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Abstract Breast cancer continues to be one of the major health issues across the world and
it is mostly observed in females. However, the actual cause of this cancer is still an ongo-
ing research topic. Hence, early detection and diagnosis of breast cancer are considered to
be an effective and reliable solution. Mammography is one of the most efficacious medical
tools for early detection of breast cancer. The radiologists identify the suspicious regions
in the breast by carefully examining the mammograms. However, mammograms are some-
times difficult to analyze when the breast tissues are dense. Therefore, a computer-aided
diagnosis (CAD) system is adopted which can improve the decisions of the radiologists.
This paper proposes a hybrid CAD framework to classify the suspicious regions into either
normal or abnormal, and further, benign or malignant. The proposed framework constitutes
four computational modules, namely, ROI generation using cropping operation, texture fea-
ture extraction using contourlet transformation, a wrapper-based feature selection algorithm,
namely, forest optimization algorithm to select the optimal features, and finally different
classifiers like SVM, k-NN, Naı̈ve Bayes, and C4.5 that are employed to classify the inputs
into normal or abnormal, and again benign or malignant. The proposed framework is exam-
ined on two widely used standard datasets, namely, MIAS and DDSM. The performance
measures are computed with respect to normal vs. abnormal, and benign vs. malignant for
four different hybrid CAD models, namely, (Contourlet + FOA + SVM), (Contourlet + FOA
+ k-NN), (Contourlet + FOA + Naı̈ve Bayes), and (Contourlet + FOA + C4.5). The highest
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classification accuracy of 100% is achieved for normal vs. abnormal classification in case
of both MIAS and DDSM. The performance of the proposed hybrid scheme demonstrates
its effectiveness with the other state-of-the-art schemes. Experimental results reveal that the
proposed hybrid scheme is accurate and robust. Finally, the suggested scheme is considered
as a reliable CAD framework to help the physicians for better diagnosis.

Keywords Mammograms · Computer-aided diagnosis (CAD) · Contourlet transform
(CT) · Forest optimization algorithm (FOA) · Matthew’s correlation coefficient (MCC) ·
Area under curve (AUC)

1 Introduction

In recent years, cancer has become a decisive significant health problem and is a major cause
of the high mortality rate. According to the statistics of GLOBOCAN reported in 2012,
14.1 million new cancer cases and 8.2 million cancer-causing deaths ensued, as compared
to 12.7 million and 7.6 million, respectively, in 2008 [36]. In the upcoming years, the death
rate due to cancer can be a serious issue in the society. Cancer is the second leading reason
for the death rate across the world and was accountable for 8.8 million number of deaths in
2015. Among all types of existing cancers, breast cancer is considered to be one of the major
health issues and leading causes of deaths. It is especially a threat to women at the age of
40 or above. Breast cancer is not only seen in females but also affects the males. According
to the American Cancer Society (ACS), in 2015, 40,730 death cases were estimated due to
breast cancer [32]. Hence, it is of utmost importance to reduce the breast cancer mortality
rate through timely detection and effective treatment.

With the invent of modern medical science and information technology, medical imaging
techniques are playing a vital role in the early detection and diagnosis of breast cancer. The
screen-film mammography is a widely accepted mechanism to identify the breast cancer at
its early stage. It examines the breast through imaging technique to provide breast related
information such as its morphology, anatomy, and so on. In this process, two types of views
are acquired, namely, Medio-lateral oblique (MLO) and Cranio-caudal (CC) for both the
right and left breasts. The illustrations of the two views are shown in Fig. 1a and b, respec-
tively. The MLO view of breast projects more breast tissue than that of the CC view because
of the slope of the chest wall. These views of the breast enhance the breast tissues as a result

(a) (b)

Fig. 1 Illustration of two mammography projections a MLO view and b CC view
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of which the probability of detection of suspicious regions is increased. The digital mam-
mograms are always examined by trained and experienced radiologists. The radiologists
consider both the views for more accurate identification of the number of patches contain-
ing the abnormalities. However, the study of these screen-film mammograms is a repetitive
task, and many-a-times, radiologists make errors by missing out the abnormalities present
in the mammograms. According to studies, radiologists fail to identify the abnormal lesions
10%-30% of the times as a result of which the severity of breast cancer rises from early
stage to last stage [4].

A computer-aided diagnosis (CAD) system merges image processing and pattern recog-
nition theory and uses computers, software, and efficient tools to interpret medical
information. Additionally, it provides viable diagnosis suggestions to reduce false detec-
tion and false negative rates. So, there is a growing need to design an automated CAD
system which can effectively categorize the mammograms into either normal-abnormal or
benign-malignant. The prime objective of CAD framework is to automatically take care of
the issues related to the abnormal patch identification by collecting and analyzing impor-
tant features of the mammograms. Moreover, CAD is regarded as a ‘second opinion’ by the
medical practitioners and physicians to reach the final diagnosis decision. Therefore, in the
present scenario, computer-aided detection (CADe) and computer-aided diagnosis (CADx)
are most efficient and widely used techniques among the radiologists for mammograms
analysis. The role of CADe system is to automatically identify and segregate the lesions
containing abnormalities. On the other hand, CADx method aims at correctly classifying
the lesions, and analyzing the mammograms with the help of image processing and pattern
recognition approaches [19]. The four prime modules of CADx includes pre-processing,
feature extraction, feature selection, and classification. It starts with finding out the region of
interest (ROI) of a mammogram that includes the abnormalities. Next, it extracts the essen-
tial features from the ROI using effective feature extraction algorithms. Then, it selects the
most relevant features with the aid of an appropriate feature selection algorithm. The feature
selection algorithm is considered to be one of the most important steps prior to classifica-
tion as it helps to increase the accuracy as well as to minimize the computational burden of
the classifiers.

In the present work, a hybrid CAD framework is proposed aiming at a better diagnosis
of the mammograms. The key contributions of the proposed scheme are as follows:

– To describe the extracted ROIs of the mammograms, distinct texture features are
extracted using the contourlet transform.

– Next, a wrapper-based feature selection approach, namely, Forest optimization algo-
rithm (FOA) is utilized to select the best optimal features.

– Different hybrid schemes, namely, (Contourlet + FOA + SVM), (Contourlet + FOA
+ k-NN), (Contourlet + FOA + Naı̈ve Bayes), and (Contourlet + FOA + C4.5) are
formulated to correctly classify the mammograms either as normal or abnormal, and
further, into benign or malignant.

The performance of the proposed CAD framework is evaluated in terms of classification
accuracy, sensitivity, specificity, Matthew’s correlation coefficient (MCC), area under the
ROC curve (AUC).

The remainder of this paper is organized as follows: Section 2 concisely describes the
different CAD models. Section 3 provides the details of the proposed framework consisting
of the four subsections of ROI generation, feature extraction, feature selection, and classifi-
cation. Section 4 contains experimental results and a detailed analysis of the results. Finally,
Section 5 presents the summary of the proposed scheme and prospects for future work.
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2 Related work

For the last couple of years, the medical imaging community is actively involved toward
the development of CAD framework. With the advent of CAD, newer issues have surfaced
that demand deeper understanding and significant research. Some key modules in CAD like
feature extraction, feature selection, and classification are being rigorously researched by
the community. So this section presents some of the recent approaches with respect to these
three modules to design an effective and automated CAD framework. Verma and Zakos [34]
presented a technique for the detection and diagnosis of micro-calcifications in mammo-
grams. In their work, 14 different statistical features are extracted and 3 features are selected.
The scheme used a feed forward back propagation neural network (BPNN). El-Naqa et al.
[12] proposed a SVM-based classification scheme to classify the abnormalities. After per-
forming the SVM classifier on 76 clinical mammograms, they achieved a sensitivity of 94%.
Fu et al. [14] utilized a feature extraction algorithm which extracts 61 features from both the
spatial domain and spectral domain. They have used sequential forward search (SFS) fea-
ture selection algorithm followed by SVM and general regression neural network (GRNN)
classifiers. After selecting the most relevant features, the reported technique achieved an
AUC of 0.9800 and 0.9780 with respect to SVM, and GRNN, respectively.

Prathibha and Sadasivam [27] suggested multi-scale wavelet transformation for textural
feature extraction. Further, they used k-nearest neighbor (k-NN) to classify the mammo-
gram tissues and obtained an AUC of 0.946. Jona and Nagaveni [21] proposed an approach
using gray level co-occurrence matrix (GLCM) for feature extraction. Further, genetical
swarm optimization (GSO) is employed to select the relevant features followed by an SVM
classifier. They achieved an improved classification accuracy of 94% as compared to its
competent schemes. Azar and El-Said [2] used a probabilistic neural network (PNN) for
the classification of mammograms and reported an accuracy of 97.66%. Mohamed et al.
[24] proposed a CAD system which utilizes GLCM for feature extraction and k-NN, SVM
and artificial neural network (ANN) as classifiers. Further, histogram equalization and
morphological operation are applied to enhance the mammograms followed by an Otsu’s
thresholding technique for ROI segmentation. The accuracy achieved by the above three
classifiers are 73%, 83%, and 77%, respectively.

Dheeba et al. [8] suggested an approach for breast cancer diagnosis using particle
swarm optimization wavelet neural network (PSOWNN). In their work, a Law’s texture
energy measure (LTEM) is used to extract the features. Particle swarm optimization (PSO)
was applied to optimize the parameters essential for wavelet neural network (WNN) and
achieved an AUC of 0.96853. Eltoukhy et al. [13] presented a hybrid approach using wavelet
and curvelet transforms to extract the features from mammograms. For feature selection,
they applied t-test method to select the optimal features and then fed to an SVM classifier
to classify the mammograms as normal and abnormal, and further, benign and malignant.
Beura et al. [6] used GLCM and discrete wavelet transformation (DWT) to extract the
texture features from the ROIs. They performed feature selection using the filter methods
namely two sample t-test and F-test to get the relevant features. Further, BPNN is used as
the classifier. The accuracy obtained for the two standard databases MIAS and DDSM is
98.0%, and 98.8%, respectively. Pawar and Talbar [25] utilized a wrapper method for fea-
ture selection. Wavelet co-occurrence feature was used to extract the features from four
resolution levels of decomposition. They used a genetic fuzzy system as a feature selection
approach and gained an accuracy of 89.47%.

Rouhi et al. [30] classified the mammogram tissues into benign and malignant using
two different automated methods. In the first method, segmentation is done using auto-
mated region growing whose threshold value is determined by a trained ANN. The second
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method utilizes a cellular neural network (CNN) for segmentation, whose parameters are
obtained by genetic algorithm (GA). Then various classifiers such as MLP, k-NN, SVM,
Naı̈ve Bayes, and Random Forest are employed, and a maximum accuracy of 96.47% is
attained in case of MLP classifier. Deep neural networks as feature selection are proposed
by [31]. The authors used deep neural networks (DNN) to select the most appropriate fea-
tures in the field of action recognition and achieved an improved classification accuracy of
93.93% with the selected features.

A particle swarm optimization based feature selection algorithm along with SVM classifier
is proposed to reduce the false positive rate in mammogram classification [38]. The authors
have used multi-scale GLCM (MDGLCM) and second-order statistics of wavelet coeffi-
cients (SOSWC) to extract the texture descriptors followed by PSO-based SVM to classify
the mammograms as normal and abnormal. The accuracy obtained for GLCM and SOSWC
features of MIAS dataset are 89.8% and 95.2%, respectively. Phadke and Rege [26] pre-
sented a classification scheme based on the fusion of local and global features. The local
features are obtained by using Chebyshev moments and GLCM, and global features are
obtained from LTEM, Gabor based texture energy measures and fractal dimension. Fur-
ther, SVM classifier is used to classify the mammograms as normal and abnormal with an
accuracy of 93.17%. A new feature extraction technique using fast finite shearlet transform
(FFST) is employed [15]. In this scheme, the features are extracted from the mammo-
grams and ranked using the t-test statistics. Next, SVM classifier is applied to the optimal
feature set and accuracy of 98.29% and 98.08% are achieved for MIAS, and DDSM datasets,
respectively.

Guo et al. [18] proposed a 3-step micro-calcification (MC) detection approach in mam-
mograms. In the first step, pre-processing is performed for the segmentation of ROI
followed by enhancement. ROI is segmented using region-growing and double top-hat trans-
form technique. A grayscale-adjustment function is applied to enhance the quality of the
extracted ROI. Secondly, features are extracted using the contourlet transform. Finally, a
non-linking simplified pulse-code neural network is employed to detect the MCs with an
accuracy of 95.8%. Another mammogram diagnosis method using multi-resolution wavelet
and Zernike moments is proposed in [22]. Here, both texture and shape features are extracted
using the wavelet and Zernike moments. Then, the features are classified using SVM and
Extreme Learning Machine (ELM) in a multi-kernel approach, with an obtained accuracy
of 94.11%. Xie et al. [37] presented a CAD model based on Extreme Learning Machine
(ELM) to classify the mammograms as benign and malignant. They extracted multidimen-
sional features followed by feature selection using the combination of SVM and ELM. The
classification accuracy for MIAS dataset achieved by this ELM-based model is 96.02%.

From the literature study, it is noticed that feature extraction, feature selection, and clas-
sification modules are the key modules to improve the overall efficacy of CAD framework.
So, there is a growing need to improve these modules. Hence, keeping this in mind, this arti-
cle proposes an improved hybrid CAD framework to classify the mammograms into either
normal or abnormal and benign or malignant. Special emphasis is placed to improve feature
extraction and feature selection modules to formulate different hybrid frameworks.

3 Proposed methodology

The proposed CAD system consists of three prime modules, namely, feature extraction,
feature selection, and classification. The reported CAD model has experimented on two
standard mammogram datasets, namely, Mammographic Image Analysis Society (MIAS),
and Digital Database for Screening Mammography (DDSM). A multi-resolution and multi-
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orientation feature extractor, called contourlet transform is employed to extract the texture
features along with various directions of the mammograms. Once the feature matrix is gen-
erated, the feature selection procedure is performed to select the best optimal features. To
do this, an evolutionary algorithm, namely, forest optimization algorithm is utilized. Then,
various classifiers such as SVM, Naı̈ve Bayes, C4.5, and k-NN are considered to correctly
classify the mammograms into either normal or abnormal, and benign or malignant. Figure 2
represents a generic framework followed by an elaborated discussion of each module for
better interpretation. Also, a clear phase-wise visualization of the proposed CAD model is
presented in Fig. 3.

3.1 Extraction of ROI

The digital mammograms contain imaging noise, artifacts, and pectoral muscles. The noise
and artifacts lead to a low-quality image. Additionally, the pectoral muscles are unwanted
regions in the mammograms. Hence, these undesirable regions need to be eliminated to
obtain the actual ROI upon which the feature extraction technique needs to be performed.
To extract the ROI, a cropping operation is employed on the mammograms taken from the
standard dataset. The dataset is given with the radiologist’s truth markings on the region
of abnormalities. So, using the information available, such as the center and radius of any
abnormal area, the cropping mechanism is performed. In case of normal mammograms, ROI
is selected arbitrarily. Finally, the actual ROI is segregated from the original mammogram.
For instance, the extracted ROI from MIAS dataset are depicted in Fig. 4a-c for normal,
benign, and malignant cases, respectively.

3.2 Feature extraction using contourlet transformation

An image can be examined thoroughly with the help of a multi-resolution based analysis.
This analysis allows examining the image at different scales. DWT is one of the most widely
accepted multi-resolution approaches. But, the major drawback with DWT is its restricted
directional information. As it operates only in two dimensions, it overlooks the smoothness
along the contours. This drawback is addressed by contourlet transform (CT), proposed by

Fig. 2 Generic Framework of the Proposed Model
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Fig. 3 Visualization of the Proposed CAD Model

Do and Vetterli [10]. It has a greater degree of directionality and anisotropy. In addition, con-
tourlet transform is capable of capturing contours and directional information of an image
at various scales. Contourlet transform mainly contains two stages: a) the sub-band decom-
position, and b) directional filtering. At the first stage, Laplacian pyramid (LP) is employed
to find the point discontinuities in an image, followed by a directional filter bank (DFB) to
link those point discontinuities into a linear structure in the second phase.

(a) (b) (c)

Fig. 4 Extracted ROIs of MIAS dataset a Normal, b Benign, and c Malignant
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3.2.1 Laplacian pyramid (LP)

Laplacian pyramid (LP) is one of the acceptable mechanisms to decompose the image at dif-
ferent scales [7]. In this mechanism, each level of decomposition induces one down-sampled
low-pass variant of the original image and one band-pass image which is the resultant image
of the difference between the original and the predicted images. This mechanism can be
performed iteratively on the coarse image (down-sampled low-pass images) to produce a
series of decomposed images. The generated images are so arranged (one above the other)
that a pyramid-like shape is formed and is referred to as the Laplacian pyramid.

3.2.2 Directional filter bank (DFB)

The directional filter bank is designed by Bamberger and Smith [3]. It can be effectively
constructed through j-level binary tree decomposition and generates 2j sub-bands having
wedge-structured frequency division. To attain the required frequency division in the orig-
inal architecture of DFB, a complex tree expanding principle needs to be followed to get
the enhanced directional sub-bands. However, an improved DFB [9] has been proposed that
excludes modulating the image. It follows a simple approach in order to expand the decom-
position tree. This advanced DFB stems upon two building blocks, wherein the former block
is a two-channel quincunx filter bank with a fan filter [35]. It segments a 2D-spectrum into
two directions: parallel and perpendicular. The second block holds a shearing operator that
represents the restructuring of the image. By including both a shearing operator and its
inverse before and after the two-channel quincunx filter bank, several directional frequency
segments are attained while retaining the perfect transformation. Hence, the fundamen-
tal principle of DFB is to utilize the combination of shearing operator and two-channel
quincunx filter bank effectively at every level in a binary tree-shaped filter bank so as to
achieve the desirable 2D-spectrum partitions. Figure 5 illustrates the wedge-structured fre-
quency division where j = 3 and hence, there are 23 = 8 real wedge-structured frequency
segments.

Figure 6 depicts the decomposition in multi-scale and directions by combining the LP
and DFB. The band-pass images produced by the LP are given as inputs to the DFB to
capture the directional facts. This schema can be performed iteratively on the coarse image.
The output of the scheme is a two-fold iterated filter bank framework, known as contourlet
filter bank and it decomposes the input image into sub-bands in multiple directions and scales.

Let Io[n] be an input image upon which a LP stage is applied. This results in M number
of band-pass images, bm[n], m = 1, 2, ...M (in the fine-to-coarse order) and one low-pass
image IM [n]). In other words, a mth level of LP decomposes the image Im−1[n] into a
coarser image Im[n] and a band-pass image bm[n]. Each of the band-pass images bm[n] is
again decomposed by a jm-level DFB into 2jm band-pass directional images x

jm
m,z[n], z =

0, 1, ..., 2jm − 1. Further, some of the important characteristics of the discrete contourlet
transform is presented in [10].

As the scheme is an iterative low-pass filtering, the texture information is present in the
directional sub-bands at each of the resolution levels. Therefore, only the band-pass images
are taken into consideration while determining the feature vector. Once the transformation
operation is over, the generated sub-band images contain all the directional information
which is needed for classifying the images. To acquire more textural information from the
sub-band images in the contourlet domain, a set of several statistical properties such as
energy, mean, absolute mean, standard deviation, skewness, and kurtosis are calculated in
this scheme instead of taking the contourlet coefficients. Let an image Imn be one of the

12812 Multimed Tools Appl (2019) 78:12805–12834



Fig. 5 Illustration of Directional
Filter Bank

sub-images in mth level and nth direction with size P × Q, then the aforementioned
statistical measures can be denoted mathematically as follows.

Energy = 1

Pm,nQm,n

Pm,n∑

p=1

Qm,n∑

q=1

∣∣Im,n(p, q)
∣∣2 (1)

Mean = 1

Pm,nQm,n

Pm,n∑

p=1

Qm,n∑

q=1

Im,n(p, q) (2)

AbsoluteMean = 1

Pm,nQm,n

Pm,n∑

p=1

Qm,n∑

q=1

∣∣Im,n(p, q)
∣∣ (3)

Fig. 6 Realization of a Contourlet Filter Bank: First decomposition of an image is performed leading to one
low-pass image and one band-pass image, and then DFB is applied on every band-pass image
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StandardDeviation = 1

Pm,nQm,n

Pm,n∑

p=1

Qm,n∑

q=1

∣∣Im,n(p, q) − μImn

∣∣2 (4)

Skewness = 1

Pm,nQm,n

Pm,n∑

p=1

Qm,n∑

q=1

(Im,n(p, q) − μ(m, n))3

σ(m, n)3
(5)

Kurtosis = 1

Pm,nQm,n

Pm,n∑

p=1

Qm,n∑

q=1

(Im,n(p, q) − μ(m, n))4

σ(m, n)3
(6)

3.3 Feature selection using forest optimization algorithm

Feature extraction process plays a vital role in classifying the ROIs of the mammograms
either as normal or abnormal. Further, if the ROI is found to be abnormal, it is again classi-
fied as benign or malignant. Moreover, it may not be necessary that all the extracted features
contribute toward the classification process. Therefore, along with the feature extraction, it
becomes necessary to select the most optimal features that actually contribute to improv-
ing the classification accuracy. So, in the proposed CAD scheme, a wrapper-based feature
selection algorithm, namely, Forest Optimization Algorithm (FOA) is employed to obtain
the optimal features [17]. FOA is an evolutionary-based approach, which is influenced by
the growing process of the trees in a forest. The algorithm is composed of three fundamental
steps: 1) Local Seeding Operation, 2) Limiting the population of the forest, and 3) Global
Seeding Operation.

Before the steps are performed, the forest needs to be initialized with a predefined num-
ber of trees. Every element of a tree is initialized with a binary value, 0/1, arbitrarily. The
size of each tree is equal to T + 1, where T is the dimension of the feature vector and the
extra 1 is added to indicate the ‘age’ of the tree. Initially, the age of each of the newly cre-
ated trees is set to zero. These newly created trees are referred to as parent trees (0-aged
trees). Next, a local seeding operation is performed only on the parent trees with the help
of a parameter referred to as the local seeding changes (LSC). Here, depending on the value
of the LSC parameter, each of the parent trees generates new trees (referred to as child
trees) with age 0. In each of the newly generated trees, any one variable is arbitrarily cho-
sen (except the age variable) and the value of that variable is flipped from 0 to 1 or 1 to 0.
Once the local seeding operation is performed on every parent tree (0-aged trees), the age
of each tree is incremented by 1. Then, a population limitation operation is performed with
the help of two parameters, namely, ‘area limit’ (AL), and ‘lifetime’ (LT). The trees having
‘age’ larger than the predetermined value of LT are eradicated from the forest to create the
candidate population. Then, the remaining trees are individually passed through a classifi-
cation stage and are arranged in descending order of the obtained classification accuracy
(fitness value). Further, the trees which fall beyond the preset value of AL are transferred
from the forest to the candidate population. Next step is to perform the global seeding oper-
ation on a specified percentage of the candidate population. This percentage is determined
by a parameter, known as the ‘transfer rate’ (TR). The global seeding is accomplished by
a parameter, namely, ‘global seeding changes’ (GSC), wherein gsc number of elements
are randomly chosen from each selected tree. Further, the values of the randomly chosen
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elements are flipped (0 → 1/1 → 0) at a time. Then, the modified trees are again passed
through the classifiers and the tree with the highest classification accuracy is selected as the
optimal tree. This age of the selected tree is updated to zero and will act as the parent tree
in the next iteration. The flowchart of the detail process is depicted in Fig. 7.

The aforementioned steps are repeated until one of the following stopping criteria is met:
a) a fixed count of iterations, b) negligible difference in empirical fitness value of subse-
quent iterations, or c) a stipulated degree of accuracy. In the above-mentioned approach, a
predetermined threshold for the classification accuracy within the fixed count of iterations
is considered to be the stopping criterion [16]. Algorithm 1 represents the steps involved in
FOA for feature selection.

Algorithm 1 Feature selection using FOA

input : Life Time;

Local Seeding Changes;

Area Limit of the forest;

Transfer Rate for performing global seeding operation;

Global Seeding Changes

output: Set of best selected features exhibiting maximum accuracy.

1 Begin the process by creating arbitrary 0 1 trees to form the forest.

2 Initialize the age of each tree to 1.

3 Age of each tree is initialized to zero.

4 Initialize the other parameters

5 while termination condition is not met do
6 Employ the local seeding operation on the trees with 0.

7 for 1 to do

8 Randomly select one element of the zero-aged tree and negate its value.

9 Increment the age of every tree by 1 excluding the newly formed trees.

10 Identify the trees with greater than and transfer them to form the

candidate population.

11 Compute the classification accuracy of the remaining trees and arrange them in

descending manner according to classification accuracy.

12 Pick the trees falling beyond the of the forest and add them to the candidate

population list.

13 Take a percentage of the candidate population.

14 for every selected tree do
15 Arbitrarily select number of elements and flip their values from

0 1 1 0 at a time.

16 Compute the classification accuracy of the modified trees and arrange them in

descending order with respect to classification accuracy.

17 Select the tree with highest classification accuracy and declare it as the optimal

tree.

18 Modify the of the best-selected tree to 0.

19 Return the best tree generating the selected feature set.
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Fig. 7 Flowchart of Forest
Optimization Algorithm

3.4 Classification

As most of the schemes operate on real datasets, sometimes the most relevant features are
not inferable. Hence, it is required to perform a classification task using the selected features
in order to compute the performance of the feature selection algorithms. Additionally, the
class prediction relies on the classifiers applied for the classification purpose. So, it is a
standard approach to utilize various classifiers so as to make the obtained performance
classifier-independent. Therefore, in this work, four well-known classifiers such as SVM,
k-NN, Naı̈ve-Bayes, and Decision tree are employed.

3.4.1 Support vector machine (SVM)

SVM is a supervised learning approach widely applicable for classification and regression
problems [12]. It linearly classifies the input dataset by constructing a hyperplane in the
high dimensional space. The constructed hyper-plane is an optimal one if it has the maxi-
mum distance from the proximate data element of any class. The SVM aims at producing a
classification model which can correctly assign a new data element to the class it belongs to.

3.4.2 k-Nearest neighbor (k-NN)

k-NN classifier [1] is considered to be a ‘lazy learner’. A new test data is assigned to the
class which is most recurrent among its k-nearest neighbors, where k is a small odd integer.
The nearest neighbor can be determined by the smallest distance measure well-known as
the Euclidean distance. This classifier is suitable for both numeric and discrete values.

3.4.3 Decision tree (C4.5)

The decision tree is a widespread classification technique. It consists of a sequence of well-
crafted questions and conditions regarding the attributes in a tree-like structure. In a decision
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tree, the internal nodes indicate the test conditions of attributes and the leaf node indicate
the class labels. Each of the internal nodes contains a threshold connecting to one or more
attributes to partition the data into its successors. The process is said to be terminated when
it reaches a leaf or terminal node, and the class label of the terminal node is assigned to the
new data. A widely used algorithm for generating the decision tree is C4.5 developed by
Quinlan [28]. The advantage of C4.5 over ID3 is that it classifies both numeric and symbolic
data as well.

3.4.4 Naı̈ve-Bayes

Naı̈ve-Bayes classifier [29] is quite a simple statistical classifier. It employs the principle of
Bayes’ theorem and can predict the class membership probability. This classifier assumes that the
impact of one feature on a given class is unassociated with the other feature values. Hence, the
basic principle of this classifier is the class conditional independence. As the computational
overhead of the classifier is simple, so it is termed as Naive. Bayesian classifier performs
very well in real and discrete data, regardless of their simple design and assumptions.

The pseudo-code of the proposed Contourlet+FOA-based CAD model is presented in
Algorithm 2.

Algorithm 2 Algorithm for the proposed CAD model

1 Feature Extraction Phase

input : Total Number of ROIs;

Number of decomposition level, 4;

Number of feature descriptor, 6

output: Feature matrix, where represents the number of features

obtained.

2 for 1 to do

3 = Read( )

4 Obtain the low-pass and down-sampled version ( ) of .

5 Compute the difference between and to obtain the band-pass image.

6 Check if the predefined decomposition level ( ) reached. If ‘No’, then set

and go to step (4), else ‘Exit’.

7 Apply DFB on the obtained band-pass image ( ), to get 2

number of band-pass images.

8 for 1 to 2 do

9 for 1 to do

10 Compute the feature descriptors for

11

12

13 Feature Selection Phase

14 Initialize the input parameters of FOA (refer Algorithm 1).

15 Perform the steps (1)-(19) of Algorithm 1 on the generated to obtain the most

optimal features.
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4 Experimental results and discussions

The proposed Contourlet+FOA-based CAD framework with the different combination of
classifiers, namely, SVM, k-NN, Naı̈ve-Bayes, and C4.5 is validated using MATLAB
2017a, on a personal computer with a Core-i7 processor and 32 GB RAM, running under
Windows 10 operating system. The proposed scheme is analyzed with mammographic
images taken from the two standard datasets, namely, MIAS and DDSM [20, 33]. The
MIAS dataset has a sample size of 314 mammograms containing normal, benign, and malig-
nant cases. Out of 314 images, 207 cases are normal and the rest 107 are abnormal. In the
abnormal set of mammograms, 59 mammograms are benign and the remaining 48 cases are
malignant. The mammogram images taken from MIAS are 8-bit gray images with a size of
1024 × 1024 pixels. Similarly, 1500 mammogram images are taken from DDSM. Out of
1500 samples, 519 are normal, 479 are benign, and the rest 502 are malignant images. The
efficacy of the proposed scheme is compared with other benchmark schemes in terms of
accuracy, sensitivity, specificity, MCC, ROC, and AUC. These performance parameters are
computed using the confusion matrix. A confusion matrix (see Fig. 8) contains the counts of
the actual and predicted class attained by a classifier. Here, the class of normal and abnor-
mal mammograms is considered to be negative, and positive, respectively. Similarly, the
classes of benign and malignant are taken as negative, and positive, respectively.

The aforementioned performance measures are defined below and are represented as:

– Sensitivity (True Positive Rate) deals only with the positive cases; it exhibits the ratio
of the classified positive cases to the actual positive cases. The higher the sensitivity,
less is the false negative rate.

Sensitivity = T P

T P + FN
(7)

– Specificity (True Negative Rate) takes on the negative cases; it shows the ratio of the
classified negative cases to the actual negative cases, the greater the specificity, less is
the false positive rate.

Specif icity = T N

T N + FP
(8)

Fig. 8 Representation of Confusion Matrix
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– Accuracy signifies the precision of classification outcomes. The more the accuracy,
more efficient the system is.

Accuracy = T P + T N

T P + FP + T N + FN
(9)

– MCC is one more performance metric used for determining the quality of a classifier
proposed in [23]. It produces an effective evaluation of the classifier when the cases of
different classes in a sample are highly imbalanced. The more the MCC, higher is the
efficiency of the classifiers.

MCC = T P × T N − FP × FN√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

(10)

The ROC plot is computed between the true positive rate and false positive rate. The true
positive rate is taken in the vertical axis and the false positive rate is taken in the horizontal
axis. The AUC is the descriptor of the results obtained from testing the samples. The AUC
close to 1.0 signifies the certainty of the diagnostic experiment; on the contrary, AUC near
to 0.5 implies an inaccurate result.

During experimentation for the proposed CAD model, at first, the ROIs need to be
extracted from the mammogram images. A simple cropping mechanism is employed on the
mammograms to get the desired ROIs and the extracted ROIs are of size 256 × 256 pixels.
Once the ROIs are obtained, the texture attributes are explored using the contourlet trans-
formation. Contourlet is used to obtain the textural properties of an image in different scales
and directions. In this proposed scheme, a 4-level contourlet transform is employed on the
ROIs. The ROIs are decomposed into 4-pyramidal levels, impending 4, 8, and 16 directional
sub-images. The texture properties are extracted from the sub-band images of the 4th-level
due to the fact that this level generates 16 multiple directions. Further, at each of the sub-
band images of the 4th-level decomposition, a basic set of six statistical textural features
are generated. The statistical features, namely, energy, mean, absolute mean, standard devi-
ation, skewness, and kurtosis are evaluated using (1)-(6). So, a total of 96 features (6 × 16)
are extracted from each of the ROIs.

To perform the experimental analysis, the input dataset is separated into non-overlapping
training and testing groups. In this article, the training samples are created by considering
70% of the original dataset and the rest 30% as the testing group. Further, the performance
analysis is divided into two groups, namely, without feature selection, and with feature
selection.

4.1 Without feature selection

In this case, the total of 96 features is used to measure the performance of the classi-
fiers with respect to the aforementioned metrics. Tables 1 and 2 depict the results obtained
with different classifiers for normal vs. abnormal, and benign vs. malignant classifica-
tion, respectively. Additionally, the ROC curves for normal vs. abnormal, and benign vs.
malignant classification are represented in Figs. 9 and 10, respectively.

4.2 With feature selection

If the size of the generated feature matrix is R×F , then R indicates the number of the ROIs
(or samples) and F represents the count of the features which is 96. Further, among the F

features, it may be realized that some features are not relevant and do not make a proper
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Table 1 Results obtained for Normal vs. Abnormal classification before performing feature selection

Accuracy (in %)

Run SVM 3-NN 5-NN 7-NN Naı̈ve-Bayes C4.5

1 100 100 100 98.93 95.809 100

2 100 100 100 98.93 95.809 100

3 100 100 100 100 95.809 100

4 100 100 100 98.93 96.87 100

5 100 100 100 98.93 95.809 100

Average 100 100 100 98.64 96.02 100

Sensitivity

Run SVM 3-NN 5-NN 7-NN Naı̈ve-Bayes C4.5

1 1 1 1 0.9687 0.9687 1

2 1 1 1 1 0.9375 1

3 1 1 1 0.9687 0.9062 1

4 1 1 1 1 0.9062 1

5 1 1 1 1 1 1

Average 1 1 1 0.9874 0.9437 1

Specificity

Run SVM 3-NN 5-NN 7-NN Naı̈ve-Bayes C4.5

1 1 1 1 1 0.9677 1

2 1 1 1 0.9838 0.9738 1

3 1 1 1 1 1 1

4 1 1 1 0.9838 0.9677 1

5 1 1 1 0.9838 0.9677 1

Average 1 1 1 0.9902 0.9753 1

MCC

Run SVM 3-NN 5-NN 7-NN Naı̈ve-Bayes C4.5

1 1 1 1 0.9764 0.9297 1

2 1 1 1 0.9764 0.9286 1

3 1 1 1 1 0.9297 1

4 1 1 1 0.9764 0.9526 1

5 1 1 1 0.9767 0.9543 1

Average 1 1 1 0.9811 0.9389 1

contribution toward the classification accuracy. So, to find out the most relevant features,
FOA is employed to select the best set of features. Hence, the size of the new feature matrix
after feature selection is R ×f , where f represents the set of a reduced number of features,
and it is a subset of F containing the best relevant features.

FOA is an iterative wrapper-based feature selection approach in which the best features
are selected based on a fitness value. In this case, the fitness value is considered to be the
classification accuracy. As described in Section 3.3, the value of LSC and GSC parameters
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Table 2 Results obtained for Benign vs. Malignant classification before performing feature selection

Accuracy (in %)

Run SVM 3-NN 5-NN 7-NN Naı̈ve-Bayes C4.5

1 93.75 87.5 90.62 93.75 87.37 96.87

2 96.87 90.62 90.62 93.75 87.37 96.87

3 93.75 90.62 90.62 93.75 87.37 95.89

4 93.75 90.62 93.75 93.75 87.37 96.87

5 96.87 87.5 90.62 90.62 87.37 96.87

Average 94.99 89.37 91.24 93.12 87.37 96.64

Sensitivity

Run SVM 3-NN 5-NN 7-NN Naı̈ve-Bayes C4.5

1 0.9285 0.7857 0.8667 0.9285 0.7857 0.9285

2 1 0.8 0.7857 0.8667 0.8057 1

3 0.8571 0.8666 1 1 0.7028 0.9285

4 0.9285 0.8666 0.8666 1 0.8057 1

5 0.9333 0.8676 1 0.9333 0.9285 1

Average 0.9294 0.8373 0.9171 0.9456 0.8056 0.9714

Specificity

Run SVM 3-NN 5-NN 7-NN Naı̈ve-Bayes C4.5

1 0.9444 0.9444 0..9412 0.9444 0.8899 1

2 0.9411 1 1 1 0.8889 0.9412

3 1 0.9411 0.8333 0.8889 0.9444 1

4 0.9444 0.9411 1 0.8823 0.8235 0.9444

5 1 0.8823 0.8333 0.8823 0.7778 0.9444

Average 0.9659 0.9417 0.9215 0.9195 0.8649 0.966

MCC

Run SVM 3-NN 5-NN 7-NN Naı̈ve-Bayes C4.5

1 0.8730 0.7481 0.8126 0.8730 0.6814 0.9379

2 0.9393 0.8246 0.8206 0.8805 0.6814 0.9393

3 0.8783 0.8126 0.8284 0.8819 0.6285 0.9379

4 0.8730 0.8126 0.8805 0.8823 0.6888 0.9388

5 0.9388 0.7490 0.8284 0.8141 0.7021 0.9388

Average 0.9004 0.7893 0.8341 0.8663 0.6764 0.9385

are set to be 1
5

th
and 1

4
th

of the size of the feature vector, respectively. As FOA is an iterative
process, the termination condition of the algorithm is a specified classification accuracy
with a pre-defined count of iterations.

Table 3 depicts the qualitative measures of the proposed CAD system to classify the
mammogram ROIs as normal and abnormal for MIAS dataset. For each of the suggested
classifiers, five independent runs are made to show the consistency of the proposed scheme.
Additionally, the average of each of the measures is obtained and shown in Table 3. In the
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Fig. 9 ROC curves obtained for the classifiers a SVM, b k-NN, and c C4.5, and d Naı̈ve-Bayes for Normal
vs. Abnormal classification without feature selection

proposed work, for k-NN, the results are determined for different k values (k = 3, 5,and
7). From Table 3, it is noticed that the accuracy (in %) obtained for all the classifiers come
out to be 100 except for Naı̈ve-Bayes classifier (Accuracy = 97.86%). Without applying the
feature selection technique, the classifiers have to deal with all the 96 extracted features for
each of the ROIs in the sample. However, post feature selection scheme reduces the size of
the feature vector by half. From this table, it can be seen that SVM produces the least number
of features, 38 with the maximum accuracy of 100%. Figure 11 represents the bar plot of
all the performance measures for different classifiers for classifying normal and abnormal.

Similarly, the performance measures for classifying the ROIs as benign and malignant
for MIAS are listed in Table 4. For benign vs. malignant classification also, the results for
five independent runs are generated, and then the average value of each of the measures
is evaluated. Here, the highest accuracy of 98.74% is obtained by C4.5 classifier with 44
number of relevant features. The MCC for C4.5 is also very prominent with a value of
0.9753. Figure 12 exhibits the bar plot for the performance measures obtained by various
classifiers for benign vs. malignant classification.
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Fig. 10 ROC curves obtained for the classifiers a SVM, b k-NN, and c C4.5, and d Naı̈ve-Bayes for Benign
vs. Malignant classification without feature selection
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Table 3 Results of 5 independent runs of Normal vs. Abnormal classification for MIAS

Accuracy (in %)

SVM 3-NN 5-NN 7-NN Naı̈ve-Bayes C4.5

Run 1 100 100 100 100 97.87 100
Run 2 100 100 100 100 97.87 100
Run 3 100 100 100 100 98.93 100
Run 4 100 100 100 100 97.81 100
Run 5 100 100 100 100 96.81 100
Average 100 100 100 100 97.86 100

Sensitivity
Run 1 1 1 1 1 0.9687 1
Run 2 1 1 1 1 0.9375 1
Run 3 1 1 1 1 1 1
Run 4 1 1 1 1 0.9165 1
Run 5 1 1 1 1 0.9375 1
Average 1 1 1 1 0.9520 1

Specificity

Run 1 1 1 1 1 0.9838 1

Run 2 1 1 1 1 1 1
Run 3 1 1 1 1 0.9838 1
Run 4 1 1 1 1 1 1
Run 5 1 1 1 1 0.9838 1
Average 1 1 1 1 0.9903 1

MCC
Run 1 1 1 1 1 0.9526 1
Run 2 1 1 1 1 0.953 1
Run 3 1 1 1 1 0.9767 1
Run 4 1 1 1 1 0.9297 1
Run 5 1 1 1 1 0.9297 1
Average 1 1 1 1 0.9483 1

#Features
Run 1 40 40 43 38 52 43
Run 2 37 39 40 41 50 37
Run 3 36 43 50 43 50 37
Run 4 37 43 49 40 41 37
Run 5 39 37 41 39 44 39
Average 38 40 44 40 47 39
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Fig. 11 Bar plot of the classification performances for Normal vs. Abnormal for MIAS
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Table 4 Results of 5 independent runs of Benign vs. Malignant classification for MIAS

Accuracy (in %)

SVM 3-NN 5-NN 7-NN Naı̈ve-Bayes C4.5

Run 1 96.88 90.63 93.75 93.75 93.75 100
Run 2 96.88 93.75 93.75 93.75 90.62 90.47
Run 3 100 90.63 90.62 93.75 90.47 100
Run 4 96.88 90.63 96.87 96.87 100 96.87
Run 5 96.88 90.63 93.75 93.75 95.23 100
Average 97.50 91.25 93.74 94.37 94.01 98.74

Sensitivity
Run 1 0.8571 0.7857 0.9333 0.9333 1 1
Run 2 0.9333 0.9344 0.8571 0.9285 0.9333 0.9285
Run 3 1 0.8667 0.9285 0.9333 1 1
Run 4 1 0.8676 0.9285 0.9333 1 0.9333
Run 5 1 0.9285 0.8571 0.8571 0.9 1
Average 0.9581 0.8766 0.9009 0.9171 0.9667 0.9724

Specificity
Run 1 1 1 0.9428 0.9411 0.8899 1
Run 2 1 0.9412 1 0.94440 0.8823 1
Run 3 1 0.9412 0.8898 0.9411 0.8333 1
Run 4 0.9412 0.9518 1 1 1 1
Run 5 0.9412 0.8899 1 1 1 1
Average 0.9765 0.9448 0.9665 0.9653 0.9211 1

MCC
Run 1 0.8783 0.8215 0.8745 0.8745 0.8819 1
Run 2 0.9388 0.8745 0.8783 0.8730 0.8140 0.9379
Run 3 1 0.8126 0.8264 0.8264 0.8257 1
Run 4 0.9393 0.8126 0.9379 0.9388 1 0.9388
Run 5 0.9344 0.8134 0.8783 0.8783 0.9183 1
Average 0.9382 0.8269 0.8791 0.8878 0.8880 0.9753

#Features
Run 1 45 43 42 44 40 48
Run 2 42 40 53 49 52 47
Run 3 53 42 44 47 47 44
Run 4 37 43 48 55 51 37
Run 5 49 49 46 47 44 47
Average 45 43 46 48 47 44
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Fig. 12 Bar plot of the classification performances for Benign vs. Malignant for MIAS
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Fig. 13 ROC curves obtained for MIAS with the classifiers a SVM, b k-NN, and c C4.5, and d Naı̈ve-Bayes
for Normal vs. Abnormal classification with FOA

Comparing Tables 1 and 3, it is seen that feature selection does not have a significant
effect on the performance of the classifiers for normal vs. abnormal case. However, while
comparing Tables 2 and 4, it is observed that feature selection play a vital role in enhancing
the performance of the classifiers (with feature selection) for benign vs. malignant classifi-
cation. Further, similar findings are noticed from the ROC plots (refer Figs. 9 and 13, and
Figs. 10 and 14).

To validate the qualitative measures obtained by the proposed model, corresponding ROC
curves are also generated. The ROC curves for MIAS dataset obtained by various classifiers
for normal vs. abnormal classification are shown in Fig. 13. The value of AUC for SVM,
k-NN, and C4.5 is 1, whereas for Naı̈ve-Bayes, it is 0.9995. Similarly, the ROC curves for
benign vs. malignant classification for MIAS are shown in Fig. 14.
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Fig. 14 ROC curves obtained for MIAS with the classifiers a SVM, b k-NN, and c C4.5, and d Naı̈ve-Bayes
for Benign vs. Malignant classification with FOA
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Table 5 Results of 5 independent runs of Normal vs. Abnormal classification for DDSM

Accuracy in % (#Number of Features selected)

SVM 3-NN 5-NN 7-NN Naive-Bayes C4.5

Run 1 100 (#40) 97.22 (#38) 97.22 (#42) 96.29 (#41) 98.14 (#49) 99.07 (#45)
Run 2 100 (#40) 97.22 (#39) 97.22 (#42) 97.22 (#40) 95.37 (#48) 99.07 (#44)
Run 3 100 (#38) 96.26 (#42) 97.22 (#39) 96.29 (#43) 97.22 (#51) 99.14 (#48)
Run 4 100 (#39) 97.22 (#42) 97.22 (#43) 97.22 (#41) 98.14 (#51) 99.07 (#45)
Run 5 100 (#40) 97.22 (#38) 96.29 (#43) 97.22 (#40) 98.14 (#49) 99.07 (#45)
Average 100 (#39) 97.02 (#39) 97.03 (#41) 96.84 (#41) 97.40 (#50) 99.08 (#45)

Sensitivity
Run 1 1 0.9814 1 0.9814 1 0.9814
Run 2 1 0.9814 1 0.9814 0.9814 1
Run 3 1 0.9814 0.9445 0.9259 0.9629 1
Run 4 1 0.9814 1 0.9814 1 0.9814
Run 5 1 0.9629 1 0.9814 1 0.9814
Average 1 0.9777 0.9889 0.9703 0.9888 0.9889

Specificity
Run 1 1 0.9629 0.9444 0.9444 0.9629 1
Run 2 1 0.9629 0.9444 0.9629 0.9259 0.9814
Run 3 1 0.9444 1 1 0.9814 0.9729
Run 4 1 0.9629 0.9444 0.9629 0.9629 1
Run 5 1 0.9814 0.9259 0.9629 0.9629 1
Average 1 0.9629 0.9518 0.9666 0.9592 0.9908

MCC
Run 1 1 0.9446 0.9459 0.9265 0.9636 0.9816
Run 2 1 0.9446 0.9459 0.9446 0.9088 0.9816
Run 3 1 0.9265 0.9459 0.9284 0.9446 0.9736
Run 4 1 0.9446 0.9459 0.9446 0.9636 0.9816
Run 5 1 0.9446 0.9284 0.9446 0.9636 0.9816
Average 1 0.9409 0.9424 0.9377 0.9488 0.98
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Fig. 15 ROC curves obtained for DDSM with the classifiers a SVM, b k-NN, and c Naı̈ve-Bayes, and
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The performance measures of the proposed model on DDSM dataset are listed in Table 5.
The highest accuracy for normal vs. abnormal classification is obtained by SVM classifier
with a value of 100% from 39 features. The ROC curves for DDSM dataset with different
classifiers are shown Fig. 15. From the figure, it is clear that the highest value of AUC
is 1 for SVM classifier. Moreover, similar results are observed for benign vs. malignant
classification.

In order to show the complexity of the proposed model, the execution time taken for both
MIAS and DDSM are listed in Table 6. The training time and testing time taken by various
classifiers are calculated in terms of seconds. Also, the execution time of the proposed model
is compared with some of the other techniques. The overall execution time of the proposed
model is found out to be 9.805 secs.

To further justify the proposed CAD system, the performance measures obtained are
compared with that of some recent state-of-the-art schemes. Table 7 depicts a comprehen-
sive comparison of the proposed scheme with respect to its counterparts in terms of accuracy
and AUC. From Table 7, it is noted that the presented scheme prevails over the other com-
pared schemes. The results of the proposed work surpass in both types of classification, i.e.
normal vs. abnormal, and benign vs. malignant. The highest accuracy for normal vs. abnor-
mal classification is 100% and for that of benign vs. malignant, it is 98.74% for MIAS
dataset. Similarly, for DDSM dataset, the highest accuracy achieved for normal vs. abnor-
mal, and benign vs. malignant are 100%, and 98.72%, respectively. Moreover, these high
values of classification accuracy are achieved from a remarkably less number of features.

Table 6 Comparison of Execution time

References Dataset Classifier Training Time (in sec) Testing Time (in sec)

[15] MIAS, DDSM SVM 33.3 (N vs. A) 5.7 (N vs. A)

15.9 (B vs. M) 3.7 (B vs. M)

[5] DDSM SVM 4.25 2.23

fk-NN — 2.42

fELM 0.15 0.047

[22] MIAS, DDSM Linear SVM 0.20 0.02

Polynomial SVM 1.09 0.01

RBF SVM 0.29 0.04

Decision Tree 0.64 0.00

k-NN 0.01 0.02

[11] DDSM Linear SVM 7.43 0.01

Polynomial SVM 10.19 0.01

RBF SVM 0.23 0.03

Decision Tree 0.45 0.00

k-NN 0.01 0.01

Present work DDSM SVM 0.485 0.011

k-NN 0.499 0.009

Naive Bayes 0.671 0.128

C4.5 0.589 0.041

MIAS SVM 0.288 0.008

k-NN 0.211 0.004

Naive Bayes 0.379 0.075

C4.5 0.387 0.007
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5 Conclusion

This paper deals with a hybrid CAD framework to correctly classify the mammograms into
normal or abnormal, and then, benign or malignant. The proposed approach first applies
a pre-processing method in terms of ROI extraction using cropping. Then, it employs the
contourlet transform to extract the texture features from the mammogram images. More-
over, the forest optimization technique is performed to select the optimal features which
result in a more efficient and accurate classifier. As FOA is a wrapper-based approach,
the optimal features are selected as per the classification accuracy. Finally, four different
classifiers, namely, SVM, k-NN, Naı̈ve-Bayes, and C4.5 are employed to correctly classify
the mammograms as normal or abnormal, and further benign or malignant. In the case of
normal-abnormal classification, highest accuracy of 100% is achieved with all the classifiers
considered except for Naı̈ve-Bayes. Further, for benign vs. malignant, maximum accuracy
of 98.74% is obtained for the C4.5 classifier.

Designing an automated CAD system for breast cancer detection and diagnosis remains
an open problem. There exist several future directions which might further improve the
CAD framework for mammogram images: (1) The acquisition of large databases from other
standard dataset and from different medical institutions with different image qualities for
correct clinical evaluation, and to improve the overall efficiency of CAD system, (2) To
further improve the classification accuracy, alternate multi-resolution transformation tech-
niques should be investigated to obtain more robust features, (3) There exists enormous
scopes for researchers to utilize advanced machine learning techniques, namely, deep learn-
ing, and extreme learning for classification, (4) Further, the suggested hybrid framework
applicable for correct classification of other types of cancer could be thought of another
area of extension.
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