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Abstract In this work, we investigate the effects of the cascade architecture of dilated
convolutions and the deep network architecture of multi-resolution input images on the
accuracy of semantic segmentation. We show that a cascade of dilated convolutions is not
only able to efficiently capture larger context without increasing computational costs, but
can also improve the localization performance. In addition, the deep network architecture for
multi-resolution input images increases the accuracy of semantic segmentation by aggregat-
ing multi-scale contextual information. Furthermore, our fully convolutional neural network
is coupled with a model of fully connected conditional random fields to further remove
isolated false positives and improve the prediction along object boundaries. We present
several experiments on two challenging image segmentation datasets, showing substantial
improvements over strong baselines.

Keywords Semantic image segmentation - Fully convolutional neural networks - Fully
connected conditional random fields - Multi-scale dilated convolutions

1 Introduction

The field of semantic segmentation has recently made remarkable contributions to the devel-
opment of scene understanding and object recognition. Before the development of deep
learning, most semantic segmentation algorithms relied heavily on different versions of the
conditional random fields method [15, 26, 34], which is used to label pixels in an image
with one of several predetermined object classes. As a result, the conditional random fields-
based methods can recognize and segment a variety of different objects simultaneously.
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Most algorithms using conditional random field deal with the semantic segmentation prob-
lem by maximizing label agreement between neighboring pixels and developing a model
of context information to classify different object classes. In general, a typical model of
conditional random fields is computed by unary potentials on each pixel and pair-wise
potentials on neighboring pixels. Jakob Verbeek [34] demonstrated that the conditional ran-
dom fields model plays a key role in significantly improving the performance of pixel-level
segmentation methods.

Over the last few years, deep convolutional neural networks [7, 16, 17, 24, 28, 33]
have resulted in dramatic developments in the field of object detection and image recog-
nition owing to the fact that they are able to automatically generate meaningful and rich
hierarchies of features. Some researchers have successfully applied convolutional neural
networks to semantic segmentation [6, 14, 32, 36] in order to recognize and understand the
content of an image at the pixel level. Among the methods of deep convolutional neural
networks, fully convolutional neural networks [21] have represented the dominant research
direction for improving semantic segmentation, because of their computational efficiency
for dense prediction. Many recent methods have been developed from fully convolutional
neural networks including DeepLab [2], Boxsup [4], deep parsing [20], deconvolution [23],
and recurrent neural networks using conditional random fields [36]. Among these methods,
fully connected conditional random fields method is one of the key components that can
make segmentation performance more successful, because it is able to obtain sharper object
boundaries.

Current approaches to image classification also include multi-scale deep features
selected from different layers of pooling and subsampling in a deep convolutional neural
network, where the receptive field in an original image can be expanded to better cover
global features [11, 22]. Unfortunately, these methods lead to a reduction in the resolution
and a loss of detail and local features in an image. To avoid the consequences of losing
resolution and rescaling images, Noal [23] and Ronneberger [27] employed up-convolution
layers, which are useful for recovering the information lost through down-sampling pro-
cesses at pooling layers in a convolution network. Apparently, this technique is only able to
recover part of lost information. Therefore, the accuracy of this image recognition technique
remains limited. To address this limitation, Chen [2] adopted dilated convolutions to extract
denser feature maps without using downsampling operations at the last several layers of a
pre-trained network.

The challenge of designing multi-scale context information without losing resolution
motivated a new approach [6, 19] using a pyramid of different rescaled versions of an
original image as input to an improved convolution neural network. These algorithms
require extremely high computational costs, because of a huge amount of input parameters.
Furthermore, combining deep features from different scaled images remains challenging.
However, this approach inspired us to find a better solution for combining the advantages of
multi-resolution images and multi-scale feature descriptors to extract both global and local
information in an image without losing resolution.

In this work, we aim to design an efficient architecture for pixel-wise semantic segmen-
tation by investigating the effects of a cascade architecture of dilated convolutions and a
deep network architecture of multi-resolution image inputs on the accuracy of semantic seg-
mentation. First, the cascade architecture of dilated convolutions is used at the end of our
network to extract multi-scale features in local regions without increasing the number of
training parameters. Second, because the same object might have different sizes from dif-
ferent images, we apply multi-scale input images to the same deep convolution network
for searching multi-scale features in multi-scale image inputs. However, both techniques,
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the cascade architecture of dilated convolutions and the deep network architecture of multi-
resolution image inputs, have some disadvantages. On the one hand, enlarging receptive
field size using dilated convolutions with big rates r results in a high possibility of losing
context information at the locations where the dilated convolution introduces zeros between
consecutive filter values. On the other hand, feeding multi-scale images in a single deep
convolutional neural network are normally very expensive in a training process. These are
the reasons why we combine the strengths of multi-scale image input and large field-of-
view features for object semantic segmentation, and we can reduce their disadvantages.
In addition, to sharpen and smooth object boundaries, we build a fully connected condi-
tional random fields model and integrate it into the output of our network. Finally, we use
the maxout layer as a strategy of searching the best features to fuse into the final score
map.

We tested our proposed algorithms and its competitors to evaluate the accuracy of object
semantic segmentation on challenging datasets. Based on extensive experiments, our algo-
rithms are shown to significantly outperform state-of-the-art algorithms. In particular, our
contributions are summarized as follows:

e We combined the idea of a cascade architecture of dilated convolution with the idea of
a deep network architecture of multi-resolution image inputs, so that our network can
extract multi-scale features, recover the spatial resolution, and restrict the increase of
network parameters.

e We employed a fully connected conditional random fields model that is integrated into
the output of our network to further remove isolated false positives, and improve the
prediction along object boundaries.

e  Weused a maxout layer as a strategy for determining competitive and dominant features
to fuse into the final score map. Thus, our network can be trained more efficiently.

The remainder of this paper is organized as follows. In Section 2, we briefly review
some related state-of-the-art algorithms for semantic segmentation, which motivated our
research. Section 3 will describe our method of fully convolutional neural networks with
multi-scale images and multi-scale dilated convolutions. In Section 4, the experimental
results obtained from the challenging PASCAL VOC 2012 database, and the challenging
dataset of Skin Lesion Analysis Toward Melanoma Detection, are presented. We conclude
this paper, mentioning our intentions for our future work, in Section 5.

2 Related work

In the last decade, researchers have adopted hand-crafted features and some traditional
classification methods such as random decision forests [30], Markov random fields [35],
and conditional random fields [12, 29] to address challenging problems of semantic seg-
mentation. It has been attempted to utilize context information to enhance segmentation
performance. Although these methods successfully increase the efficiency of object seg-
mentation in an image, the accuracy of these methods is strongly dependent on the quality
of hand-crafted features, which normally does not generalize well. To remove this barrier,
researchers have replaced handcrafted features by automatically learning informative fea-
tures, especially deep learning features. Recently, semantic segmentation has mainly been
developed using the theories of deep convolutional neural networks, conditional random
fields, multi-scale features.
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Most state-of-the-art methods for semantic image segmentation using deep learning [2,
21] basically constitute improvements to fully convolutional neural networks, which are
based on the idea of adding convolutional layers at the end of networks instead of using
any fully-connected layers. Long et al. [21] used convolutional layers for the end-to-end
training of a state-of-the-art model for semantic segmentation. Unlike traditional deep net-
works with fully-connected layers, which cannot process image inputs of different sizes,
fully convolutional neural networks can handle image inputs of any particular size owing
to the fact that they only have convolutional layers that obey translation invariance, and
their output is only dependent on the local area of input. Chen et al. [2] then improved
the fully convolutional neural network by combining its output response with a fully con-
nected conditional random field. In this approach, the fully convolutional neural network
provides unary terms, and the pixels in the input image are treated as nodes for a local pair-
wise conditional random field. Conditional random field inference is then applied to directly
minimize an energy function that employs two sets of potential functions, unary potentials,
and pairwise potentials. The method of pixel-level conditional random fields is also used to
generate a set of segmentation proposals, which are presented in detail in [3]. These segmen-
tation proposals can be ranked again using a model of a deep convolutional neural network.
Zheng et al. [36] even integrated a model of fully connected conditional random fields into
a model of convolutional neural network to construct an advanced network in which these
two models can be trained together end-to-end using the usual back-propagation algorithm.
Zheng also aimed to combine the strengths of convolutional neural networks and the condi-
tional random fields model. Similar to conditional random fields models, Liu et al. [20] has
demonstrated that Markov random field models are also able to enrich context information
for semantic segmentation tasks. That author also adopted a convolutional neural network
to model unary terms and approximate the mean field algorithm for pairwise terms. This
approach is able to achieve a high performance by training the Markov random field model
and the convolutional neural network model together end-to-end.

One of the disadvantages of fully convolutional neural networks is the low-resolution
output responses. To obtain higher-resolution predictions, Noh et al. [23] trained deconvolu-
tion layers to upsample the low resolution predictions. However, Lin et al. [19] proved that a
network that can combine low-resolution and high-resolution predictions results in a better
performance. He proposed a network architecture that merges multi-scale image inputs into
the same feature map for semantic segmentation, to capture multi-scale information from
background regions and increase the field-of-view for the network. In this network, fea-
tures from the small scale image inputs provide the long-range context information, while
the large scale image inputs encode detailed information of objects. Once again, pairwise
potential functions are extracted by a convolutional neural network with a multi-scale image
input, to optimize the conditional random fields model. Thus, object boundaries are effec-
tively sharpened and smoothed. Farabet et al. [6] also combined multiple image resolutions
in a deep convolutional neural network, and improved the performance by using a segmen-
tation tree. Chen et al. [19] introduced an alternative method of effectively enlarging the
field-of-view for feature maps without increasing the number of training parameters. Instead
of using multi-scale inputs to capture objects at multiple scales, he used dilated convolution
layers plugged into the end of a deep convolutional neural network. Dilated convolutional
layers are applied for an input representation by dilating the filter before computing the
usual convolution. These dilated convolution layers significantly increase the spatial reso-
lution of the final feature maps, without increasing the number of training parameters and
the computational cost of the network. Mostajabi et al. [22] enriched feature representations
by extracting multi-scale local features from each superpixel in an image. He developed a
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purely feed-forward architecture to exploit statistical structures in images and avoid com-
plex and expensive inferences. For this reason, his approach achieved a high performance
for semantic segmentation.

Another disadvantage of fully convolutional neural networks is that they generally have
high computational costs. To alleviate this problem, Badrinarayanan [1] employed a con-
volutional encoder-decoder network that can remove unnecessary layers and reduce the
number of training parameters. Paszke [25] construct the ENet network that employ a
bottleneck module to reduce convolution computation. This method can make semantic
segmentation run fast, but the accuracy significantly drops.

3 Proposed approach
3.1 Dilated convolutions

In conventional deep neural networks, max-pooling layers and stride operators are repeat-
edly used to down-sample an input representation, and to reduce its dimensionality. These
techniques are also helpful for decreasing the computational cost by reducing the number of
training parameters. However, they also lead to a significant reduction in the spatial resolu-
tion, as shown in Fig. 1. Dilated convolutional layers have recently been adopted to recover
the spatial resolution without increasing the number of training parameters.

Unlike max-pooling layers and stride operators, a two-dimensional dilated convolution
layer, also called a “convolution with dilated filter” layer, is applied for an input represen-
tation by dilating the filter before computing the usual convolution. The size of the filter is
expanded, and the empty positions are filled completely with zeros. As a result, the weights
are matched to distant elements in the input matrix. The distance is determined by the rate r.
If the kernel center is aligned to an arbitrary location in an image, then the kernel elements
are matched to input elements as shown in Fig. 2.

For a simple example of dilated convolutions, we can apply one-dimensional dilated
convolutions to one-dimensional signals. The output y[i] of the dilated convolution of an
input x[i] with a filter w[k] is computed as follows:

m

il =" x[i +r - klw[k] (1)

k=1

where m is the length of the filter w[k].
The main advantage of dilated convolutions is to expand the receptive field of filters
at convolution layers, while the resolution of the input matrix is not reduced. By applying

ﬁ
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Fig. 1 Deep convolutional neural network without dilated convolutions
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Fig. 2 Dense feature extraction with a cascade of dilated convolutions with different rates

dilated convolutions with a rate r, a filter with the kernel size kxk can be expanded up to
k' = k + (k — 1)(r — 1). This expansion offers some advantages, but also results in some
disadvantages. On the one hand, we can apply dilated convolutions with large rates r to
capture larger contexts without increasing computational costs. However, dilated convolu-
tions with large rates r also introduce more zeros between filter values, and lose more local
context information in smaller regions. On the other hand, dilated convolutions with small
rates r can be used to improve the localization performance. Nevertheless, they also produce
feature maps with narrow receptive fields. Therefore, a combination of dilated convolu-
tions with different rates r is necessary to extract denser feature maps. Hence, we propose
developing a cascade architecture of multi-scale dilated convolution layers for extracting
contextual information at multiple scales. This cascade architecture is comprised of con-
secutive convolutional layers, each of which uses only dilated convolution kernels with the
same rate r to produce dense feature maps with the same receptive field. The output matrix
of the previous dilated convolution layer is connected to the input of the current dilated con-
volution layer. In addition, the previous layer uses dilated convolutions with a smaller rate
than the current layer, so that it can extract local features, and improve the localization accu-
racy. In contrast, the current layer uses dilated convolutions with a larger rate, in order to
increase the context assimilation. Therefore, the feature maps of the current dilated convo-
lution layer are aggregated, and become denser than those of the previous one. The cascade
of dilated convolutions can be added into a deep convolution neural network to compute the
final feature map at a high resolution, as shown in Fig. 3.

3.2 Fully deep convolutional neural networks with multi-scale image input

Context information can be effectively captured by combining features from dilated con-
volutions with different rates r. However, enlarging receptive field sizes using large rates r

Input
Images 3 E:E] E:E]

Fig. 3 Alternative architecture: a deep convolutional neural network with dilated convolutions

@ Springer



Multimed Tools Appl (2018) 77:18689-18707 18695

results in a high possibility of losing context information at the locations where the dilated
convolution introduces zeros between consecutive filter values. The larger the rate r is, the
more zeros are added.

Recently, multi-scale image inputs have been widely explored for capturing features,
and have exhibited good performance in some recent segmentation methods. Because the
same object may have different sizes in different images, searching multi-scale features
in a multi-scale image input is reasonable. Hence, we can apply multi-scale input images
to the same deep convolution network, where each scale is passed through one branch of
this network, and the features are fused from all scales. Nevertheless, feeding multi-scale
images into a single deep convolutional neural network is normally very expensive in a
training process, because a huge number of training parameters are required to build such
a network. Therefore, combining the strengths of multi-scale image inputs and large field-
of-view features for segmentation has been our focus in this study. We developed a deep
convolutional neural network using multi-scale images as input matrices, and integrating a
cascade of dilated convolutions at the end of each sub-network, as illustrated in Fig. 4.

In this network, we build a model of a deep convolutional neural network in which a fea-
ture map is trained for each scale. In particular, we resize the input image to several scales by
bilinear interpolation. Each scaled image is passed through one branch of this network. The
output of each branch is a feature map that is then rescaled to have the same resolution with
other feature maps. Finally, all feature maps are fused into a shared feature map. Because
each object in an image is prominent in different feature maps, we adopt a maxout layer
to obtain competitive and dominant features from all feature maps, and fuse these into the
shared feature map. Generally speaking, a maxout layer constitutes an improvement of the
maxout network [8]. Unlike the maxout network, the maxout layer is considered as the layer
of maximal feature maps, as shown in Fig. 5. In particular, the convolution layer includes
groups of feature maps, and feature values at the same coordinates from these groups are
compared to select the maximal value, which is then assigned to the feature value at the
same coordinates in the maxout layer.
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Fig.4 Alternative architecture: a deep convolutional neural network with multi-scale images and multi-scale
dilated convolutions
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Input sample

Maxout Layer

Convolution Layer

Fig. 5 An illustration of a maxout layer. The convolution layer includes groups of feature maps, and feature
values at the same coordinates from these groups are compared to select the maximal value, which is assigned
to the feature value at the same coordinates in the maxout layer

3.3 Fully connected conditional random fields

Although deep convolutional neural networks can give us a reliable final score map in
which objects are identified, and their locations are roughly located, their boundaries are not
extracted accurately and sharply. This problem stems from the fact that these networks must
complete the two challenging tasks of object identification and pixel-level object localiza-
tion, which have a trade-off in accuracy. We apply fully connected conditional random fields
to address the challenge of pixel-level object localization, and recover object boundaries.
The fully connected conditional random fields model is integrated into the output of our
network to improve the segmentation performance, and fix object boundaries. In particular,
this model will minimize an energy function that employs two sets of potential functions,
unary potentials, and pairwise potentials, as presented below:

E@) =) ailx)+ Y aij(xi, x)) )

where «; (x;) is the unary potential measuring the inverse likelihood of the label x; at the
pixel i, and o;; (x;, x ) is the pairwise potential estimating the cost of label assignments at
the pixels i and j with the labels x; and x ;, respectively. The unary potential is normally the
output of a pixel-wise classifier, computed as follows:

a;(x;) = —log P(x;) (3)

where P (x;) is the probability of assigning the label x; to the pixel i. In our method, P (x;)
is computed by our deep convolutional neural network, and the pairwise potential is com-
puted based on the image gradients between the pixel and its neighbors. In particular, a pixel
and its neighbor are classified into the same label if the computed gradient between them
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is small. Thus, the pairwise potential encourages consistency in the appearances of the seg-
mented objects, and improves object delineation. The pairwise potential is computed by the
following formula:

K
o (i, %)) = 8(xi, X)) Y o f™ (30, 7)) “)

m=1

where f™ is a Gaussian kernel weighed by the parameter w,,. The kernel f™ is computed
based on the features 7; and 7; collected for the pixels i and j, respectively. The features
7; and t; represent pixel color intensities denoted as I and pixel positions denoted as p.
Hence, the formula for the kernel f™ is

lpi=pil® -1l lpi = pill®
a)lexp(— 12012] — 12022] + wrexp _IT! 5)

Finally, the energy E(x) is minimized to find the best label assignment for the input
image. However, this minimization problem is originally an intractable problem. Thus, to
efficiently approximate the probabilistic inference, we apply a mean-field approximation to
the distribution of conditional random fields. The distribution of conditional random fields
P(x) is approximated by a distribution Q(x), which can be expressed by a product of
independent distributions Q(x) = [] Qi (x;), as presented in detail in [15].

3.4 Deep residual networks

Network depth is very important in improving the accuracy of neural networks. However,
training a deeper network is a difficult challenge. A deep residual network [13] is a deep
convolutional neural network that can be trained at a consistently deeper level than a con-
ventional deep neural network, because it adopts a residual learning framework that makes
the training process easier, and achieves a better performance by increasing the depth of
the network. Thus, we are even able to train a deep residual network with 100 or 1000 lay-
ers. Because deep residual networks have reached the state-of-the-art performance in image
classification, we aim to learn a ResNet-based model with multi-scale input images, where
we can pass each scaled image through a deep residual network. We employ ResNet-101
with five blocks and more than 100 layers for each scaled image. Such a network consists
of a huge number of parameters, and its training process easily reaches the maximum RAM
capacity of our GPU device. The computational cost for an increase in accuracy is extremely
high. For this reason, we only employ two scaled image inputs, with scales of 1.0 and 0.75.

Each deep residual network can summarize the features of a scaled image input in the
feature map taken from the output of the last block. This feature map is then passed through
a cascade of dilated convolutional layers to capture multi-scale context information, and
generate a score map. We apply a method of simple bilinear interpolation to increase the
resolutions of the score maps, so that these maps have the same resolution. Then, the max-
out layer plays an important role in merging these score maps into the final score map
which can retain competitive features. Finally, the fully connected conditional random fields
model is integrated into the output of the network to encode pixel-level pairwise similarities,
and sharpen object boundaries. The entire architecture of the ResNet-101-based network is
illustrated in Fig. 6.
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Fig. 6 The architecture of our ResNet-101-based network

3.5 Very deep convolutional neural networks

Similar to deep residual network, very deep convolutional neural networks [31] explore the
advantages of network depth on the accuracy in image recognition tasks. In fact, a very deep
convolutional neural network only employs a very small number of convolution filters and
19 weighted layers. Therefore, such a network requires a much smaller number of training
parameters than a deep residual network. However, this network still achieves state-of-the-
art results. Thus, we aim to utilize very deep convolutional neural networks to extract more
multi-scale features. We build a deep model with three scaled image inputs with scales of
1.0, 0.75, and 0.5. We employ the VGG-16-based model which has 16 weighted layers, for
each scaled image. The entire architecture of the VGG-16-based network is illustrated in
Fig. 7.
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Fig. 7 The architecture of our VGG-16-based network
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4 Experimental results and analysis
4.1 Dataset

We used the challenging PASCAL VOC 2012 database [5] to evaluate the accuracy of
our proposed methods and the state-of-the-art algorithms which are the fully convolu-
tional neural network (FCN-8s) [21], the DeepLab network [2], the BoxSup network [4],
the Zoom-out network [22], the CRF-RNN network [36], the DPN network [20], and the
DeconvNet network [23]. First, we pretrained our deep models on the MS-COCO dataset
[18]. We then used the challenging PASCAL VOC 2012 database to train 20 classes, includ-
ing person, bottle, car, train, and one background class. Because the original training dataset
only consists of 1464 training images, which are not sufficient for training our deep net-
work, we used its extended training dataset augmented by the extra annotations provided by
Hariharan et al. [10]. In total, we employed 10,582 augmented images in the training pro-
cess. We can easily conduct experiments for comparison of semantic segmentation methods
on our computer, which is a PC with 3.6 GHz Intel Core i7 CPU and GeForce GTX 1070
GPU.

To evaluate the accuracy of our proposed methods, we also used the challenge dataset
of Skin Lesion Analysis Toward Melanoma Detection [9], which is the largest collection
of quality skin lesions images. Recognizing melanoma in dermoscopy images is a very
challenging problem, because we often have to deal with the low contrast of skin lesions.
We aim to prove that our network can improve the diagnostic performance of melanoma.
This dataset consists of 900 training images and 350 testing images. Because all training
and testing images are high resolution images with size 1024 x 768, we randomly crop sub-
images with the same size on each training image to increase the training samples. In the
testing process, the whole image is segmented entirely by combining the prediction results
of overlapped sub-images spreading in the whole image.

The performance of our method was evaluated by applying pixel intersection-over-union
(I0OU) scores to a set of ground-truth and predicted bounding boxes. The IOU measurement,
also called the Jaccard index, is a method for measuring the accuracy of an object seg-
mentation algorithm. If an object segmentation algorithm can provide predicted bounding
boxes, we can use the IOU measurement for evaluating its accuracy. The IoU measurement
is defined as the size of the intersection divided by the size of the union of the sample
sets:

PNG
PUG

J(P,G) = (6)

where P N G is the area of overlap between the predicted bounding box P and the ground-
truth bounding box G, and P U G is the area covered by both the predicted bounding box
P and the ground-truth bounding box G.

4.2 Training
We aimed to learn a ResNet-based model by adopting the ResNet-101 deep residual net-
work, which is one of state-of-the-art classification networks, and has been pre-trained for

classification tasks in [13]. The ResNet-101 deep residual networks were applied for each
branch in our network architecture, as mentioned in the previous section. Each branched
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network was modified by replacing the last fully-connected layers of the original ResNet-
101 network with a cascade of dilated convolutions as mentioned above, so that the network
becomes fully convolutional. Each cascade consists of dilated convolution layers with cor-
responding rates r of 6, 12, 18, and 24. The layer of fully connected conditional random
fields was then decoupled with the network in the training stages. We fine-tuned the net-
work by changing the number of training object classes at the last layers, and applying
the loss function, which is the sum of cross-entropy terms for each spatial position in
the final dense feature map. We used an initial learning rate of 0.001, a momentum of
0.9, and a weight decay of 0.0005. The learning rate is multiplied by 0.1 after 20,000
iterations.

Our second network was trained by adopting the VGG-16 convolutional neural network,
which is pre-trained in ImageNet [31]. The architecture of this network is similar to the
architecture of the above ResNet-based model, except for the number of multi-scale inputs.
This network adopts three scales s of 1, 0.75, and 0.5 instead of the two scales in the
ResNet-based model. For training this model we adopted stochastic gradient descent (SGD)
to minimize the loss function, which is the sum of cross-entropy terms for each spatial posi-
tion. The initial learning rate was set to 0.001 and the mini-batch size was 20 images with
an initial learning rate of 0.001. The learning rate is multiplied by 0.1 after 2000 iterations.
We set the momentum to 0.9 and weight decay to 0.0005.

4.3 Evaluation

To evaluate the semantic segmentation accuracy, the PASCAL dataset is employed for
comparison. The results for IoU scores are shown in Table 1. Our ResNet-based model
achieves an IoU score of 78.5, which is the best result among all methods, while the VGG-
16-based model achieves an IoU score of 74.8, which still outperforms the competing
classifiers, except for the DPN and BoxSup networks. This can be explained by the fact
that multi-scale feature extraction plays an important role in recognizing objects in differ-
ent contexts and scales. Thus, our network using multi-scale image inputs and multi-scale
dilated convolutions, significantly outperforms the competitors that only employ a single
scale input.

Table 1 Comparison of our

proposed methods with other Method mean IOU (%)

state-of-the-art methods on the

PASCAL VOC 2012 dataset FCN-8s 62.2
Zoom-out 69.6
DeepLab 72.7
CRF-RNN 74.7
DPN 71.5
DeconvNet 74.1
BoxSup 75.2
VGG-16-based Net 74.8
ResNet-101-based Net 78.5
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Table 2 Processing time of

proposed networks Method Run time (ms)
VGG-16-based Net 146
ResNet-101-based Net 475

Table 3 Performance of our
ResNet-101-based network on Method mean IOU (%)
the PASCAL VOC 2012 dataset

VGG-16+Dilated 74.0
VGG-16+Dilated+CRFs 74.8
ResNet-101+Dilated 77.8
ResNet-101+Dilated+CRFs 78.5

Fig. 8 Qualitative results for the proposed ResNet-based network on the Pascal VOC 2012 dataset

@ Springer



18702 Multimed Tools Appl (2018) 77:18689-18707

We have also seen that the ResNet-based model achieves a better segmentation perfor-
mance than the VGG-based model. However, the run time of the VGG-based network is
much faster than that of the ResNet-based network, as shown in Table 2, because it consists
of far fewer network parameters. Our VGG-based network can be developed for real-time
applications in future work.

As shown in Table 3, the layer of fully connected conditional random fields effectively
improves the performance of our network. In particular, the component of fully connected
conditional random fields introduces an extra 0.7% improvement to the ResNet-based model
and an extra 0.8% improvement to the VGG-based model. These results clearly indicate the
benefits of the fully connected conditional random fields model in significantly addressing
the challenge of pixel-level object localization, and recovering object boundaries.

Figure 8 presents example segmentations of people and objects, which emphasize activ-
ities involving human-object interactions and human-human interactions. Typical examples
of corrected segmentations of animals and vehicles are shown in Figs. 9 and 10, respectively.
All of the example images were collected from the PASCAL VOC 2012 dataset.

We then evaluated the semantic segmentation accuracy of our methods and their com-
petitors on the challenge dataset of Skin Lesion Analysis Toward Melanoma Detection.
Table 4 shows the semantic segmentation results of our proposed networks. We have seen
that that our ResNet-based model achieves much better results than the VGG-based model.

Fig. 9 Qualitative results for the proposed ResNet-based network on the Pascal VOC 2012 subset of animals
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Fig. 10 Qualitative results for the proposed ResNet-based network on the Pascal VOC 2012 subset of
vehicles

Our ResNet-based model achieves an IoU score of 83.5, which is the best result among all
the methods. This also means that our networks are effective in detecting melanomas which
often change in size and shape. This is because our networks can exploit multi-scale features
from multi-scale image inputs and multi-scale dilated convolutions. In addition, the compo-
nent of fully connected conditional random fields introduces an extra 0.4% improvement to
the ResNet-based model. Figure 11 presents example segmentations of melanomas. These
examples show the challenging tasks of melanoma recognition, including the complicated
variation of melanomas, the existence of artifacts. However, our ResNet-based model still
efficiently obtains a high segmentation performance.

Table 4 Performance of our

proposed methods on the Skin Method mean I0U (%)

Lesion Analysis Toward

Melanoma Detection dataset DeepLab 79.8
VGG-16+Dilated 81.3
VGG-16+Dilated+CRFs 81.9
ResNet-101+Dilated 83.1
ResNet-101+Dilated+CRFs 83.5
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Fig. 11 Qualitative results for the proposed ResNet-based network on the Skin Lesion Analysis Toward
Melanoma Detection dataset.

5 Conclusion

We combined the ideas of a cascade of dilated convolutions and a deep convolutional neural
network using multi-scale input images to construct a novel method that can predict objects
accurately, and produce detailed semantic segmentation maps. Furthermore, we employed
a fully connected conditional random fields model, which is integrated into the output of
our network to further remove isolated false positives, and improve predictions along object
boundaries. Our experimental results show that the proposed method is consistently supe-
rior to other state-of-the-art methods for semantic segmentation. This is because our deep
convolutional neural network model is not only able to efficiently capture larger contexts
without increasing computational costs, but can also improve the localization performance.
We also demonstrated that our deep network can achieve a high performance when dealing
with medical image segmentation tasks.

For future developments, we intend to improve the performance of our deep convolu-
tional neural network model by further exploring the key role of probabilistic graphical
models in advancing the performance of convolutional neural networks. We also intend to
develop our method in the field of video-based semantic segmentation. Thus, we will focus
on constructing a real time semantic segmentation system based on a cascade convolu-
tional neural network. This network outputs the cascade feature fusion to quickly achieve
a high semantic segmentation performance. Unlike our ResNet-based network, the idea of
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the cascade convolutional neural network is to build a coarse prediction map by passing the
low-resolution image through one branch of the network, and improve this prediction map
gradually by passing higher resolution images though the next branches of this network.
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