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Human fall detection using slow feature analysis
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Abstract Falls are reported to be the leading causes of accidental deaths among elderly
people. Automatic detection of falls from video sequences is an assistant technology for
low-cost health care systems. In this paper, we present a novel slow feature analysis based
framework for fall detection in a house care environment. Firstly, a foreground human body
is extracted by a background subtraction technique. After morphological operations, the
human silhouette is refined and covered by a fitted ellipse. Secondly, six shape features
are quantified from the covered silhouette to represent different human postures. With the
help of the learned slow feature functions, the shape feature sequences are transformed into
slow feature sequences with discriminative information about human actions. To represent
the fall incidents, the squared first order temporal derivatives of the slow features are accu-
mulated into a classification vector. Lastly, falls are distinguished from other daily actions,
such as walking, crouching, and sitting, by the trained directed acyclic graph support vector
machine. Experiments on the multiple-camera fall dataset and the SDUFall dataset demon-
strate that our method is comparable to other state-of-the-art methods, achieving 94.00%
recognition rate on the former dataset and 96.57% on the latter one.

Keywords Slow feature analysis · Support vector machine · Fall detection · Background
subtraction · Human silhouette

1 Introduction

Human action recognition is one of the major topics in computer vision community. It has a
wide application prospect in the related fields such as abnormal behavior analysis, especially
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the vision-based fall detection, video surveillance, and human-computer interaction [32,
39]. Fall detection is one of the most actively discussed topics, many works on fall event
recognition have been reported in [8, 17, 18, 28].

Falls of the elderly people are one of the major health problems because they cause many
injuries or even death. According to the statistics from the World Health Organization [1]
approximately 28.00% to 35.00% of people aged 65 and above suffer a fall accident every
year, increasing to 32.00% to 42.00% for those over 70 years of age. This makes falls one of
the five most common causes of death among the elderly people [29]. In a fall incident, they
typically receive moderate to severe injuries such as bruises, hip fractures or head trauma.
Moreover, billions of fall-related health and medical costs become a heavy burden not only
in China but also in other countries with the ageing population problem. A quick response to
a fall incident has already been proved to be a critical step to reduce the medical appliance
charges for a fallen person. Therefore, the fall detection, fall prevention and the protection
of a person living alone have recently become significant research topics for many scientists
all over the world.

In recent years, the number of proposed fall detection systems and algorithms has
increased rapidly. An overview of this topic can be found in [13, 45]. Very recent review
in [10, 22] highlights the challenges and issues of multisensory approach in this field. Fur-
thermore, the work [21] presents the taxonomy of fall detection from the perspective of the
availability of the fall data. Wireless body area network (WBAN) as the moving platforms
for pervasive computing and communication has been widely applied in healthcare domains.
Hassan et al. [14] propose an efficient network model that combines WBAN and Cloud to
deliver and share the media healthcare data to remote terminals with the quality of service
support. Health Internet of Things (IoT) [19], makes various medical devices, sensors, and
diagnostic and imaging devices the final building blocks in the development of smart health-
care frameworks. In the future, the integrated healthcare models adopted to consolidate the
fragmented care services will be enhanced to deliver personalized and precise healthcare
tailored to particular individuals. Lei Meng et al. [26] present a novel framework named
the online daily habit modeling and anomaly detection model for the real-time personalized
activities of daily living (ADLs) recognition, habit modeling and anomaly detection for the
solitary elderly. Moreover, their system can obtain very minute details of the detected activi-
ties. Alternatively, the recent developments in sensor technology have made the deployment
of sensors in various environments. Multiple fall detection approaches using distributed sen-
sors based ambient sensing technologies have also been developed and studied [12, 40].
These systems make it possible to prevent many other health hazard situations apart from
fall accidents.

At present, fall detection systems can be based on sensors mounted at home, such as
cameras [36, 45], pressure sensors [25], sound sensors [20], or sensors carried by the users
[34, 35]. Some other researchers have also turned to use radar signals for fall detection [2].
Recently, most of the commercial types of fall detection systems are based on wearable
sensors. The key problem, however, is that the elderly may easily forget to wear it. Besides,
it is not convenient to carry these devices all the time. Yet, there are some advantages that
make wearable sensors, especially the acceleromometer-based devices, quite popular. The
first one is that they measure the body’s motion parameters directly. However, there is a
new trend towards using a computer vision-based approach in the fall recognition [18], and
this is the solution we applied in our work. This approach is indispensable for creating a
smart home environment where it is possible to detect, analyze and even give an alarm about
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some deviations from the normal course of the daily life activities of the monitored person
through installing digital video cameras in the rooms.

According to the types of cameras used in the fall detection systems, they can be broadly
divided into two categories: the multiple-camera systems and the monocular vision sys-
tems [45]. In general, multiple cameras offer the advantages of allowing three-dimensional
reconstruction and extraction of three-dimensional features for the fall detection. However,
the calibration process of a multi-camera system is very complicated. It is a challenging and
time-consuming task. The monocular vision-based approach plays an irreplaceable role in
the fall detection systems because of its undeniable merits. These systems are very cheap
and easy to set up. Moreover, many other activities except fall events can be detected simul-
taneously with less intrusion. Practically, a fall incident usually occurs in a very short period.
The typical duration of a fall incident is about 0.4 ∼ 0.8 seconds. During this short time, the
human posture changes considerably with a high velocity. It is not easy to recognize a fall
among daily life activities, especially among such movements as sitting down and crouching
down. The two actions have characteristics similar to the fall incident, but have entirely dif-
ferent semantic contents. Since the shape-related features are not enough to distinguish these
similar motions accurately, we also consider the temporal information between postures in
our method.

This paper proposes a novel slow feature analysis based framework for the fall detection,
inspired by the temporal slowness principle. According to the temporal slowness principle
in [41], slow feature analysis (SFA) can be used to extract the invariant and slowly varying
features from the rapidly changing input signals for encoding the discriminative local fea-
tures. The slow features contain a high-level semantic content, which can be discovered by
the input-output mapping functions. To the best of our knowledge, this is the first work that
discusses the application of slowness principle in the fall detection. Our main contributions
are summarized as follows:

– The foreground human body extraction is reported in Section 3.1. The human silhouette
is refined and covered by a fitted ellipse, which is more compact than the traditional
rectangular box. The approximated ellipse is more suitable for describing the human
posture than the bounding box.

– In order to describe the postures of a fall incident, six shape features are extracted
from the covered silhouette. The sequences of quickly changing shape features are
transformed into slow feature sequences with a high level of discriminative abil-
ity for a fall accident recognition. To represent the fall accidents, we accumulate
the squared first order temporal derivatives of the slow features into a classification
vector.

– As for distinguishing a fall incident from other daily activities, the directed acyclic
graph strategy is utilized to combine several binary classification SVM for human
actions classification. The decision process is based on a sequence of two-class opera-
tions, i.e., from the root node to the leaf node. Once a bottom node is reached, the final
decision is made.

The rest of the paper is organized as follows. Section 2 provides an overview of the
related works. In Section 3, we give a detailed description of our proposed method, which
includes the human body extraction, shape features for posture representation, slow fea-
ture analysis, and the fall detection through classification. The experimental evaluations are
carried out in Section 4. Finally, Section 5 contains the conclusions.
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2 Related works

Previous works on video-based fall detection are numerous. In this section, we mainly focus
on monocular vision fall detection systems. In such a system, human body shape analysis
(silhouette analysis), inactivity detection, and head motion analysis are widely used for fall
detection.

Monocular vision fall detection systems are usually based on calculating different fea-
tures of the object under surveillance. More specially, the commonly used features are
foreground object’s projected height-width ratio, the difference and the centroid of the fore-
ground object. For example, Liu et al. [23] employ the ratio and difference of the width and
height of a silhouette bounding box to classify postures into three categories: the standing
posture, the temporary posture, and the lay down posture. Meanwhile, a critical time dif-
ference is obtained and verified by the statistical hypothesis testing. With the help of the
classified postures and critical time difference, the performance of their system is promis-
ing when the camera is placed sideways. Yu et al. [43] applies a background subtraction
technique to extract the foreground objects. The moving object is located in the image
plane by an ellipse whose parameters are obtained by computing the spatial moments of
the foreground image. A projection histogram constructed along the axis of the ellipse (the
local features) and the ratio between the major axis and the minor axis (the global features)
can evidently distinguish the postures of a fall event. Lastly, the support vector machine
(SVM) classifier is employed to perform the classification based on the local and global
features.

However, the sideward camera mounting makes the fall detection systems sensitive to
occlusions. The cameras should be located in a high place to avoid this situation. For real
house care environment, the camera’s view should cover a vast area. Moreover, human
motion velocity is significantly influenced by the distance to the camera. To cope with
these problems, Marc et al. [7] propose a low-cost fall detection system based on a single
wide-angle camera. Wide-angle cameras are used to reduce the number of cameras required
for monitoring a large area. Features based on the gravity vector are introduced to detect
the falls. The occlusion problem is also partly solved. Olivier et al. [30] present a spatio-
temporal motion representation that captures relevant velocity information by extracting the
dense optical flow from a video sequence. Falls can be distinguished with high accuracy and
computational efficiency from other daily human actions by introducing both the magnitude
and direction of the velocity into a motion vector flow instance template.

Only one fixed camera does not accurately detect falls that occur in various directions.
Usually, there are three ways to solve a perspective problem. The first one is based on find-
ing the invariant features of the object [9, 27]. The second way is to learn discriminative
features from a training set that contains different views’ samples [38, 44]. The third one
is to use the depth data directly to prevent perspective problems [3, 24, 42]. For instance,
Mirmahboub et al. [27] utilize the variations in the silhouette area of a human to detect falls.
The variations of the silhouette area are view-invariant features. Wang et al. [38] propose a
new fall detection framework, based on the automatic feature learning method. The frames
extracted from video sequences of different views form a training set. A principle com-
ponent analysis net model is trained by using the training set to predict the label of every
frame. A fall event model is further obtained by SVM with the predicted labels of frames in
the video sequences. The authors of [3, 24] overcome the perspective problem by present-
ing a more sophisticated approach based on depth images. In work [24], the curvature scale
space (CSS) features and the bag-of-words (BOW) method are combined to detect fall inci-
dents in a depth video. An improved extreme learning machine (ELM) classifier is adopted
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to distinguish falls and non-falls. In the later work [3], instead of representing an action as a
bag of CSS words, the Fisher vector (FV) encoding is used to describe the action based on
CSS features. A pre-trained SVM classifier is employed to make the final classification.

Although our system uses a single monocular camera, it overcomes the aforementioned
problems by extracting slow features of a moving foreground object. The foreground object
is firstly described by six shape features. And then, slow features are derived by analyz-
ing the input shape features and its time derivative. Besides, temporal information between
postures is also utilized. Moreover, these slow features are ordered by their degree of invari-
ance. The experiments conducted on a public multi-view fall detection dataset have shown
that our method can achieve good results.

3 The proposed method

Our fall detection system includes four phases: human body extraction, shape features for
posture representation, slow feature analysis, and fall detection through classification. The
overall framework of our method is presented in Fig. 1.

The first step of our approach is to detect the elderly person in every video frame. It is
accomplished by applying the background subtraction model and pixel classification. Once
the person has been detected, the silhouette is fitted by an ellipse after the mathematical
morphology operations. In order to describe human postures, six shape features are devel-
oped from the covered silhouette. However, postures of a fall incident change considerably
in a very short period of time. Most of the traditional vision-based methods just utilize
some shape-related features and neglect the temporal information. To take advantage of the
temporal information, we represent fall incidents as shape feature sequences and analyze
them using slow feature analysis. Moreover, inspired by the observation that slow features
contain high-level semantic information, we learn the slow feature analysis functions to
explore the slow features during the training stage. In the testing stage, these SFA functions
are introduced to transform the input shape feature sequences into slow feature sequences.
Falls are described by accumulating the squared first order temporal derivatives of the slow
features. Finally, falls can be detected by the trained directed acyclic graph support vector
machine. Meanwhile, other normal actions, such as walking, crouching and sitting, can also
be classified by the trained classifier.

Fig. 1 The framework of our approach
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3.1 Human body extraction

Human bodies are extremely non-rigid objects with a high degree of variability in size and
shape. When people walk towards or away from a video camera both the shape and size of
a human body change greatly. Sometimes, the color and texture are affected significantly
by the shadow or ambient light in a living room. Because of these peculiarities, the task of
extracting a moving person from an image sequence is one of the most challenging ones in
computer vision field. As the shape of a human body is a very significant clue to human
motion analysis, there should be a human body extraction technique capable of coping with
all the problems listed above. Therefore, some approaches focused on solving these prob-
lems have recently been developed. Among them are visual background extractor [5], local
binary pattern histogram [15] and so on. They are effective in dealing with problems of
illumination changes and with dynamic scenes.

In the video sequence, there is only one moving object, the walker. Besides, there is
background that is always static and the camera that does not move. Under this assumption,
the background model is obtained by computing several model parameters over some static
background frames. We employ the color distortion model proposed by Horprasert et al.
[16], which can be used to deal with the problem of slight illumination changes, such as
shadows and highlights.

Having adopted the color distortion model, we separate the brightness from chromaticity
component. Figure 2 shows the color distortion model in the three-dimensional RGB color
space.

Considering a pixel i in the frame, letE(i) = [ER(i), EG(i), EB(i)] represent the pixel’s
expected RGB color value in the background model, and let I (i) = [IR(i), IG(i), IB(i)]
denote the pixel’s RGB color value in the current image that needs to be subtracted from the
background. The distortion of I (i) from E(i) is decomposed into two parts, namely, bright-
ness distortion BD(α(i)) and color distortion CD(i). The brightness distortion BD(α(i))

is a scalar value that brings the observed color value close to the expected chromaticity line.
It is obtained by minimizing

BD(α(i)) = ||I (i) − α(i)E(i)||22 (1)

α(i) represents the pixel’s brightness strength with respect to the expected pixel value.
‖ · ‖2 stands for the two-norm. The color distortion of pixel I (i) is defined as the dis-

Fig. 2 Color distortion model

Multimed Tools Appl (2019) 78:9101–91289106



tance between the observed color and the expected chromaticity line which is given
by

CD(i) = ||I (i) − α(i)E(i)||2 (2)

There are three main steps in human body extraction. The first step is to construct a reference
background image using the background model. Second, the threshold selection step deter-
mines the appropriate threshold values for pixel classification. The last step is to classify
the pixels into the background mask, moving object mask, and shadow mask.

After the three steps, the binary foreground image is obtained. However, the foreground
image may be corrupted by bad noises both inside and outside of the object. The noises
even make some small holes in the object. The morphological operations are implemented
to remove the noise. The crucial steps of human body extraction are shown in Fig. 3.

3.2 Shape features for posture representation

After obtaining the foreground region of the human, the analysis of the human silhouette
should be performed to extract discriminate features necessary for the body shape change
detection. The highly non-rigid moving human body should be exactly identified in the
frames. Practically, a foreground object is usually separated into several small blocks, since
it rapidly moves across the similar background along with the human body. We gather all the
extracted pixels together into a point set. Then, the identification of the human body in the
image plane is carried out by fitting an ellipse, so that it covers the pixels of the foreground
object. An ellipse is determined by four parameters: its center (x̄, ȳ), orientation θ , and the
lengths a and b of its major semi-axis and minor semi-axis. The parameters of the ellipse
that cover most of the points are obtained by calculating the first and second moments of
the data points.

(a) (b)

(c) (d)

Fig. 3 Human body extraction. a An original background image. b The current image with a human body.
c The extracted human body in the foreground including shadows and holes. d The final extracted human
object after the morphological operations
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3.2.1 Parameters of the ellipse

To compute the parameters of the ellipse, we firstly introduce two useful definitions to
the computation, and then use these parameters to calculate the shape features for posture
representation in the next subsection.

Definition 1 (moments)
For a continuous image f (x, y), the moments are given by

mpq =
∫ +∞

−∞

∫ +∞

−∞
xpyqf (x, y)dxdy (3)

for p, q = 0, 1, 2, . . .
The center of the ellipsoid (x̄, ȳ) is obtained by computing the coordinates of the center

of mass with the first and zero order spatial moments

x̄ = m10/m00 (4)

ȳ = m01/m00 (5)

Definition 2 (central moments)
For a continuous image f (x, y), and its centroid (x̄, ȳ), the central moments are

computed as follows

μpq =
∫ +∞

−∞

∫ +∞

−∞
(x − x̄)p(y − ȳ)qd(x − x̄)d(y − ȳ) (6)

for p, q = 0, 1, 2, . . .
The angle θ between the major semi-axis a and the horizontal axis x gives the orientation

of the ellipse. It can be computed with the central moments of the second order

θ = 1

2
arctan(

2μ11

μ20 − μ02
) (7)

To recover the major semi-axis a and the minor semi-axis b of the ellipse, we have to
compute Imin and Imax , i.e., the least and the greatest moments of inertia, respectively. They
can be obtained by evaluating the eigenvalues of the covariance matrix [33]

J =
(

μ20 μ11
μ11 μ02

)
(8)

The eigenvalues Imin and Imax are given by

Imin =
μ20 + μ02 −

√
(μ20 − μ02)2 + 4μ2

11

2
(9)

Imax =
μ20 + μ02 +

√
(μ20 − μ02)2 + 4μ2

11

2
(10)

Then the major semi-axis a and the minor semi-axis b of the best fitting ellipse are given
by

a =
(
4

π

)1/4
[

(Imax)
3

Imin

]1/8

(11)

b =
(
4

π

)1/4
[

(Imin)
3

Imax

]1/8

(12)
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An example of an ellipse fitting result is depicted in Fig. 4, where we also present the
compared rectangular fitting result provided in [9]. The approximated ellipse is obviously
better in describing the human posture than the bounding box, especially in the presence of
noise. The region of the human body covered by an ellipse is more compact than that of the
rectangular box.

3.2.2 Feature extraction

With the fitted region of a human silhouette S at a given time t , several features are extracted
to measure the shape deformation of the human body. The aspect ratio ARS(t) = b(t)/a(t),

fall angle FAS(t) = θ(t), and eccentricity ECS(t) =
√
1 − a(t)2

b(t)2
of the fitted ellipse S

are used for describing the human shape deformation globally. The ratio between the major
semi-axis and the minor semi-axis, the orientation and eccentricity of the ellipse S pro-
vide much information about human body postures. If a fall happens in the direction of
the optical axis, the aspect ratio ARS(t) decreases drastically while the fall angle FAS(t)

remains the same. In other cases, the fall angle FAS(t) changes significantly while the
aspect ratio ARS(t) and eccentricity ECS(t) do not change so much. Once a fall happens,
these three features reflect the global deformation of a human posture. In a sense, they are
view-dependent features.

Besides, local information of the silhouette should not be neglected. During the fall inci-
dent, there are various human postures. The area of a human posture plays a significant
role in human activity analysis. We consider the relations between the area of a human pos-
ture in the fitted ellipse AH (t), the area of the ellipse AS(t) and even the whole image area
AI (t) = MN (M , N are the width and height of image I , respectively). The effective area
EAS(t) = AS(t)/AI (t) = πa(t)b(t)/MN measures the occupancy of the fitted silhouette
in the image plane. It is a good indicator of the self deformation of the human posture. When
large deformation occurs, the effective area EAS(t) will change greatly to illustrate the dis-
tortion. Another feature is the affinityAFS(t) = AH (t)

AS(t)
. This feature describes the area of the

human posture in the fitted ellipse S. The other feature is the roundness ROS(t) = 4πAS(t)

pS(t)2
.

Here pS(t) is the perimeter of the ellipse S at a given time t . It mainly concerns the compact-
ness of the human posture in the region covered by the fitted ellipse S. All the six features
can be aggregated into a single feature vector FS(t). It is expressed as follows

[ARS(t), FAS(t), EAS(t), AFS(t), ROS(t), ECS(t)] = FS(t) (13)

These features FS(t) have been proved experimentally to be sufficient to describe the
posture of a human body at a given time. One example sequence of the fall event is given in

(a) (b)

Fig. 4 Region of interest. a Rectangular fitting. b Ellipse fitting
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Fig. 5, where the process of human body extraction and ellipse fitting are shown. Figure 6
demonstrates the extracted features of the whole fall incident sequence. The circle illustrates
the critical time of the fall incident. From the results, we can observe the distinct differences
in the patterns between various postures. These features are helpful in describing a posture.

3.3 Slow feature analysis

The invariant features of temporally varying signals are useful for analysis and classifica-
tion. Slow feature analysis is a new method for learning invariant or slowly varying features
from a vectorial input signal. It is based on a nonlinear expansion of the input signal and
on the application of the principle component analysis (PCA) to this expanded signal and
its time derivative. It is guaranteed to find the optimal solution within a family of functions
directly and can learn to extract a large number of decorrelated features, which are ordered
by their degree of invariance.

Therefore, SFA is a potential candidate technique to be used in extracting approximately
invariant features for the human fall event recognition. Mathematically, SFA can be defined
as follows:

Given an I -dimensional input signal X(t) = [x1(t), · · · , xI (t)]T with t ∈ [t0, t1] indi-
cates time, and [· · · ]T stands for the transpose of [· · · ]. SFA finds out an input-output
function G(x) = [g1(x), · · · , gI (x)]T so that the generated J -dimensional output signal
Y (t) = [y1(t), · · · , yJ (t)]T with yj (t) = gj (X(t)) varies as slowly as possible, i.e., for
each j ∈ {1, 2, · · · , J },

�j = �(yj ) = 〈ẏ2
j 〉t is minimal (14)

(a)

(b)

(c)

Fig. 5 Postures of a fall event. a Typical postures. b The extracted fall human body. c Ellipse fitting
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subject to
〈yj 〉t = 0 zero mean (15)

〈y2
j 〉t = 1 unit variance (16)

and ∀j ′ < j : 〈yj ′yj 〉t = 0 decorrelation (17)

where ẏ denotes the operator of computing the first order derivative of y, and the 〈y〉t
indicates the temporal average of signal y over time, that is, 〈y〉t = 1

t1−t0

∫ t1
t0

y(t)dt . Equa-
tion (14) expresses the primary objective of minimizing the temporal variation of the output
signal, where the temporal variation is measured by the temporal average of the squared
first order derivative. Constraint (15) is presented here just for convenience so that con-
straint (16) and constraint (17) can take a simple form. Constraint (16) means that the output
signal should carry some useful information and avoid the trivial solution yj (t) = const.
Constraint (17) ensures that different output signal components carry different types of
information and do not simply reproduce each other. It also induces an order, where the first
output signal y1(t) is the optimal signal, the slowest one, while y2(t) is the less optimal one,
etc.

It is an optimization problem of variational calculus to find out the input-output function.
In general, it is very difficult to solve this problem explicitly. If the input-output function
components gj (x) are the constraint that is a linear combination of a finite set of nonlinear
functions, i.e., gj (x) = wT

j X, wherein X is the input signal vector and wj is the normalized
weight vector, it becomes the generalized eigenvalue problem. This problem becomes much
more simple and the solution of SFA becomes equivalent to the generalized eigenvalue
problem [41].

AW = BW� (18)

where A = 〈ẊẊT 〉t is an expectation of the covariance matrix of the temporal first order
derivative of the input signal vector X, B = 〈XXT 〉t is an expectation of the covariance

(a) (b) (c)

(d) (e) (f)

Fig. 6 The extracted six shape features. a Aspect ratio. b Fall angle. c Effective area. d Eccentricity. e
Affinity. f Roundness
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matrix of the same input vector X, � is a diagonal matrix of the generalized eigenvalues
and W is corresponding generalized eigenvectors. Besides, the orders of the slow features
are determined by the eigenvalues. The most slowly varying signal has the smallest index.

As for the nonlinear transformation of gj (x), it can be deemed as the linear trans-
formation in a nonlinear expansion space [41], each component of which is a weighted
sum over a set of K nonlinear functions hK(x), i.e., gj (x) = ∑K

k=1 wjkhk(x). Usually,
K > max(I, J ). The nonlinear function H(x) can be defined as

H(x) = [h1(x), · · · , hK(x)] (19)

For example, a quadratic expansion for a two-dimensional input X = [x1, x2] is H(x) =[
x1, x2, x

2
1 , x1x2, x

2
2

]
. Here all monomials of degree one and two including mixed terms

such as x1x2 are used. The dimensionality of H(x) is K = I + I (I + 1)/2. This is a
common technique to transform a nonlinear problem into a linear one. Afterwards, SFA can
be operated in the expansion space to obtain nonlinear slow feature functions.

In summary, slow feature functions can be obtained by the following steps:

1. Nonlinear expansion
Apply a nonlinear functionH(x) to expand the original input signal and to centralize

H(x)

Z = H(x) − H0 (20)

where H0 = 〈H(x)〉t . The centralization makes the constraint (15) valid. Here, we use
the quadratic expansion, i.e.,

H(x) = [x1, · · · , xI , x1x1, x1x2, · · · , xI xI ]
2. Solve the generalized eigenvalue problem

AW = BW� (21)

where A = 〈ŻŻT 〉t , B = 〈ZZT 〉t .
In a nutshell, to solve the optimization problem (14), it is sufficient to compute the covari-
ance matrix of the input signals and their derivatives in the expanded nonlinear space and
then solve the generalized eigenvalue problem from (21). The derivative ofZ(t) is computed
by the linear approximation Ż(t) ≈ (Z(t + �t) − Z(t))/�t . Assume the dimensionality of
matrices A and B are K , the first M eigenvectors w1, · · · , wM(M � K) associated with
the smallest eigenvalues λ1 ≤ λ2 ≤, · · · ,≤ λM are the nonlinear slow feature functions
g1(x), · · · , gM(x)

gj (x) = wT
j (H(x) − H0) (22)

which satisfies the constraint (15)–(17) and minimizes the objective function (14).
Here, the input-output function computes the output signal instantaneously. Therefore,

the slow variation of the output signal can be achieved by extracting aspects of the input
signal that are inherently slow and useful for obtaining a high-level representation.

3.4 Fall detection through classification

There are three main steps in the SFA-based fall event recognition that is slow feature
function learning, fall accident representation, and classification.
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Fig. 7 The reformatting process of the feature sequence

3.4.1 Slow feature function learning

Before the learning, we should perform a preprocessing for each training image sequence to
extract a human body and to calculate the shape features for postures representation. Usu-
ally, the fall incident occurs very quickly. The typical duration of an event is approximately
0.4 ∼ 0.8 seconds. That is about ten to twenty frames in the collected video samples. Hav-
ing considered the average length of a fall event, we decided to select fifteen frames as
one training sequence. Initialized at time t , a sample is obtained with the size h × w × d

(1× 6× 15 in this paper, i.e., one sample contains fifteen consecutive frames, and six shape
features are extracted from each frame). According to [6], we reformat each input vector by
�t (�t = 3 in this paper). Figure 7 illustrates the reformatting process. The spatial-temporal
information of the two neighbor frames can be learnt by the slow feature functions. After the
reformatting step, the dimensionality n of the input vector becomes n = w×�t . Before the
non-linear expansion step of SFA, the dimensionality of the input signal increases greatly.
The dimensionality of the quadratic expansion increases from n to n + n × (n + 1)/2 , i.e.,
K = n + n × (n + 1)/2. It is not necessary to use the information of the full dimension-
ality. We apply principal component analysis to reduce the dimension of the original input
feature FS(t) to three, which is sufficient for the subsequent experiment.

F(t) = Wopt (FS(t) − μS(t)) (23)

where Wopt is the optimal projection matrix and μS(t) is the mean of all FS(t), F(t) is the
final reduced dimension input feature vector. Figure 8 illustrates the percentage of variance

Fig. 8 The variance carried by each principal component
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carried by each component. The percentage of variance reflects the information contained
in each component. As shown in Fig. 8, the variance of the first component reaches 98.3%.
Moreover, the first three components provide almost all of the total information. The dimen-
sion of the reduced input feature F(t) is much lower than the original feature FS(t). It is a
much convenient tool in the procedure of slow feature function learning.

After discussing the basic theory of SFA algorithm, we need to determine the strategy
of slow feature function learning for the fall event recognition, i.e., defining the types of
input-output function that represent the fall action appropriately after transforming the input
features. According to [46], the supervised SFA learning strategy is adopted to extract slow
feature functions for each action category independently, mainly focusing on the fall actions.
After nonlinear expansion of SFA, we get a nine-dimensional output feature. Figure 9 illus-
trates an output of nine slow feature functions, while the original input feature is shown in
Fig. 6. We can see that the slowest signal is in the first output, while the second output is less
optimal one. Compared with the other outputs, there is only a little vibration in the slow-
est signal, just like a steady signal. According to the theory of SFA, these outputs, from the
first to the ninth, carry different types of information of the input signal. Statistical features
can be derived from all of the output slow features. However, different input features may

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9 The nine learned slow feature functions. a The first output. b The second output. c The third output.
d The fourth output. e The fifth output. f The sixth output. g The seventh output. h The eighth output. i The
ninth output
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share some similar patterns after the transformation of slow feature functions, so different
categories of these patterns lead to misclassification.

3.4.2 Fall accident representation

In the literature on action recognition, d successive frames are called an action snippet. The
input feature of SFA learning is obtained exactly from d successive frames. Thus, we get a
statistical feature from a fall action snippet to represent a fall action sequence. In one action
snippet, the accumulated squared derivative feature is computed as follows. Initially, the
training samples are preprocessed before the representation. After the reformation of the
procedure, each h × w × d sample is represented as a vector sequence with the time length
of d − �t + 1. The vector at each moment of time is obtained by concatenating the features
from �t successive frames. With the learned slow feature functions, each input sequence
is transformed into a new vector sequence with the size of K × (d − �t + 1), wherein K

(K = 9, in this paper) is the number of slow functions.
The objective function of SFA minimizes the average squared derivative, so the fitting

degree of a sample to a certain slow feature function can be measured by the squared deriva-
tive of the transformed sample. If the value is small, the sample fits the slow feature function
very well. For a sample T and slow function Fj , the squared derivative vj is

vj = 1

d − �t

d−�t∑
t=1

[
T (t + 1) ⊗ Fj − T (t) ⊗ Fj

]2 (24)

where ⊗ is the transformation operation. We accumulated the squared derivatives to form
the feature Fasd = V =< v1, v2, . . . , vk >. For the effectiveness of different samples, it is
necessary to normalize the accumulated squared derivatives feature vector. Here, we adopt
the L2 normalization, as follows

F̂asd = V/‖V ‖2 (25)

Figure 10 shows examples of accumulated squared derivative feature representation from
fall dataset [4]. Each picture of the first column stands for an action snippet. The input
features are extracted from these snippets, as is shown in the second column. For each
category, the learned nine slow feature functions are used to computer accumulated squared
derivatives features as shown in the third column of Fig. 10. We can see that the accumulated
values of those slow feature functions corresponding to the four actions are quite different.
This is a discriminative information for classification.

3.4.3 Fall accident detection

Once we have obtained the accumulated squared derivatives feature F̂asd , actions can be
classified into one of the four categories (walking, crouching, falling and sitting) just as
shown in Fig. 10. Consider the training set with N samples, defined by {ui, li}, i =
1, . . . , N , with the data ui ∈ Rn and label li ∈ {−1, +1}. SVM is a binary classifier
that constructs an optimal hyper plane according to the minimum structure risk principle
[37] in the feature space or transformed high dimensional feature space. It can be used for
classification, regression or other tasks. The hyper plane is defined as :

f (u) = ω · φ(u) + b (26)

where ω indicates a set of weights, φ(u) is a nonlinear mapping operation on u, b is the bias.
Intuitively, a good separation is achieved by the hyperplane that has the largest distance to
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(a)

(b)

(c)

(d)

Fig. 10 Examples of feature representation. aWalk. b Crouch. c Fall. d Sit

the nearest training data point of any class (so-called functional margin), since in general
the larger the margin, the lower the generalization error of the classifier. It is formulated as
follows

min ψ(ω) = 1

2
ω2 + C

2

N∑
i=1

ξ2i (27)

whereC is a regularization factor and ξi is the error of the ith sample. Since it was originally
designed for binary classification, the issue of how to extend it for multi-class problems is
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still an open problem. At present, there are two types of strategies for developing a multi-
class SVM. One way is constructing several binary SVM and combining the classified result
by some rules such as one against all, one against one. The other is directly considering all
the multi-class data in one optimization formulation. Though this method solves a multi-
class SVM problem in only one step, much optimization is required. Moreover, parameters
of the SVM are very complicated.

In this paper, the directed acyclic graph scheme is employed to combine several SVM
for solving the multi-class classification problem. Figure 11 presents the structure of the
directed acyclic graph support vector machines (DAGSVM) for the four actions classifi-
cation. It looks like a tree-structure and each node in this tree-structure corresponds to a
simple binary SVM. The decision process just follows the structure based on a sequence
of two-class operation, proceeding from the root node to the leaf node. A final decision is
made when a bottom node is reached. The adapted DAGSVM scheme has been proved to
have a theoretically defined generalization error bound and to be more efficient than other
multi-class SVM schemes on the training and computing time [31].

3.4.4 Computational complexity

In our proposed method based on slow feature analysis, most of the computation costs
mainly focus on the two large covariance matrices A and B for solving the generalized
eigenvalue problem from (21), i.e., AW = BW�. The expanded nonlinear function space
H on which SFA is performed is chosen here to be the set of all monomials of degree
one and two including mixed terms, as discussed at length in Section 3.3. A run with SFA
requires the computation of two large covariance matrices, the elements of which are in
the order of O(K2), where K is the dimension of the expanded function space. In the
quadratic expansion function space K is determined by K = I + I (I +1)/2, where I is the
dimension of the input signal. In the case of polynomials of degree two, this corresponds to

Fig. 11 Classification structure of DAGSVM
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some elements in the order of O(I 4). Obviously, this is computationally expensive. Con-
sidering the real-time efficiency, we conduct a standard preprocessing step using principal
component analysis (PCA) to reduce the dimensionality of the input signals I for slow fea-
ture analysis. In our experiment, the dimensionality of the input features I is reduced from
1×6×3 =18 to I=3, capturing 98.30% of the total variance as shown in Fig. 8.

4 Experiments

In this section, we show the performance of our fall detection system. All the experiments
are carried out on a desktop with Intel (R) Core (TM) i7-6700 CPU and 4.00 GB RAM.
We evaluate the proposed method on two public fall detection datasets. Some detailed
information about these two datasets is given below.

4.1 Datasets

The dataset-I is from multiple-camera fall dataset [4]. This video dataset contains simulated
falls and normal daily activities recorded in 24 realistic situations. In each scenario, an
actor plays many activities such as falling, crouching, sitting on a sofa, walking, and so
on. Every scene is shot simultaneously with eight different cameras mounted around the
room where the fall incident happens. All of the actions are performed by the same person
with different color garments. In our tests, videos from various camera views are mixed
and treated equally. Figure 12 illustrates some key video frames from this dataset. Detailed
information of dataset-I is given in Table 1.

The dataset-II is the SDUFall dataset [24]. This dataset comprises various types of
samples including RGB videos, depth videos, and 20 skeleton joint positions. There are
20 young men and women in the shooting of the data collection. Each man and woman

Fig. 12 Four categories of dataset-I. From top to bottom: walk, crouch, fall, and sit
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Table 1 Different activities
depicted in dataset-I Activity Count Label

Walk 192 1

Crouch 80 2

Fall 208 3

Sit 80 4

Total 560 −

performs the actions 10 times, including falling, bending, squatting, sitting, lying and walk-
ing. Since it is hard to capture real falls, the subjects fall intentionally. It is worth noting that
there is a significant proportion of confusing activities, such as falling and lying. For captur-
ing the actions in different conditions, the videos are recorded with the following scenarios:
carrying or not carrying an object, changing room layout, changing direction and position
relative to the camera. In our experiments, we use only the RGB videos. A total of 1200
RGB videos are collected. Some key video frames from dataset-II are shown in Fig. 13.
Detailed information about dataset-II is given in Table 2.

Fig. 13 Six categories of dataset-II. From top to bottom: bend, fall, lie, sit, squat, and walk
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Table 2 Different activities
depicted in dataset-II Activity Count Label

Bend 200 1

Fall 200 2

Lie 200 3

Sit 200 4

Squat 200 5

Walk 200 6

Total 1200 −

4.2 Experimental setup

Generally, we should choose samples to train the classifier. Therefore, the datasets are split
into two parts. The first part contains eighty percent of the samples (448 from dataset-I
and 960 from dataset-II ). These are used for training, and the others for testing (112 from
dataset-I and 240 from dataset-II). The commonly used cross-validation technique (PRtools
– a popular software package for pattern recognition [11]) is applied to tune the parameters
of the classification system.

Two different types of evaluations are made. In the first assessment, we perform fall
versus non-fall classification on the two datasets. The second evaluation is a multi-class
actions classification. Four actions are classified on dataset-I, and six-class classification
experiments are carried out on dataset-II. The detailed information about action categories
and labels are given in Tables 1 and 2, respectively. In the two types of experiments, the
obtained results are compared with other state-of-the-art methods on the two datasets.

4.3 Experimental results on dataset-I

In the fall versus non-fall experiments, falls are the positive samples, and the other actions
are the negative samples. The classification results are listed in Table 3. As the results show,
our proposed SFA-SVM approach yields the best accuracy. The accuracy reaches 94.00%.
Furthermore, our method is respectively 2.00% and about 4.00% more accurate than the
compared silhouette [30] and shape variation methods [9]. Such good performance is the
result of using slow feature analysis, the advantages of which in this respect become very
clear. The classification accuracy is greatly improved, about 10.00% higher than that of the
bounding box method [23]. To further study the performance of our method, we visualize
the receiver operating characteristic (ROC) curve of our method on dataset-I in Fig. 14.
ROC curve is a graphical plot that illustrates the performance of a binary classifier system
as its discrimination threshold is varied. It is created by plotting the true positive rate (TPR)
against the false positive rate (FPR). TPR is also known as sensitivity, recall or probability of

Table 3 Fall versus non-fall
classification results on dataset-I Method Accuracy

Bounding box [23] 84.44%

Shape variation [9] 90.05%

Silhouette [30] 92.00%

Proposed method 94.00%
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Fig. 14 The receiver operating characteristic curve of our method on dataset-I

detection in machine learning. FPR is also known as the fall-out or probability of false alarm
and can be calculated as 1-specificity. Practically, the area under the ROC curve (AUC) is
often adopted as the criterion for evaluation. The AUC value is equivalent to the probability
that a randomly chosen positive example is ranked higher than a randomly chosen negative
example. It is always between 0 and 1.0. The larger AUC means the better performance of
the approach. Figure 14 shows the area under the ROC curve. The AUC of our method is
0.95 which is approximately the ideal value.

The results of the second type of experiments are also obtained. The overall accuracy of
multi-class classification is given in Table 4. The results indicate that the DAGSVM is better
than the ELM in multi-class action recognition. The accuracy of our DAGSVM classifier
is about 2.00% and 3.25% better than that of ELM and SVM, respectively. Our method
can reach 98.25% accuracy on four classes action classification. Still, it is not a reliable
metric to estimate the performance of the classifiers only using classification accuracy for
the four actions classification since classification accuracy is mainly concerned with the
percentage of rightly classified instances in the total numbers of samples and neglects the
rate of misclassified samples. Classification rate can not accurately reflect the performance
of the multi-class classifier because in the case of one class accuracy is very high while in
the case of another class is very low.

For adequately evaluating the effectiveness of classifiers, the confusion matrix, also
known as an error matrix, is the best choice. A confusion matrix is a specific table that
allows visualizing the performance of a classifier on a set of test data for which true val-
ues are already known. Each column of the matrix represents the instances (actions) in a

Table 4 Overall accuracy rates
for four actions classification on
dataset-I

Method Accuracy

SVM 95.00%

ELM 96.50%

Our method 98.25%
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predicted class while each row represents the instances in an actual class (or vice versa). All
correct predicted instances are located in the diagonal of the table, so it is easy to inspect
the table visually and to find out the errors, which are represented by the values outside the
diagonal. It is easy to see if the classifier confuses two classes i.e., perceives the sample of
one class as belonging to the other.

The results of the SVM, ELM, and DAGSVM for the second type of experiments are
given in Fig. 15. One can easily see from Fig. 15a that SVM is more likely to misclas-
sify other activities as falls. Crouching is more likely to be misclassified as falling with
6.00% misclassification rates. The worst classification accuracy (48.00%) is obtained for
the sitting, about 50.00% of sitting are misclassified as walking. The highest classification
accuracy (94.00%) is obtained for falling when using the SVM classifier.

The results, which are shown in Fig. 15b, indicate that ELM has smaller misclassification
error than the SVM classifier. The best correct classification rate (98.00%) is obtained for
walking, and the accuracies of other three actions are all 96.00%. But the movement that
is most confounding to walking is still falling since 4.00% of falling are misclassified as
walking. Moreover, there are about 2.00% of crouching, and 2.00% of sitting that are still
misclassified as falling when using the ELM classifier.

The DAGSVM approach gets better classification performance than the ELM and SVM.
The classification accuracy for all actions is improved as is clear from Fig. 15c. The clas-
sification rate is satisfying for every action. The highest classification accuracy is recorded
for sitting. Walking and sitting are the most confounding activities for the DAGSVM
method. About 3.00% of walking are misclassified as falling and 6.00% of sitting are also
misclassified as walking.

Generally speaking, DAGSVM has smaller misclassification errors as compared to other
two methods. For all the three approaches, the actions that are most frequently misclassi-
fied as falling are crouching and sitting. This reflects the similarity of the activities. The
characteristics of crouching are similar to the falling on dataset-I.

(a) (b)

(c)

Fig. 15 Confusion matrices of the three methods on dataset-I. a SVM. b ELM. c Our method
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Table 5 Fall versus non-fall
classification results on dataset-II Method Accuracy

BoW-SVM [24] 63.12%

BoW-ELM [24] 84.36%

BoW-VPSO-ELM [24] 86.83%

FV-SVM [3] 88.83%

Proposed method 96.57%

4.4 Experimental results on dataset-II

Here we carry out two types of experiments, exactly as we did in the previous section.
Firstly, the dataset-II is used to verify the performance of our method on fall and non-fall
actions. Secondly, six actions of this dataset are tested to confirm the application of the
method in multi-class classification.

In the first type of the experiments, the accuracy rates, including the compared results
in [24] and [3], are listed in Table 5. As shown in the table, our method outperforms other
methods regarding the accuracy. It reaches about 96.57%. The accuracy is 7.74% and 9.74%
higher than that of FV-SVM [3] and BoW-VPSO-ELM [24], respectively. The critical point
is that after introducing slow feature analysis into the proposed method, the SVM classi-
fication accuracy has been highly improved. It is about 10.00% and 30.00% higher than
that of FV [3] and BoW [24], respectively. The ROC curve and AUC value of our method
on dataset-II are also shown in Fig. 16. The area under the ROC reaches 0.99. There is
only a little gap between ideal AUC value and the AUC of our method. This sufficiently
demonstrates the effectiveness of the proposed method on dataset-II.

In the second type of experiments, the overall recognition rate is calculated. The results
are shown in Table 6, from which we can observe that our method outperforms the ELM and
SVM classifiers by 10.00% and 20.00%, respectively. The confusion matrices are shown
in Fig. 17. It is clear from Fig. 17a, that SVM easily misclassifies activities, especially

Fig. 16 The receiver operating characteristic curve of the our method on dataset-II
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Table 6 Overall accuracy rates
for six actions classification on
dataset-II

Method Accuracy

SVM 64.30%

ELM 71.34%

Our method 81.33%

lying, sitting and squatting. The motions of the three actions look like the same in the first
stage. Lying actions are the most difficult to classify. The lowest classification accuracy rate
(15.00%) is obtained for lying. About 65.00% of lying is misclassified as walking. Sitting
and squatting are also easy to be misclassified as falling with 28.00% and 21.00%, respec-
tively. The accuracy for falling is only 82.00%, while the highest classification accuracy
rate exceeds 90.00%.

The ELM method gets better classification results than the SVM classifier. From
Fig. 17b, we can observe that the classification accuracy for lying is improved. However,
there are still 32.00% and 13.00% of lying misclassified as walking and sitting, respectively.
The worst classification accuracy is still obtained for lying, and the highest correct classi-
fication rate (88.00%) is recoded for falling. Lying and sitting are the most confounding
activities for the ELM approach. 32.00% of lying are misclassified as walking and 15.00%
of sitting are also misclassified as bending.

Finally, Fig. 17c shows the achievements of our proposed DAGSVM. Except squatting,
all human actions are classified more accurate than the compared two methods. The clas-
sification accuracy of lying is much better. Falling gets the highest classification accuracy
(98.00%) and the worst classification result (66.00%) is obtained for sitting. 14.00% of
sitting are misclassified as bending and 10.00% of lying are still misclassified as a sitting.

To sum up the experimental results, with the help of slow feature analysis, the DAGSVM
is proved to be effective on dataset-II, showing much better performance. The overall

(a) (b)

(c)

Fig. 17 Confusion matrices of the three methods on dataset II. a SVM. b ELM. c Our method
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accuracy reaches 81.33% for six actions recognition. It is about 10.00% higher than that
of the FV-SVM method [3]. As for the most confounding activity (lying), our approach
achieves the best performance with a much better classification rate (68.00%) than that of
ELM (41.00%) and SVM (15.00%), respectively.

5 Conclusions

In this paper, we proposed a novel slow feature analysis based framework for fall detection
with one-dimensional feature vector sequences. Firstly, a color distortion background sub-
traction model was adopted to extract the human silhouettes. The morphological operations
were applied to refine the extraction results and to remove noise and non-human blobs. The
region of interest was covered by an ellipse as a human shape model. Six shape deformation
features were quantified from the covered silhouette, which was used for representing differ-
ent human postures at a given moment of time. Secondly, the basic slow feature analysis
algorithm with a supervised learning strategy was developed to analyze the shape feature
sequences. The learned slow feature functions could encode discriminative information of
the fall incident. Finally, the transformed slow features of the fall sequences were aggregated
into a classification vector by the accumulated squared derivative scheme. The falls were
classified after the accumulated squared derivative features had been fed into the DAGSVM.
Our experiments also verified that, compared with other state-of-the-art methods, the
proposed method could achieve a satisfying accuracy on the two public datasets.

Nevertheless, the performance of our method still largely depends on the accuracy of the
background subtraction technique, even though we utilize only six features extracted from
a silhouette. Besides, the two datasets used here just provide simulated falls and other few
daily activities, which constitute only a small part of real world interactions. Hence, our
further work is to investigate the applicability of our method to the detection of real falls
along with complex daily activities.
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