet improves
accuracy by 0.9% over SFNet, and the experiment validates the effectiveness of the cascaded
structure to eliminate the influence of excessive background samples during feature learning.

Sotfmax loss vs. one-vs-rest loss The comparison between softmax RFNet and RFNet,
shows that one-vs-rest loss improves accuracy by 1.1% over softmax loss. The results shown
in Fig. 4 verify the ability of the one-vs-rest loss function of further capturing intra-category
variances among the subordinate categories, and also reducing false positives mainly caused
between ambiguous categories.

4.3.2 Comparison with other state-of-the-art methods

This section shows the comparison results of our method against the previous work. For fair
comparison, we report the results with varying degrees of supervision such as part annotation
or bounding-boxes at the training and the testing time.

The comparison results illustrated in Table 3 show that our RFNet performs much better
than the previous unsupervised methods [10, 24, 28], and outperforms part-based methods [13,
19, 31, 32]. RFNet also achieves comparable performance against the state-of-the-art, part-
free, fine-grained recognition method [20]. [20] presents bilinear models that exploit two
CNN:ss to extract features while we use a single cascaded structure to extract features which is
easier to train. However, our method is slightly worse than the current state-of-the art methods
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[5, 33], due to the significant advantage of exploring part information for bird recognition. [10]
is with box level annotation at both the training and testing stages, and achieves about 13.4%
higher accuracy than that without any annotation. [16] introduced box level annotation at the
testing time, and also achieved better performance. All these developments verify that
leveraging more additional supervision results in higher performance. It is worth emphasizing
that RFNet improves the detection and the loss layers for better feature learning. We anticipate
that leveraging part annotations in our cascade detection framework will result in higher
performance due to the additional supervision.

5 Conclusion and discussion

In this paper, we have proposed a novel cascade detection framework for fine-grained
recognition tasks without considering parts. The proposed cascaded detection framework is
well adapted for fine-grained recognition by introducing a one-vs-rest loss function, which can
capture more intra-category variances. Experiments showed that our proposed recognition
framework achieved comparable performance against the other state-of-the-art part free fine-
grained recognition methods on the CUB-200-2011 Birds dataset.

The cascaded framework boosts the classification accuracy, but the two networks are
trained respectively and cannot meet the requirement of many real-time applications. Taking
into account the speed of the proposed framework, and introducing the proposed solution to
applications such as surveillance systems and the recommendation of relevant products in e-
commerce become one of the future research directions.
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