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Abstract Gait recognition is a popular remote biometric identification technology. Its robust-
ness against view variation is one of the challenges in the field of gait recognition. In this
paper, the second-generation Kinect (2G–Kinect) is used as a tool to build a 3D–skeleton-
based gait dataset, which includes both 2D silhouette images captured by 2G–Kinect and their
corresponding 3D coordinates of skeleton joints. Given this dataset, a human walking model is
constructed. Referring to the walking model, the length of some specific skeletons is selected
as the static features, and the angles of swing limbs as the dynamic features, which are verified
to be view-invariant. In addition, the gait recognition abilities of the static and dynamic
features are investigated respectively. Given the investigation, a view-invariant gait recognition
scheme is proposed based on the matching-level-fusion of the static and dynamic features, and
the nearest neighbor (NN) method is used for recognition. Comparison between the existing
Kinect-based gait recognition method and the proposed one on different datasets show that the
proposed one has better recognition performance.

Keywords Gait Recognition . Second Generation Kinect . View-Invariant . 3D Joint
Information . Gait Dataset

Multimed Tools Appl (2018) 77:24909–24935
https://doi.org/10.1007/s11042-018-5722-1

* Jiande Sun
jiandesun@hotmail.com

1 School of Information Science and Engineering, Shandong Normal University, Jinan, China
2 Institute of Data Science and Technology, Shandong Normal University, Jinan, China
3 School of Information Science and Engineering, Shandong University, Jinan, China
4 School of Mechanical and Electrical Engineering, Shandong Management University, Jinan, China
5 Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-018-5722-1&domain=pdf
mailto:jiandesun@hotmail.com


1 Introduction

Gait Recognition has received increasing attentions as a remote biometric identification
technology, because it can achieve identification at a long distance, where other identification
technologies can’t work, and it needs little subject cooperation. Moreover, differing from other
biometric identification technologies such as face and fingerprint recognition [4, 29], 1) gait
has high security. It is a kind of behavioral biometrics, which is a kind of temporal sequence
verification, so it is hard to imitate. In the movie, Mission: Impossible-Rogue Nation (2015),
the gait analysis technology makes the access control system can’t be broken except to replace
the gait data inside the system. 2) Gait can be captured in a long distance without the subject’s
realizing. It reduces that probability of the subject changing his gait consciously. 3) Gait is easy
to be used in the present surveillance system. Though some psychological studies showed that
people can recognize a friend with 70–80% accuracy based on only the gait [20], there have
already been many gait recognition applications in the fields of criminal investigation, medical
treatment, identity recognition, etc.

Generally, the existing gait recognition methods can be divided into 2D–based and 3D–
based methods according to the format of gait. The 2D–based gait recognition methods depend
on the human silhouette captured by one 2D camera, which is the most common situation of
the video surveillance. The 2D–based gait recognition methods are dominant in this field of
gait recognition, and they are usually divided into model-free and model-based methods.

Model-free methods are also known as appearance-based method. They generate gait
signatures directly based on the silhouettes, which are extracted from the video sequences
with background subtraction. Gait energy image (GEI) [10] is the most popular appearance-
based gait representation, and it represents the spatial and temporal gait information in a grey
image as shown in Fig. 1a via averaging silhouettes over one gait cycle. Motion silhouette
image (MSI) [24] is like GEI, and is a grey image too. The intensity of an MSI is determined
by a function of the temporal history of the motion of each pixel, as shown in Fig. 1b. The
intensity of an MSI represents motion information during one gait cycle. Shape Variation
Based (SVB) Frieze Pattern proposed in [25] projects the silhouettes horizontally and verti-
cally to represent the gait information, and uses keyframe subtraction to reduce the effects of
appearance changes on the silhouettes, which is shown in Fig. 1c. Gait Entropy Image (GEnI)
[3] encodes the randomness of pixel values in the silhouette images based on Shannon entropy,
which makes it robust against appearance changes, such as carrying and clothing, as shown in
Fig. 1d. The Chrono-Gait Image (CGI) shown in Fig. 1e utilize a colour mapping function to
encode the silhouette images without losing too much temporal relationship between them
[44], and it can preserve more temporal information of one image. The model-free methods are

Fig. 1 Examples of model-free methods
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computationally efficient, but their performance will drop due to the appearance changing
caused by carrying and clothing.

Comparing with model-free methods, the model-based ones are more robust, but requires
high video resolution and computational load. They establish the suitable skeleton or joint
model by integrating the shape and dynamics features of the human body from video
sequences, and recognize the individuals based on the variation of the parameters in this
model. Cunado et al. [5] modelled gait as an articulated pendulum and extracted the line via the
dynamic Hough transform to represent the thigh in each frame, as shown in Fig. 2a. Johnson
et al. [16] identified the person based on the static body parameters recovered from the walking
action across multiple views, which is shown in Fig. 2b. Guo et al. [8] modelled the human
body structure from the silhouette by stick figure model as shown in Fig. 2c, which had 10
sticks articulated with 6 joints. Rohr [36] proposed a volumetric model for the analysis of
human motion, which used 14 elliptical cylinders to model the human body as shown in Fig.
2d. Wang et al. [26] extracted the dynamic body feature via the model-based approach, which
can track the joint-angle trajectories of lower limbs as shown in Fig. 2e, and the static feature
by Procrustes shape analysis in a compact representation. They represented the gait via the
fusion of the static and dynamic features.

In general, 2D–based methods are easy to implement because they only need a normal
camera, while 3D–based methods usually utilize multiple calibrated cameras or the cameras
with depth sensors to extract 3D gait features. Zhao et al. [52] proposed to build the 3D
skeleton model based on 10 joints and 24 degrees of freedom (DOFs) captured by multiple
cameras, which is shown in Fig. 3a. Yamauchi et al. [48] captured the dense 3D range gait
from a projector-camera system, which can be used to recognize individuals at different poses,
as shown in Fig. 3b. Krzeszowski et al. [21] built a system with 4 calibrated and synchronized
cameras to estimate the 3D gait motion using the video sequences, and recognize the view-
variant gaits based on marker-less 3D motion tracking, as shown in Fig. 3c.

Both 2D–based and 3D–based methods have their own advantages in gait recognition.
However, their robustness against the variation of observation view [22], walking speed [43],
clothing [12], and belongs [41] are still challenges, when they will be used in more natural cases.

In this paper, we focus on the view-invariant Kinect-based gait recognition method as it is
relatively difficult to derive the information of view from only silhouettes [7]. Kale et al. [18]
presented a gait recognition method to identify people based on static body parameters, which
are extracted from the walking across multiple views. Jean et al. [15] proposed a framework to

Fig. 2 Examples of model-based methods
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compute and evaluate view normalized trajectories of feet and head obtained from monocular
videos. They calculated the homography matrix by constructing a linear system using the
correspondences between the corners of walking planes. Hu et al. [13] proposed to project the
original gait features extracted from any view(s) into a low dimensional feature space, and
improve the discriminative ability of multi-view gait features by a unitary linear projection.
Makihara et al. [27] proposed a View TransformationModel (VTM) to transform correlated gait
information from one view (i.e. source view) onto another view (i.e. target view). And
Muramatsu et al. [31] further improved the VTM by incorporating a score normalization
framework with quality measures, where the quality measures are calculated from a pair of
gait features, and used to calculate the posterior probability that both gait features originate from
the same subjects with the biased dissimilarity score. Kusakunniran et al. [23] proposed a novel
motion co-clustering to partition the most related parts of gaits from different views into the
same group, and described the relationships between gaits from different views based on
multiple groups of the motion co-clustering instead of a single correlation descriptor. Kale
et al. [17] showed that if the person is far enough from the camera, it is possible to synthesize a
side view from any of the other arbitrary views using a single camera. Goffredo et al. [7] used
the human silhouette and human body anthropometric proportions to estimate the pose of lower
limbs in the image reference system with low computational cost. After a marker-less motion
estimation, the trends of the obtained angles were corrected by the viewpoint independent gait
reconstruction algorithm, which can reconstruct the pose of limbs in the sagittal plane for
identification. Daigo et al. [32] proposed an arbitrary view transformation model (AVTM) for
cross-view gait matching. 3D gait volume sequences of training subjects were constructed, and
then 2D gait silhouette sequences of the training subjects were generated by projecting the 3D
gait volume sequences onto the same views as the target views. Finally, the AVTMwas trained
with gait features extracted from the 2D sequences. In the latest work, Wu et al. [47] proposed
the first deep CNN-based on gait recognition, which took advantage of labeled cross-view pairs
(identical or not) and amounts to directly predicting the similarity given a pair of samples in an
end-to-end manner. The method showed its outstanding recognition ability in several gait
recognition datasets, when the cross-view angle was no less than 36°.

Fig. 3 Examples of 3D–based methods
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At the same time, Kinect has been used as a popular tool in gait recognition since its release
in 2010, because it can capture skeletons with less influence caused by illumination and
clothing, and depth with less computation and expense than previous depth sensors. Sivapalan
et al. [39] extended the concept of the GEI from 2D to 3D with the depth images captured by
Kinect, and averaged the registered 3D volumes to form the gait energy volume (GEV).
Araujo et al. [2] calculated the length of the body parts derived from joint points as the static
anthropometric features, and used them for gait recognition. Milos et al. [30] used the
coordinates of all the joints captured by Kinect to generate a RGB image, combined such
RGB images into a video to represent the walking sequence, and identified the gait based on
the spirit of Content Based Image Retrieval. Preis et al. [35] selected 11 skeleton features
captured by Kinect as the static feature, used the step length and speed as dynamic feature, and
integrated both static and dynamic features for recognition. Yang et al. [50] proposed a relative
distance-based gait features, which can reserve the periodic characteristics of gait better than
anthropometric features. Ahmed et al. [6] generated a gait signature from a sequence of joint
relative angles (JRA) over a complete gait cycle, and introduced a dynamic time warping
(DTW)-based kernel to measure the distance between two JRA sequences. Kastaniotis et al.
[19] proposed a framework for gait-based recognition using Kinect. The captured pose
sequences were expressed as Euler angular vectors of eight selected limbs. Then these angular
vectors were mapped into the dissimilarity space and transferred into a vector of dissimilarities.
Finally, the dissimilarity vectors of pose-sequences are modeled via sparse representation.

In this paper, we adopt the spirits of model-based gait recognition methods, and extract the
view-invariant gait features via 2G–Kinect to identify the person from his walking. Our
contributions are summarized as follows.

1) We build a Kinect-based gait dataset. There are 52 subjects in this dataset. Each subject has 20
gait sequences, and walks in 6 fixed and 2 arbitrary walking directions. It contains both the 3D
coordinates of skeleton joints captured by 2G–Kinect and the corresponding 2D silhouettes.We
aim to use it to bridge 2D–based and 3D–based gait recognition methods. The dataset will be
introduced in Section 3, and it can be accessed at https://sites.google.com/site/sdugait/.

2) We combine the hand-crafted static and dynamic features in the proposed gait recognition
method. The features that are related to the body and barely change during walking are
selected as static features, and the ones that can represent the changes along with time
during walking are selected as dynamic features. The stability of 8 static and 4 pairs of
dynamic features are analyzed, and the stable ones are fused for gait recognition.

3) We compare the proposed method with some existing 2D–based and 3D–based methods
from both the joint- and Kinect-based perspectives in our and other Kinect-based datasets.
It shows that our method works well in view-invariant gait recognition even when there is
no prior information of the view angle.

In the remaining part of this paper, we will introduce our Kinect-based gait dataset
in Section 2, and then present the details of our proposed method in Section 3.
Experimental results are given in Section 4, and conclusion of this paper is given in
Section 5. Comparing with the conference version [45], the proposed method in this
paper uses two angle pairs as the dynamic feature instead of only one angle pair, which
brings about performance improvement. And the comparison experiments are carried on
more dataset and on various view angles to verify the view-invariance performance of
the proposed method entirely.
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2 Gait dataset

Gait dataset is important to the performance improvement and evaluation of gait recognition.
There are lots of gait datasets in the current academia. Here we give a brief introduction about
several popular gait datasets.

2.1 Previous gait dataset

SOTON Large Database [38] is a classical gait database containing 115 subjects, who are
observed from side view and oblique view, and walk in different environments, including
indoor, treadmill and outdoor.

SOTON Temporal Database [9] contains the largest time variations. The gait sequences are
captured monthly during one year with controlled and uncontrolled clothing condition. It is
suitable for investigating the time elapse effect on the gait recognition without regarding clothing.

USF HumanID [41] is one of the most frequently used gait datasets. It contains 122
subjects, who walk along an ellipsoidal path outdoor, as well as contains a variety of
covariates, including view, surface, shoes, bag, and time elapse. This database is suitable for
investigating the influence of each covariate on the gait recognition.

CASIA Gait Database contains three sets, i.e., A, B and C. Set A, also known as NLPR, is
composed by 20 subjects, and each subject contains 12 sequences, which includes three
walking directions, i.e., 0°, 45° and 90°. Set B [51] contains large view variations from the
front view to the rear view with 18° interval. There are 10 sequences for each subject, which
are six normal sequences, two sequences with a long coat, and two sequences with a backpack.
Set B is suitable for evaluating cross-view gait recognition. Set C contains the infrared gait data
of 153 subjects captured by infrared camera at night under 4 walking conditions, which are
walking with normal speed, walk fast, walk slow, and walk with carrying backpack.

OU-ISIR LP [14] contains the largest number of subjects, i.e., over 4000, with a wide age
range from 1 year old to 94 years old and with an almost balanced gender ratio, although it
does not contain any covariate. It is suitable for evaluating gait-based age estimation.

TUM-GAID [11] is the first multi-model gait database, which contains gait audio signals,
RGB gait images, and depth body images obtained by Kinect.

KinectREID [33] is a Kinect-based dataset which has 483 video sequences of 71 individ-
uals under different illumination conditions and three view directions (i.e., frontal, rear, and
lateral). Its original motivation is person reidentification, and it provides all what Kinect can
captured and is convenient for other Kinect SDK based applications.

2.2 Our gait dataset

Referring to the overview of the gait dataset in [28], most datasets are based on 2D videos or
based on 3D motion data captured by professional camera, such as VICON. To our best
knowledge, there are few gait datasets contain both 2D silhouette images and 3D coordinates
of joints. Therefore, a novel dataset based on Kinect is built, and it can be accessed at the website,
https://sites.google.com/site/sdugait/. Such a dataset can make the joint-based methods. For
instance, the method in [7] can directly use the joint coordinates captured by Kinect, which can
make use of both advantages of 2D–based and 3D–basedmethods, and bring improvement to the
recognition performance.Meanwhile, the Kinect-basedmethod such as [6, 30, 35, 50] will have a
uniform platform to compare with each other. Its characteristics are summarized as follows.
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1. The dataset contains the 3D coordinates of 21 joints (excluding 4 finger joints) and the
corresponding silhouette images of each subject, as shown in Fig. 4. The dataset makes it
possible to compare the 2D–based and 3D–based methods in the same dataset, and
provides a bridge between the research of the 2D–based and 3D–based gait recognition.

2. The data acquisition environment is shown in Fig. 5. Two Kinects are located mutually
perpendicular at the distance of 2.5 m to form the biggest visual field, i.e., walking area.
Considering the angle of view, we put two Kinects at 1 m height on the tripod. The red
dash lines are the maximum and minimum deep that Kinect can probe. The area enclosed
by the black solid lines is the available walking area. The reason we use two Kinects is
that we can one walking from two different views simultaneously because the two Kinects
can be considered as same.

3. Each subject has in 6 fixed and 2 arbitrary walking directions as shown in Fig. 6, which is
used to investigate the influence of view variation on the performance of gait recognition.
Each subject walks several times on the predefined directions shown as the arrows ①-⑤
in Fig. 5. Particularly, ③ is defined as the main direction of Kinect A, and ⑤ means the
subjects walk on an arbitrary direction.

4. There are 52 subjects in the dataset, who are 28 males and 24 females with average age of
22. The height of subjects is from 1.5 to 1.9 m. Each subject has 20 walking sequences
from two Kinects so that there are totally 1040 gait sequences. Most subjects wear shorts

Fig. 4 3D coordinates of 21 joints (in the upper area) and the corresponding silhouette images (in the lower area)
in our dataset
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and T-shirts, and few females wear dress and high-heeled shoes. The attributes of each
subject, such as name, sex, age, height, wearing (e.g., high-heeled shoes, long skirt, etc.),
and so on, are provided for other potential analysis and data mining.

3 Proposed method

Unlike the traditional 2D–basedmethods mostly extract the gait feature from the silhouette captured
from the lateral view, the proposed method captured the data of joints from the front view because
the Kinect can’t capture the accurate joint data of the limb covered by the near one, i.e., from the
lateral view. Therefore, we take the front direction as our main walking direction in the proposed
method and dataset. Figure 7 demonstrates the frame of the proposed method. The static/dynamic

Fig. 5 The top view of the data
acquisition environment

Fig. 6 Walking directions and the
corresponding walking times
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feature is extracted respectively according to the 3D joint position captured by Kinect. After the
preprocessing and period extraction, the static/dynamic feature vector is finally obtained. The
templates stored in the database are calculated similarity with static/dynamic feature vector respec-
tively in the differentway.After the feature fusion, the final result will be acquired from the classifier.
In this section, each part of this frame will be introduced with details, and the view invariance of
static/dynamic is investigated.

3.1 Static gait feature

Static feature is defined as the feature that can barely change during walking. Given the
knowledge of anthropometry, the person can be recognized based on static body parameters to
some extent [42]. Here we take the length of some skeletons as the static gait features. And the
2G–Kinect can recognize 25 joints of human as shown in Fig. 8, and can get more accurate
coordinates of the joints than its first generation.

Considering the symmetry of human body, the length of limbs on both sides are usually treated to
be equal. Although the length of skeleton won’t change during walking theoretically, the estimation
accuracy of Kinect on the joints of the swing limbs will decline, because it is easily affected by the
walking style. And the absolute coordinates of the joints are not as stable as the relative distance
between the joints. Consequently, we choose the joints which could be monotonous in the deep
direction (Z direction) of Kinect to representative the body, and use the distance between them as the
static feature. In this paper, the static feature is defined as Fs= (d1, d2, d3, d4, d5, d6, d7, d8), where di
is the distance between Joint_1 and Joint_2 listed in Table 1. We can acquire the 3D coordinates of
the joints listed in Table 1 in each frame, and the Euclidean distance is chosen to measure the space
distance referring to [28] and [1].

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1−x2ð Þ2 þ y1−y2ð Þ2 þ z1−z2ð Þ2

q
ð1Þ

where (x1, y1, z1) and (x2, y2, z2) represent 3D coordinates of Joint_1 and Joint_2, respectively.
In addition, the estimation accuracy of Kinect is low at the quite near and far distances, and

it is high and stable at the distance from 1.8 m to 3.0 m. Hence, we use the depth of HEAD

Fig. 7 The frame of the proposed method
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joint as a reference, set the upper and lower bounds in the depth direction to form the stable
range, and use only the data captured in the stable range for gait recognition.

f sf g ¼ f j f H :z>1:8∩ f H :z<3:0

� � ð2Þ
where f represents the all frames. fs is the frames in the stable range, i.e., the frames with the z
axis coordinate of the HEAD joint larger than 1.8 m, fH. z > 1.8, and smaller than 3.0 m, fH. z < 3.0.
We average data in these stable frames to obtain the final components of the static feature
vector. In Fig. 9, we select d1 component as an example to show the comparison on stability
between the static features obtained from all frames and from the ones within the stable range.

Fig. 8 The joints recognized by 2G–Kinect

Table 1 Components of the static feature vector

Component Joint_1 Joint_2

d1 HIP_RIGHT KNEE_RIGHT
d2 KNEE_RIGHT ANKLE_RIGHT
d3 SHOULDER_RIGHT ELBOW_RIGHT
d4 ELBOW_RIGHT WRIST_RIGHT
d5 SPINE_SHOULDER SPINE_BASE
d6 SHOULDER_RIGHT SHOULDER_LEFT
d7 SPINE_SHOULDER NECK
d8 NECK HEAD
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In Fig. 9, the blue solid curve shows the original d1 extracted each frame, the black dot line
shows the ground truth of d1, the red dash line shows the mean of all original d1, and the pink
dash dot line shows the mean of d1 in the range from 1.8 m to 3.0 m, i.e. our method. It can be
seen that our method has much less errors according to the ground truth.

Given the stable static feature, Fs, along the walking, we investigate its stability to the
variance of view angles. We let the subject walk along the main direction at first, and make the
Kinect turn in clockwise and anti-clockwise directions from 0 degree to 15 degree with 5-degree
interval respectively. The clockwise and anti-clockwise directions are defined as the positive
and negative directions respectively, which are denoted as p and n for short. At each interval, the
subject still walks along the previous direction, and then we can get the static gait vectors on p5,
p10, p15, n5, n10, and n15 directions. We randomly select 15 subjects and investigate the
stability of their static features to the variance of view angles. We show the components of the
static feature on the 15 view angles in Fig. 10. We show only one of the subjects in Fig. 10,
because the static features of all subjects have the same invariance to view angle. From Fig. 10,
we can see that the static feature barely changes while the view changes.

3.2 Dynamic gait feature

The dynamic feature is a kind of feature that any change along with time during walking, such
as speed, stride, barycenter, etc. Given previous researches in [40, 42, 49], the angles of swing
limbs during walking are proved to be remarkable dynamic gait features. For this reason, four
groups of swing angles of upper limbs, i.e., arm and forearm, and lower limbs, i.e., thigh and
crus, are defined as shown in Fig. 11, and denoted as a1, …, a8. Here, a1 is taken as the
example for demonstration, and the other angles of swing limbs can be in the same way as a1.
If the coordinate at HIP_LEFT is (x, y, z), and the coordinate at KNEE_LEFT is (x1, y1, z1), a1
can be calculated as follows.

tan∠a1 ¼ x−x1
y−y1

� �
a1 ¼ tan−1

x−x1
y−y1

� �
ð3Þ

Fig. 9 The stability comparison between the static features from all frames and only the frames in the stable range
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Each dynamic angle can be regarded as an independent dynamic feature for recognition.
Given the symmetry of human body, we divide a1, …, a8 into 4 pairs, which are a1a3 pair,
a2a4 pair, a5a7 pair, and a6a8 pair. Figure 12 shows the 4 angle pairs in a walking period.

Like the stability investigation of the static feature, we investigate the stability of the
dynamic feature to the variation of view angles in the same way. Here, we take a1
(R_hip_knee) as an example to show the stability of the dynamic feature to the variation of
view angles in Fig. 13.

It can be seen from Fig. 13a that there is a temporal translation between views due to the
different starting time. After the synchronization, the dynamic feature is stable to the variance
of views as shown in Fig. 13b.

3.3 Gait period extraction

As we all know, gait is a periodic signal, and gait period extraction is an important step in gait
analysis. In existing 2D–based gait recognition methods, the gait period is usually extracted by

Fig. 11 The side view of walking model

Fig. 10 The stability of the static features on 7 directions
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peak-valley-detection-based methods, such as peak-valley-detection variation of the number of
foreground pixels in [41].

In this paper, we propose a crossing point-based method to extract the gait period by
combining the signals of left and right limbs. In this method, we cut off the beginning of the
signals of the left and right limbs to preserve their stable part, detect out their crossing points,
and take the period between two crossing points as the gait period. Figure 14 shows the results
of period extraction on a1a3 and a2a4 pairs, where the black dash lines mark the beginning and
end points of the detected-out gait period.

3.4 Solution to occlusion

The data of the occluded limbs can’t be captured accurately by Kinect, which will result in poor
static and dynamic features. Figure 15 shows an example of the subject’s walking along with the
90° direction, where the left side of the body is near to the Kinect. It can be observed from Fig. 15
that the point cloud on the left side is distributed densely and the coordinates of the joints are
estimated appropriately, while the point cloud is barely distributed on the right side and the
coordinates of the joints can’t be estimated correctly. To reduce such influence caused by occlusion,
we only use the static and dynamic features from the side near to the Kinect for gait recognition.

3.5 Dynamic feature matching

We can’t use Euclidean distance for the dynamic ones, because even if it is the same subject,
there are still some tiny differences in gait periods or styles as shown in Fig. 16, which makes
Euclidean distance not work well. However, it can be seen from Fig. 16 that the three dynamic
features have high correlation with each other, which is like the case in speech recognition.
Therefore, we adopt the Dynamic Time Warping (DTW) method to calculate the distance
between dynamic features, and the ability of DTW method has been verified in speech
recognition [37]. Suppose that there are two dynamic feature vectors with different dimensions.

P = (p1, p2,…, pi,…, pn) and Q = (q1, q2,…, qj,…, qm), the dimensions of P and Q are n
and m. Construct a n ×m matrix, and its element (i, j) represents the distance between pi and qj,
which using Euclidean distance. The DTW can be described as searching a path through
several elements of this matrix which has the minimum accumulated distance.

Fig. 12 Four pairs of dynamic features
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3.6 Dynamic feature selection

Referring to [34] and our experiment, the dynamic features from the upper limbs are easily
affected by external factors, like clothing, carrying, etc. Hence, we carry out a verification
experiment on these swing angles to investigate their recognition ability via Nearest-Neighbor
(NN) classification. The result is shown in Fig. 17 using CMC (Cumulative Matching
Characteristics) curve, where the horizontal axis is the rank, and the vertical axis is the Correct
Classification Rate (CCR)@K. Given Fig. 17, the angle pairs of the lower limbs, i.e., a1a3 and
a2a4, perform better in recognition, so we select them as the final dynamic features.

(a) comparison without synchronization 

(b) comparison with synchronization 

Fig. 13 Comparison of a1 on 7 view angles (a) without synchronization and (b) with synchronization
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Furthermore, we find that these two pairs of features are complementary in gait recognition, so
we select the nearest neighbor from a1a3 and a2a4 at the same time.

3.7 Feature fusion

The static and the dynamic features have their own pros and cons. The static feature is more
stable than the dynamic feature, but its discrimination is not as good as that of the dynamic

Fig. 14 Crossing point-based period extraction

Fig. 15 Demonstration of occluded limbs during the walking in the 90° direction
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feature. Inspired by [36], we make a fusion of the static and dynamic features in the score-
level, and recognize gaits based on their fusion. Two different kinds of matching scores are
linearly normalized onto the closed interval [0,1].

ŝ ¼ s−min Sð Þ
max Sð Þ−min Sð Þ ð4Þ

where S is thematrix before normalization, whose component is s, i.e., the score. Ŝ is the normalized
matrix, whose component is ŝ. The fusion of static and dynamic features is weighted as:

F ¼ ∑R
i¼1ωi ŝi; ωi ¼ Ci

∑R
j¼1Ci

ð5Þ

where F is the score after fusion, R is the number of features used for fusion, ωi is
the weight of i th classifier, ŝi is the score of i th classifier, which is our distance. Ci

Fig. 16 The dynamic feature extracted from the walking data of the same subject on three times

Fig. 17 The comparison on recognition ability between various dynamic features
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is the Correct Classification Rate (CCR) of ith feature used for recognition. The
weight is set according to CCR.

The comparison between static, dynamic and fusion features is shown in Fig. 18. It
demonstrates that the fusion feature has the best performance, and the evaluation at
rank 3 has good tradeoff so that we select the performance at rank 3 in the following
experiments.

4 Experiment result and analysis

The experiment environment is shown in Fig. 5. The data captured by two Kinects are
considered as the data captured by one Kinect from different views. There are 52 subjects,
and 20 sequences for each subject, and each subject has gait sequences on 7 view angles, i.e.,
0°, 90°, 135°, 180°, 225°, 270°, and arbitrary angle (i.e. Arb for short).

4.1 Performance of the proposed method

4.1.1 Performance on our dataset

We demonstrate the recognition performance of the static, dynamic and fusion features cross
view angles in Tables 2, 3, and 4 respectively. We select the data from one view angle as the
sample data and the data from the other view angles as the test data. We investigate the best
sample views angle for each test view angle, and marked the best CCR corresponding to each
testing view angle in bold. From Table 2, we can find that 90° is the best sample view angle for
static feature, and 180° is the best sample view angle for dynamic and fusion features. It means
that the data on these two view angles are most important during data collection. The shadow
part in Table 3 shows the worst recognition performance of the dynamic feature, because the
sample and testing data are from two opposite sides of the body and the dynamic feature is not
symmetric. And the corresponding performance is improved by fusing the static feature in the
fusion feature, which is shown in Table 4.

Fig. 18 Performance comparison between different features
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4.1.2 Performance on KinectREID dataset

We carry out the proposed method on KinectREID dataset because we can extract the proposed
gait features from the data of this dataset by using Kinect Studio as shown in Fig. 19. There are
three view directions, i.e., frontal, rear, and lateral, in KinectREID dataset.We select 52 subjects
out from KinectREID dataset to keep it have the same number of subjects as our dataset. The
related data contains 350 walking sequences, which include 150 front, 150 rear and 50 lateral
ones. We use data on one of the view directions as the sample data, and the others as the test
data. From this point of view, the gait recognition can be taken as person reidentification. The
CCR performance at Rank 1 (R1), Rank 3 (R3) and Rank 5 (R5) is listed in Table 5.

Table 2 CCR of Static Feature @ Rank3 (%), where the best performance is in bold

Test
Sample

0° 90° 135° 180° 225° 270° Arb

0° – 73.1 76.9 75 75 75 63.5
90° 80.7 – 78.8 78.8 76.9 80.7 67.3
135° 80.7 78.8 – 75 75 78.8 67.3
180° 80.7 78.8 76.9 – 75 78.8 69.2
225° 71.2 76.9 76.9 73.1 – 71.2 67.3
270° 78.8 76.9 76.9 76.9 75 – 65.4
Arb 65.4 67.3 67.3 65.4 67.3 63.5 –

Table 3 CCR of Dynamic Feature @ Rank3 (%), where, the best performance is in bold

Test
Sample

0° 90° 135° 180° 225° 270° Arb

0° – 73.1 73.1 76.9 75 73.1 73.1
90° 76.9 – 76.9 78.8 28.8 17.3 48.1
135° 76.9 78.8 – 78.8 48.1 17.3 48.1
180° 78.8 82.7 78.8 – 76.9 76.9 76.9
225° 73.1 21.2 48.1 76.9 – 75 46.2
270° 75 21.2 42.3 76.9 76.9 – 48.1
Arb 57.7 48.1 48.1 59.6 48.1 48.1 –

Table 4 CCR of Fusion Feature @ Rank3 (%), where the best performance is in bold

Test
Sample

0° 90° 135° 180° 225° 270° Arb

0° – 78.8 82.7 83.6 80.7 78.8 76.9
90° 82.7 – 83.6 83.6 78.8 82.7 71.1
135° 83.6 86.5 – 86.5 76.9 80.7 71.1
180° 86.5 88.5 86.5 – 83.6 86.5 82.7
225° 78.8 78.8 78.8 82.7 – 80.7 69.2
270° 82.7 78.8 78.8 83.6 82.7 – 69.2
Arb 69.2 71.1 71.1 69.2 69.2 69.2 –
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From Table 5 we can see that the performance of the proposed method on KinectREID
dataset is worse than that on our dataset. The reasons are 1) KinectREID is collected by the first-
generation Kinect (1G–Kinect), whose joint data is not as stable as that captured by 2G–Kinect.
2) There are obvious hesitancy and halt during some walking, which makes the walking not
natural and lowers the recognition performance. Even though the recognition performance of
our proposed method is comparable to that of multimodal method published in [11].

4.2 Comparisons

4.2.1 Comparison with kinect-based method

Preis et al. [30] proposed to use 11 kinds of skeleton lengths acquired byKinect as the static features,
and took the stride and speed as two dynamic features. Their method was tested on a dataset
including 9 persons, where its CCR can reach 90% without view variation. We carry out the
comparison between out method and theirs on our database as the dataset used in [30] can’t be

(a) Walking sequence examples.  

(b)  

Fig. 19 a The 7 walking sequence examples of each subject in KinectREID Dataset. b Extraction of the
proposed gait features from the walking data in KinectREID by replaying the data using Kinect Studio

Table 5 CCR @ Rank1, Rank3, Rank5 (%) on KinectREID

Test
Train

rear (0°) front (180°) lateral (270°)

R1 R3 R5 R1 R3 R5 R1 R3 R5

Rear (0°) – – – 56 60 64 54 58 60
Front (180°) 58 62 68 – – – 64 66 70
Lateral (270°) 54 58 60 60 64 70 – – –
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Table 6 CCR (%) comparison with the method in [30]

Static Dynamic Fusion

Method in [30] 80.7% 51.9% 82.7%
Our method 78.8% 83.6% 92.3%

Fig. 20 Positions of the joints
estimated by the method in [45]
from 2D silhouette (blue points)
and positions projected from the
3D coordinates captured by Kinect
(red points)
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accessed publicly.We randomly choose 3 walking sequences on one view angle as the sample data,
and the rest are used as testing data. The average comparison results are listed in Table 6, which
demonstrates that the proposed method performs much better in dynamic and fusion features.

4.2.2 Comparison with joint-based method

The static and dynamic relationship between the joints are important features for gait recog-
nition. In previous 2D based gait recognition schemes, various methods were used to estimate
the position of joints from 2D videos. For instance, Goffredo et al. [45] proposed to estimate
the positions of joints according to the geometrical characteristics of the silhouette, calculate
the angle between the shins and the vertical, and the angle between thigh and the vertical as the
dynamic features, and project these features into the sagittal plane according to their viewpoint
rectification algorithm. Because our dataset not only has the 3D coordinates of joints, but also
has the 2D silhouette at each frame, it is possible to compare it with our proposed method on
our dataset directly. The positions of joints estimated by the method in [45] (blue points) and
projected from the 3D coordinates captured by Kinect (red points) are shown in Fig. 20. We
use the positions of the red points in Fig. 20 as the standard, and the deviation between the blue
and red points of all the subjects in our dataset can be calculated by:

δ ¼ Oblue−Oredj j
R

ð6Þ

where δ denotes the deviation between the two positions Oblue and Ored in Fig. 20. R is the
predefined deviation radius, which is 10. The average deviations on the joints are shown in Table 7.

Table 7 The deviation between the blue and red points

Joint point Hip_left Hip_right Knee_left

Deviation 12.1% 13.78% 52.8%
Joint point Knee_right Ankle_left Ankle_right
Deviation 23.36% 48.3% 8.2%

Table 8 The performance of the method in [45] with two kinds of joint positions

Test
Sample

0° 90° 135° 180° 225° 270°

0° – 63.4 59.6 55.7 63.4 61.5
– 67.3 69.2 71.2 65.4 69.2

90° 57.7 – 65.4 61.5 63.4 65.4
71.2 – 71.2 69.2 69.2 71.2

135° 55.7 63.4 – 65.4 67.3 67.3
73.1 75 – 75 71.2 75

180° 51.9 59.6 63.4 – 59.6 61.5
71.2 69.2 71.2 – 71.2 73.1

225° 69.2 65.4 69.2 61.5 – 73.1
69.2 69.2 73.1 71.2 – 67.3

270° 61.5 67.3 71.2 65.4 76.9 –
69.2 71.2 73.1 75 71.2 –
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We carry out the method in [45] with the joint positions estimated from 2D silhouette and
those projected from the 3D coordinates captured by Kinect respectively on our dataset and the
performance is listed in Table 8.

In Table 8, the first row corresponding to each sample view angle shows the test results with
the joint positions estimated from 2D silhouette, and the second row shows the results with the
joint positions projected from the 3D coordinates captured by Kinect, which is better than the
results in the first row. The results show that our method is much better than the method in [45]
with the same joint positions as ours, which means that the effectiveness of the features used in
our proposed method. It demonstrates that the proposed gait feature has better performance in
recognition. Certainly, the performance of our proposed method is also based on the accuracy
of joint estimation, so better joint estimation method will bring better performance.

5 Conclusion

In this paper, the 2GKinect is used as a tool to establish a 3D–skeleton-based gait database, which
includes both the 3D position information of skeleton joints collected by the Kinect and the
corresponding 2D silhouette images. Given this database, we build up a human walking model
and extract the static and dynamic features, which are verified to be view-invariant. Referring to
the walking model, a gait recognition scheme based on the matching-level-fusion of these two
features is proposed, in which the recognition is achieved by the K-Nearest-Neighbor (KNN)
classification method. Experiment results show that the proposed scheme has better performance
on cross-view gait recognition. In the future work, we will focus on the adaptive scheme to
improve the recognition performance. Furthermore, as the fundamental of our proposedmethod is
the joints, the joints estimated based on the other devices, such as RealSense and web camera [46]
will be tested in our proposed method to improve its generalization.
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