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Abstract Robust object recognition has drawn increasing attention in the field of computer
vision and machine learning with fast development in feature extraction and classification
techniques, and release of public datasets, such as Caltech datasets, Pascal Visual Object
Classes, and ImageNet. Recently, deep learning based object recognition systems have
shown significant performance improvements in visual object recognition tasks using inno-
vative learning methodology. However, high dimensional space searching and recognition
is time consuming, so performing point and range queries in high dimension is reconsid-
ered for object recognition. This paper proposes optimized dimensionality reduction using
structured sparse principle component analysis. The proposed method retains high dimen-
sional feature structures, removes redundant features that do not contribute to similarity, and
classifies the query image in a large database. The qualitative and quantitative experimen-
tal results, including a comparison with the current state-of-the-art visual object recognition
algorithms, verify that the proposed recognition algorithm performs favorably in reducing
the query image dimension and number of training images.
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1 Introduction

Representation of high dimensional data has been one of the most important research top-
ics across a wide variety of information processing fields, including pattern recognition,
machine learning, signal processing, data compression, and database navigation, because
good data representation usually results in better performance in solving the problems
related to those fields. Generally, good representation means that the representation pre-
serves as much essential and meaningful information about the data as possible, while
expressing it in a simpler way. Two common methods have been adopted to achieve this
goal: dimensionality reduction and redundant feature removal that retains the structure.
Dimensionality reduction attempts to transform high dimensional data into a lower dimen-
sional form, simplifying and cleaning data for pattern recognition and machine learning
tasks. Redundant feature removal retaining the main structure tries to find the optimized set
of key features.

The data representation problem has become more challenging as very large high dimen-
sional datasets have become available. This is because the number of possible distinct
configurations of a set of variables increases as the number of variables increases. Many
algorithms have been proposed and developed to tackle this problem, such as principle
component analysis (PCA) [24], factor analysis (FA) [2], projection pursuit (PP) [20], inde-
pendent component analysis (ICA) [29], etc. These algorithms come from different fields
and have different approaches, but can be considered to have the same goal: finding a bet-
ter representation. Hence, these algorithms focus on how to reduce dimensions or build a
proper dictionary and show the resultant benefits.

PCA is one of the most popularly adopted methods in dimensionality reduction, which
finds linear combinations of orthogonal factors that effectively represent the data. However,
the PCA factors are still affected by all original data variables, which means they retain
unwanted features when representing the data. In addition, the factors’ meanings are often
difficult to interpret. Several alternatives have been proposed to overcome the limitation of
PCA, such as non-negative matrix factorization (NMF) [30] and sparse PCA (SPCA) [50].
In particular, the underlying motivation for sparse representation-based dimension reduction
is that even though the signal is in high-dimensional space, it can actually be obtained in
some lower-dimensional subspace due to its sparsity. However, the main problem of typical
dimension reduction of sparse representation is that it does not consider the data structure,
and can result in structural information loss. Structured sparsity [19] was proposed to solve
this problem by optimal selection over structures like groups of input features. In this paper,
we present a novel visual object recognition methodology by applying structured sparse
PCA (SSPCA) to effectively reduce the dimension of the high-dimensional input features
and retain the meaningful features and structures. The benefit of exploiting the structure of
data was proved by Jenatton et al. [21]. According to them, given any intersection-closed
groups of patterns of variables, we can build some quasi-regularization norms (�) enforc-
ing that the support set regularized by � belongs to the group patterns when solving the
classification and regression tasks.

Figure 1 shows the proposed approach for object recognition. Finding the optimal dimen-
sionality from very high dimensional data using SSPCA means it trains the dataset of the
recognition task, while retaining recognition performance comparable to the previous state
of the art approaches. The main contribution of this paper is summarized as below:

– The method to find the optimal dimensionality reduction for high dimensional data
when representing features.
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Fig. 1 Our structure preserving dimensionality reduction system for robust visual object recognition. This
system is separated into three parts: SSPCA-based dimension reduction, decomposition of the coefficients
and the dictionaries, and similarity measure and classification

– Analysis of the relationships among the optimized size of the reduced dimension,
number of training images, and non-optimized high dimensional features.

– Structure-based similarity measure and classification instead of traditional energy-
based measure and classification.

The remainder of this paper is organized as follows. Section 2 reviews related work in
the view of dimensional reduction, sparse representation and learning, and visual object
recognition, and Section 3 provides the technical detail of how to adopt SSPCA for solving
the object recognition problem. Section 4 presents quantitative and qualitative evaluation of
our approach, and analyses of the experimental results. Section 5 summarizes and concludes
this paper.

2 Related works

2.1 Dimensionality reduction

As data dimensionality grows, the size of dimensional space increases exponentially. This
is called the curse of dimensionality [4], which must be tackled particularly for many tasks
in pattern recognition and machine learning fields. If dimensionality can be reduced, this
enables lower computational cost and improved performance by removing noise and less
informative features, and finding more general regions or rules applicable to new data
for a variety of tasks. Several dimensionality reduction techniques have been introduced:
PCA [24], multidimensional scaling (MDS) [10], ICA [29], Kernel PCA [17], semidefinite
embedding (SDE) [44], Isomap [41], and locally linear embedding (LLE) [38].

PCA [24] is one of the most classical and popular methods for dimension reduction. It
finds a linear reduced subspace having lower dimensionality that preserves as much vari-
ability as possible of the original data. However, its computational cost increases according
to the complexity of the source data, and it is limited by linearity. MDS [10] is another
classical dimensionality reduction method, and maps the original dimensional space to a
lower dimensional space based on the proximities, indicating the similarities between vari-
ables. In MDS, the variables are represented as points in a lower dimensional space, and
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the distance between the points corresponds to the similarities. However, similar to PCA,
MDS has the limitation of linearity. ICA [29] is a method to process non-Gaussian data,
which PCA cannot deal with. ICA is a statistical method using the data distribution, but it
still finds a linear representation. Kernel PCA [17] is a nonlinear dimensionality reduction
method that introduces a kernel to PCA. Kernel PCA is applicable to many high dimen-
sional nonlinear datasets, but reconstruction of training data and test samples is difficult. A
variation of kernel PCA is SDE [44] or maximum variance unfolding (MVU) [43]. SDE dif-
fers from Kernel PCA in that when choosing a kernel function it does not use a pre-defined
kernel function, but learns a kernel matrix with the assistance of semidefinite program-
ming. Isomap [41] is a nonlinear dimensionality reduction algorithm based on MDS. This
algorithm finds the neighbors of each data point with the assumption that only neighboring
points know pair-wise distances, then computes the geodesic pair-wise distances between
all other data points, and performs low dimensional embedding via MDS based on these
geodesic distances. It is not difficult to determine the proper value of k for neighborhood
graph construction for Isomap. LLE [38] was proposed to address nonlinear dimensional-
ity reduction, and identifies the neighbors of each data point, computes weights that best
describes the data point as a linear combination of its neighbors, and finds the low dimen-
sional embedding of points, which are described with the previously determined weights.
LLE achieves faster optimization than Isomap using an eigenvector based optimization tech-
nique. Marjan et al. represented high dimensional data as a chaos theory-based appearance
model for object tracking task [1]. Some approaches try to solve the high dimensional data
problem from the perspective of subspace clustering [14, 49].

2.2 Sparse representation and learning

Sparse representation and learning has been widely used in various research fields subse-
quent to the theoretical proof that sparse representation in a general dictionary is unique
and can be found using l1 minimization [48]. Solving sparse representation and learning
involves seeking the sparsest linear combination of basis functions from an overcomplete
dictionary. There are many approaches to obtain the sparse solutions, but they can be
grouped into three broad categories: convex relaxation [3], greedy pursuits [8], and combi-
national algorithms. Convex relaxation approaches include basis pursuit (BP) [12], interior
point approaches, projected gradient methods, and iterative thresholding. To emphasize the
original data structure while retaining sparseness, Huang et al. [18] proposed an efficient
dynamic group sparsity concept that adaptively learns the dynamic group structure in prac-
tical applications. They also provided theoretical proofs for less measurement requirement
and lower computation complexity in group sparsity. Inspired by conventional group spar-
sity, Zhang et al. [47] proposed leveraging feature sparsity and clustering properties to
regularize feature selection. Yang et al. [23] extended the robust encoding ability of group
sparse coding with spatial correlations among training regions to better depict and index
image content. Group sparse representation usually focuses on more specified structures,
whereas structured sparse representation works on general coding structures. De Pierrefeu
et al. extended the PCA framework by adding a structural constraint, TV-elastic net penalty,
to sparse PCA [11].

2.3 Object recognition

Breakthroughs in deep convolutional neural networks have dramatically improved object
recognition and detection performances in recent years [9, 28, 31, 37]. However, other
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approaches that exploit the sparseness of image features have also been promising in realiz-
ing the state of the art object recognition performance. Initially, to imitate the human vision
system, biologically motivated approaches emulated quantitative models of the visual cor-
tex to recognize objects within images. Serre et al. presented a model that mimicked visual
cortical processing to realize position- and scale-tolerant edge detection [39]. The features
used in Serre et al.’s system were more flexible than template based approaches, and more
selective than histogram based descriptors.

Other biologically inspired systems have attempted to model the three properties of
mammalian primary visual cortex, i.e., spatially localized, oriented, and selective to struc-
ture at different scales [36]. Field proposed a coding strategy that maximized sparseness
of the statistical structure of natural images [13] to mathematically (algorithmically) model
these three properties. Olshausen and Field subsequently proposed a learning algorithm
that searched for a sparse code by introducing two global objectives; one that preserved
information and the other represented sparseness of the features [36]. They demonstrated
that the three properties emerge when only the two global objectives are placed on a lin-
ear coding of natural images. Mutch and Lowe modified Serre et al.’s model by eliminating
weaker responses that disagreed with the locally dominant responses [33], and matched
only the dominant orientation within a feature, rather than comparing all orientations. They
found increasing the sparsity of the features to be helpful in improving generalization
performance.

As the usefulness of the sparse image features were tested and confirmed, more studies
exploiting sparse image representation followed. For example, Kavukcuoglu et al. proposed
a predictive sparse decomposition (PSD) algorithm that simultaneously learned an overcom-
plete linear basis set, and produced a smooth and easily computed approximator to predict
the optimal sparse representation [25]. Naikal et al. proposed a Sparse PCA algorithm that
selected the subset of informative features based on sparse coefficients in the first few prin-
cipal vectors [34]. They also introduced an algorithm to speed up Sparse PCA using the
augmented Lagrangian method. Sohn et al. studied an efficient training method for sparse
and conventional restricted Boltzmann machines (RBMs) through the connections between
mixture models and RBMs, and proposed a mid-level feature extraction method using con-
volutional RBMs [40]. Oliveira et al. proposed a sparse spatial coding (SSC) algorithm that
combined a sparse coding dictionary learning, spatial constraint coding stage, and online
classification to improve object recognition [35].

Studies have utilized spatial pyramid matching (SPM), with some incorporating sparse
coding, have also contributed to improving the object recognition performance. For exam-
ple, Lazebnik et al. adapted the pyramid matching scheme of Grauman and Darrell [15],
which found an approximate correspondence between two sets of vectors, and pioneered
the SPM method [26]. Their SPM method repeatedly subdivided the image using a hierar-
chy of rectangular windows and computed the histograms of local features at increasingly
fine resolutions. Bosch et al., rather than focusing on the entire scene of each image, auto-
matically learned the region of interest, and applied random forests to the spatial pyramid
representation [6]. Yang et al. extended the SPM method by computing a spatial pyramid
image representation based on sparse codes for SIFT [32] features, rather than the K-means
vector quantization in the traditional SPM [23]. Boureau et al. investigated performance for
different pairings of coding (vector quantization vs. sparse coding) and pooling (average vs.
max) modules within the spatial pyramid framework and showed that sparse coding system-
atically outperformed vector quantization irrespective of the pooling modules, and that max
pooling improved linear classification performance over average pooling [7]. He et al. [16]
added a spatial pyramid pooling layer on top of the last convolutional layer of CNNs [27]
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to eliminate the fixed input image size requirement posed by current CNNs. This allowed
training of variable-size images, possibly increasing scale invariance and reducing overfit-
ting. Other object recognition methods include fast approximated locality constrained linear
coding that utilizes the locality constraint to project each descriptor into its local coordinate
system [42].

3 Structure preserving dimensional reduction for effective object
recognition

We consider a method for recognizing objects from data by extracting appearance features
enabling us to represent them in lower dimension while retaining the structure of the high
dimensional features to efficiently represent and measure the similarity and classification.
To effectively and efficiently recognize desired objects, we propose an object recognition
method by classifying the coefficients of the image’s appearance model.

To use a smaller number of dictionary vectors than the descriptor dimensions, the number
of dictionary vectors need to be sufficient to reasonably reflect the similarity the objects of
a class share with each other, and to distinguish the mutually distinct structures in different
classes as well. Although PCA is one of the most popularly adopted methods in dimen-
sionality reduction solution, the PCA factors [Robert9]are still affected by all original data
variables, and there are insufficient PCA aspects to express each individual characteristic
that objects of the same type have in common. Thus, it is difficult for PCA to deliver the
common features of objects of the same type. However, SSPCA [22] complements the PCA
constraints, and can be an excellent candidate to represent the data because it allows a dic-
tionary to be learned by exploiting a priori structural constraints as well as sparsity while
reducing dimensionality [21].

The current paper applies SSPCA to generate dictionary vectors from appearance
features. The proposed object recognition procedure comprises two steps: training the
dictionary using SSPCA, and recognition by measuring similarity.

3.1 Symbols and notations

Before proceeding to the technical details, we introduce the notation and symbols to help
understanding. To denote real numbers, we use lower case letters for indices, parameters
and dimensions, and upper case letters for the constants used for the recognition pro-
cess. We use boldfaces to denote multi-dimensional terms such as images, vectors, and
matrices. Vectors are considered to be columns. Table 1 shows the detailed symbols and
notations.

3.2 Dictionary learning and dimensionality reduction

We collected a large training dataset B of 2D images and categorized the images into M

groups {Bi}Mi=1 where each Bi consists of images containing the same (relevant) type of
objects.

To create feature descriptors, we randomly choose K images {bi,j }Kj=1 from each group
Bi . By resizing, we may assume that all the images have the same size divided into S

subimages of the same size. From each subimage of bi,j , we created a feature descriptor
[32] of dimension P , and arranged them in a column vector, xi,j ∈ R

P ·S . Thus, we created
the descriptor xi,j corresponding to images bi,j for i = 1, . . . , M, j = 1, . . . , K .
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Table 1 Symbols and notations
used in this paper Symbol Description

B dataset consisting of categorized image groups

Bi , i = 1, . . . , M categorized groups in the database

bi,j , j = 1, . . . , K randomly selected images

from Bi , i = 1, . . . ,M

xi,j ∈ R
P ·S descriptors obtained from bi,j

b input image

x ∈ R
P ·S descriptor obtained from b

� mixed �1/�2 norm on R128s

X ∈ R
P ·S×K·M training descriptor matrix

U ∈ R
P ·S×r dictionary matrix

C ∈ R
r×K·M coefficient matrix

G,Gi sets of positive integers

z, y,wk vectors in Rn

{ei}ni=1 orthonormal basis for Rn

Wk the vector space spanned by {w1,w2, . . . ,wk}

γ > 0 regularization parameter

M number of categorized object types

K number of randomly chosen images

from each group Bi

S number of subimages forming each image

r number of dictionaries

nk dimension of the vector space Wk

P dimension of the feature vectors obtained

from each subimage

i, j, k indices

〈·, ·〉 Euclidean inner product

‖ · ‖2 Euclidean �2-norm ‖v‖22 = 〈v, v〉
‖ · ‖0 the �0 pseudo norm counting the nonzero

components of a vector

·T transpose operator

�x� the integer greater than or equal to x

Normally, P · S is large, e.g. P = 128 and S ≥ 100, and we propose to reduce the
dimensionality. That is, we need to find dictionaries such that every vector xi,j has a well
fitted sparse representation. Before finding such dictionaries, we note that for each i =
1, . . . , M , feature vectors {xi,j }Kj=1 come from the images containing the same kind of
objects and they are likely to share similar structures.

Therefore, we apply the SSPCA proposed by Jenatton et al. [22] to find such dic-
tionaries. Let X be the P · S × K · M matrix having xi,j as its column vectors. To
apply the SSPCA, we first divide the set G = {1, 2, . . . , P · S} into t = �P ·S

M
� subsets

G1,G2, . . . , GM , where Gi = {(i − 1)t + 1, (i − 1)t + 2, . . . , i · t} for i = 1, . . . , M − 1;
GM = {(M − 1)t + 1, (M − 1)t + 2, . . . , P ·S}; and �x� denotes the largest integer smaller
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than or equal to x. Then we define the sparsity-inducing mixed �1/�2 norm � over a vector
u ∈ R

P ·S ,

�(u) =
M∑

j=1

⎛

⎝
∑

k∈Gj

u2k

⎞

⎠

1
2

foru = (u1, u2, . . . , uP ·S). (1)

With this setting, we apply the SSPCA dictionary search algorithm to the descriptors
{xi,j }M,K

i=1,j=1 to find dictionaries {ui}ri=1 ∈ R
P ·S ,

(U,C) = argmin
U ∈ R

P ·S×r

C ∈ R
r×K·M

1

2(P · S) · (K · M)
‖X − UC‖2F

+λ

r∑

j=1

�(uj ) subject to ‖cj‖2 ≤ 1, j = 1, . . . , K · M (2)

where U = (uk)
r
k=1 is the P · S × r dictionary matrix; C = (cj)K·M

j=1 ∈ R
r×K·M is the

coefficient matrix; ‖·‖F is the Frobenius matrix norm, ‖A‖2F = trace(AAT ) =
n∑

i=1

m∑
j=1

a2ij ;

A = (aij ) ∈ R
n×m and ‖ · ‖2 is the Euclidean norm; and � is the mixed norm defined in (1)

which controls the sparsity and the structure of the support of dj (for details on the norm
(see [22] and references therein).

Then, for � = (i−1) ·K +j, (i = 1, . . . , M, j = 1, . . . , K), the �-th column vector xi,j

of X is (approximately or exactly) expressed by a linear combination of the r dictionaries
u′

ks with coefficients (ck�)
r
k=1,

xi,j ≈
r∑

k=1

ck�uk = Uc�, c� = (c1�, . . . , cr�)
T . (3)

Thus, each descriptor vector xi,j ∈ R
P ·S is represented (approximately) in terms of quite a

few dictionaries, i.e., we reduce the dimensionality from P ·S to r . In the following section,
we generate support vector machines using the u′

ks dictionaries.
We end this section with the following observation. Theorem 1 shows that we don’t

expect that the larger dictionary set delivers better recognition performance. Empirically,
there exists an optimal choice for r that depends on the number of samples (K · M) and is
shown to be �K·M

2 �.

Theorem 1 For vector z and finite set {w1,w2, . . . ,wm} in R
n, let {yk}mk=1 be the orthog-

onal projections in R
n of z into the vector space Wk spanned by {w1,w2, . . . ,wk},

i.e.,

yk = argmin
y∈Wk

‖z − y‖2, for k = 1, 2, . . . , m. (4)

Then,

‖z − y1‖2 ≥ ‖z − y2‖2 ≥ · · · ≥ ‖z − yk‖2 (5)

and

‖y1‖0 ≤ ‖y2‖0 ≤ · · · ≤ ‖yk‖0, (6)

where ‖z‖0 is the �0 pseudo norm of a vector z defined to be the number of non-zero entries
in z.
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Proof For k = 1, . . . , m, let nk be the dimension of the vector space Wk spanned by
{w1,w2, . . . ,wk}. Since the subspaces W1 ⊆ W2 ⊆ . . . ⊆ Wk are nested, n1 ≤ n2 ≤
· · · ≤ nk . Gram-Schmidt orthogonalization implies that there exists an orthonormal basis
{ei}ni=1 for Rn, such that for k = 1, . . . , m, {ei}nk

i=1 is a basis for Wk . Thus, every vector
w ∈ Wk is uniquely represented as

w =
nk∑

i=1

〈w, ei〉ei and ‖w‖22 =
nk∑

i=1

〈w, ei〉2, (7)

where 〈·, ·〉 denotes the Euclidean inner product in R
n.

Let z ∈ R
n be given arbitrarily. Then for k = 1, . . . , m, the vector yk in (4) is the

orthogonal projection of z ontoWk , i.e.,

yk = argmin
y∈Wk

‖z − y‖2 =
nk∑

i=1

〈z, ei〉ei

and

‖z − yk‖22 =
n∑

i=nk+1

|〈z, ei〉|2.

Thus, the inequalities (5) and (6) hold, which completes the proof.

4 Experimental result

We prove the existence of an optimal number of dictionary elements and evaluate the perfor-
mance of our method. The schematic experimental setup and evaluation for SSPCA based
object recognition is illustrated and we report the results based on quantitative and quali-
tative evaluations in two parts: Section 4.1 covers the experimental setup, and Section 4.2

Fig. 2 Confusion matrix of our SSPCA-based visual object recognition using Caltech 101 dataset. The
performance is evaluated using the classifiers learned with 30 training images per class. Each row indicates
the true class and each column represents the assigned class
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presents object recognition results from a public dataset and analysis of the proposed
approach based on the experimental results and previous techniques.

4.1 Experimental setup

The experiments were conducted on the Caltech 101 dataset, which consists of 101 classes
and one background class. Each class contains 31 to 800 images having the size of approx-
imately 300 × 200 pixels. The images of each class vary in color, pose, and illumination,
making the classification task challenging. We use 101 classes, excluding the background
class. For pre-processing, we extract features from each image using SIFT [32] on a standard
4 GHz machine with 2 GB RAM.

4.2 Quantitative and qualitative evaluation of visual object detection

For fair performance evaluation and comparison, we start by focusing on the proposed
approach’s effectiveness and efficiency to reduce the dimensionality of the visual objects
and number of training images.

Fig. 3 Examples of misclassification. The testing images with the target class are on the left column; the
assigned class of each testing image and the assigned class’s training images are on the right column
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Figure 2 shows the confusion matrix of the proposed algorithm learned with 30 training
samples per class, where the row denotes true class and the column denotes the assigned
class. Some of the highly misclassified classes are llama (29.2%) and water lily (25%)
classes. Figure 3 displays some examples of misclassified results of these classes. The
images of the llama and the water lily classes are assigned to the kangaroo and lotus classes
respectively. The image features of the target classes and the assigned classes are consid-
erably similar, and this is the main reason for the low recognition rate of the two classes.
The class with the lowest accuracy (16.7%) is the ant class, which has twelve test images.
As shown in Fig. 4, only two testing images are recognized as an ant; ten other images are
classified into ten different classes. This is because the features and the structures of an ant
itself are uncomplicated; i.e., an ant is a relatively simple object consisting of some lines and
circle-like shape. As a result, the factors like illumination, texture, pose, and background
have a stronger influence on the classification than in the case of the objects composed of
more complicated features and structures.

Fig. 4 The object recognition result of the ant class. Only two test images are recognized as an ant. Ten
other images are classified into ten different classes
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Table 2 Recognition rate of
different dictionary element size
(r) and training sample
combination

Training samples 15 20 25 30

r=500 73.79% 76.25% 79.93% 81.76%

r=1000 75.30% 78.07% 80.64% 82.73%

r=1500 76.17% 78.38% 81.71% 83.92%

r=2000 76.24% 79.83% 81.64% 83.51%

We then conducted the experiments to evaluate the robustness of the proposed approach
by reducing the number of training images because traditional learning and recognition
approaches are largely dependent on the number of training samples; we seek to prove the
Theorem 1 experimentally. The number of training images was varied; 15, 20, 25, and 30
images were randomly chosen from each class for training and the remaining images were
used for testing. The online dictionary pertaining to the chosen training images was learned
using SSPCA, which enabled us to decide how many feature dimensions were used, i.e.,
the number of dictionary elements. Table 2 displays the proposed method’s results applied
to the task of object recognition using Caltech-101 dataset. We trained the classification
model according to the different number of samples and dictionary elements. Generally,
increasing the dictionary elements or the number of training samples increases performance.
However, when using 25 or 30 training samples, the optimal number of the dictionary ele-
ments was 1500, not 2000. When the classification model was trained with 30 samples per
class and 1500 dictionary elements, the best accuracy of 83.92% was achieved. This implies
that overfitting occurred when more than the optimal number of dictionary elements were
used. On the other hand, the combined use of 15 or 20 training samples and 1500 dictionary
elements did not produce the best results. Using 2000 dictionary elements showed better
performance than the use of 1500 dictionary elements, given 15 or 20 training samples.
This means that, as the number of training samples decreases, more dictionary elements are
needed to build a more accurate classification model. Thus, the number of dictionary ele-
ments and training samples influence the optimality of dimensions. Table 2s shows that,
when using 30 training samples, the optimal number of dictionary elements is 1500, i.e.,
optimal dimensionality = 1500, rather than full dimension of the given features. As the num-
ber of feature dimensions increases, overfitting occurs; on the other hand, less dimensions
cause underfitting. Increasing the feature dimensions do not guarantee better perfor-
mance; hence, the optimal number of feature dimensions should be investigated for best
performance.

Next, we investigated the influence of the classifier type. The learned dictionary was then
used to create a classification model utilizing SVM or the Softmax function. Many numer-
ical experiments were conducted to identify the optimal number of dictionary elements
and then compared with the proposed method and other significant previous approaches.
We trained the model with two classifiers: SVM and Softmax. As shown in Table 3,
SVM showed better performance than Softmax, but both classifiers showed increased

Table 3 Recognition rate of
different classifier and training
sample combination

Training samples 15 20 25 30

Softmax 74.53% 77.33% 80.25% 82.59%

SVM 76.17% 78.38% 81.71% 83.92%
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Table 4 Comparison of SSPCA-
object recognition approach to
the previous approaches, which
do not use pretrained models

Training samples 15 20 25 30

Yang et al. [45] 73.2% 80.1% 82.7% 84.3%

Bo et al. [5] – – – 82.5%

Zeiler et al. [46] 22.8% – – 46.5%

(non-pretrained)

Our approach 76.2% 78.4% 81.7% 83.9%

performance with increased number of training samples, and showed the best accuracy using
30 training samples. Thus, the classifier type does not affect dimensional optimality.

4.3 The comparison with the previous approaches

Lastly, we compared our SSPCA-based object recognition result to the remarkable previ-
ous approaches that use various learning techniques without exploiting pretrained models.
Table 4 compares the recognition performance of our approach with the previous approaches
using the Caltech 101 Dataset. When using fifteen training samples, Yang et al. [45]
achieves recognition accuracy below 75%; in comparison, our approach shows relatively
good result with fifteen training samples. Our approach successfully removes useless infor-
mation via dimensionality reduction while preserving the important structures and features
for the task. Zeiler and Furges [46], an algorithm that uses deep learning method, reported
the recognition accuracy of 22.8% and 46.5% with 15 and 30 training images without using
the ImageNet-pretrained model.

Nowadays, approaches adopting deep learning methodologies have shown considerably
good performance in object recognition task. Zeiler and Furges [46] reported the recognition
accuracy of 83.8% and 86.5% in the Caltech101 Dataset classification task when using 15
and 30 training samples respectively with the ImageNet-pretrained model. He at al. [16],
which uses a convolutional neural network (CNN), also reported the experiment result with
the recognition accuracy of 91.9% when training with 30 samples. However, both methods
pre-trained the classification model using the ImageNet 2012 dataset, which contained about
10 million images, and the methods benefit significantly from their pre-trained models.

5 Conclusion

We proposed an object recognition algorithm using optimal dimensionality reduction and
verified the effectiveness of the proposed technique experimentally. The proposed object
recognition method employs SSPCA and is effective at preserving important and crucial
features while removing noisy and unimportant features by leveraging the strengths of both
sparse representation and PCA.

We also proved that an optimal number of feature dimensions exists, which simplifies
feature representation and improves performance. The core concept of finding the opti-
mal dimensionality reduction from high dimensional features can be applied to various
applications, such as image abstraction, image manipulation, and image composition.

The future work includes the investigation of the following issues: improvement of the
classification model to recognize the objects with simple features and structures such as ants
and adaptive discovery of the optimal number of dimensions given the number of training
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samples. We will also work on SSPCA-based deep learning by combining SSPCA, which
considers structure and sparsity, with many different deep learning algorithms, which learns
features effectively, in order to deal with various machine learning tasks including object
detection, image annotation or scene parsing with large scale datasets like the MS COCO
dataset or the ImageNet dataset.

Acknowledgements J. Song and S.M. Yoon were supported by the National Research Foundation of
Korea grants funded (No.2015R1A5A7037615, No.2016R1D1A1B04932889) and IITP (#2014-0-00501)
by the Korean Government. H. Cho was support by the National Research Foundation of Korea (No.
2017R1A2B4011015). G.J.Yoon was supported by National Institute for Mathematical Sciences (NIMS).

References

1. Abdechiri M, Faez K, Amindavar H, Bilotta E (2017) Chaotic target representation for robust object
tracking. Signal Process Image Commun 54:23–35

2. Akaike H (1987) Factor analysis and AIC. Psychometrika 52(3):317–332
3. Arias RS A convex optimization algorithm for sparse representation and applications in classifi-

cation problems. Ph.D. thesis, DigitalCommons@UTEP. http://digitalcommons.utep.edu/dissertations/
AAI3565935

4. Bellman R (1957) Dynamic programming. Princeton University Press
5. Bo L, Ren X, Fox D (2013) Multipath sparse coding using hierarchical matching pursuit. In: IEEE

Conference on computer vision and pattern recognition
6. Bosch A, Zisserman A, Mu X, Munoz X (2007) Image classification using random forests and ferns. In:

IEEE 11th International conference on computer vision (ICCV), pp 1–8
7. Boureau YL, Bach F, LeCun Y, Ponce J (2010) Learning mid-level features for recognition. In: Pro-

ceedings of the IEEE computer society conference on computer vision and pattern recognition, pp
2559–2566

8. Chen L, Chen J, Gu Y (2012) Greedy pursuits: stability of recovery performance against general
perturbations. In: ICNC. IEEE Computer Society, pp 897–901

9. Ciresan DC, Meier U, Masci J, Gambardella LM, Schmidhuber J (2011) High-performance neural
networks for visual object classification. CoRR arXiv:1102.0183

10. Davison ML (1983) Multidimensional scaling. Wiley, New York
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