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Abstract In this paper, we propose a new method for image classification by the content in
heterogeneous databases. This approach is based on the use of new series of separable discrete
orthogonal moments as shape descriptors and the Support Vector Machine as classifier. In fact,
the proposed descriptors moments are defined from the bivariate discrete orthogonal polyno-
mials of Charlier-Meixner which are invariant to translation, scaling and rotation of the image.
We also propose a new algorithm to accelerate the image classification process. This algorithm
is based on two steps: the first step is the fast computation of the values of Charlier-Meixner
polynomials by using a new recurrence relationship between the values of polynomials
Charlier-Meixner. The second one is the new image representation and slice blocks. The
proposed method is tested on three different sets of standard data which are well known to
computer vision: COIL-100, 256-CALTECH and Corel. The simulation results show the
invariance of the discrete orthogonal separable moments of Charlier-Meixner against the
various geometric transformations and the ability for the classification of heterogeneous
images.
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1 Introduction

The use of image moments constitutes one of the hotly debated issues in pattern recogni-
tion and image classification. The basic idea of the theory of moments is the projection of
the data space on a complete orthogonal basis to often extract useful information. These
latter are extracted as the projection coefficients called moments. Each family of moment
is directly related to the basis of used projection. We can distinguish between three types of
moments: the non-orthogonal moments as the geometric moments [16] and the complex
moments [1], the continuous orthogonal moments as Legendre [47], Zernike [21], Pseudo-
Zernike [48], Gegenbauer [15] and Fourier-Mellin [59] and the discrete orthogonal
moments as Tchebichef [35], Krawtchouk [52], Racah [62], Charlier [12] and Hahn
[43]. The computation of non-orthogonal moments and the continuous orthogonal mo-
ments requires appropriate transformations of the coordinates of the image in the interval
of definition of the polynomials and also of the integrals by finite summations as well,
because the function of the image intensity is always defined on a discrete domain. These
approximations cause the discretization errors [25]. To definitely eliminate these errors,
the researchers proposed using a discrete orthogonal moment based on the discrete
orthogonal polynomials as the polynomials of Tchebitchef, Krawtchouk, Racah, Dual-
Hahn, Hahn, Charlier and Meixner for image analysis. The use of this type of polynomials
as basis functions for the computation of moments of the image eliminates the need for
numerical approximation and satisfies exactly the orthogonality property in discrete space
coordinates of the image. This property makes the discrete orthogonal moment higher than
the conventional continuous orthogonal moment in terms of the capacity of the image
representation. Recently, a novel set of discrete orthogonal moments based on the bivariate
discrete orthogonal polynomials have been introduced into the field of the image analysis
and pattern recognition [13, 49, 61]. These series of bivariate polynomials are solutions of
the second-order partial differential Eqs [6, 8, 23].. The use of discrete orthogonal
moments is limited by the high computational cost and the propagation of a numerical
error in the computation of polynomials values [64]. To limit this error, the scientists apply
the recurrence relation with respect to the variable x instead of the order n in the
computation of the discrete orthogonal polynomials [64]. Thus, To reduce the computa-
tional time cost of moments, several algorithms are introduced in literature [9, 14, 37, 38,
40, 41, 45, 46].

Although most work has focused on the discrete moments based on the bivariate discrete
orthogonal polynomials of Tchebichef-Krawtchouk [61], Tchebichef-Hahn [61], Hahn-
Krawtchouk [61], Charlier-Tchebichef [12], Charlier-Krawtchouk [12] and Charlier-Hahn
[12], no attention has been paid to the study of discrete orthogonal moments based on the
bivariate discrete orthogonal polynomials of Charlier-Meixner.

In this paper, we will apply the discrete orthognal moments for the classification problem of
images in heterogeneous bases. The classification of image passes by the selection of the
primitives, the latter is an important step in any pattern recognition system. This selection of
primitives is considered a combinatorial optimization problem and has been researched in
many disciplines. Its main purpose is to reduce their number by eliminating redundant and
irrelevant primitives from the recognition system. The second objective of this selection of
primitives is also to maintain and / or improve the performance of the classifier used by the
recognition system. Invariant moments are used to solve this type of primitive selection
problem in pattern recognition.
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In this paper, we will present a new application of discrete orthogonal moments in the field
of classification. This new method is applied to solve the problem of selecting a subset of
primitives in a pattern recognition problem. The latter is based on the use of slice and block
image representation to extract the primitives of each image from the blocks of each slice, it
allows us to improve the classification result and speed up the process of pattern recognition
without affecting the property of invariance. In our case, we use the discrete orthogonal
moments based on the product of Charlier and Meixner discrete orthogonal polynomials
which are denoted Charlier-Meixner moments (CMM). We also present an approach to
accelerate the time computation of CMM based on two notions:

& The methodology of the image block representation (IBR) and the image slices represen-
tation (ISR): In this method the image is decomposed into series of non-overlapped binary
slices and each slice is described by a number of homogenous rectangular blocks. Once the
image is partitioned into slices and blocks, the computation of CMM can be accelerated as
the moments can be computed from the blocks of each slice.

& The computation of the bivariate discrete orthogonal polynomials of Charlier-Meixner by
using the recurrence relation with respect to the variable x instead of the order n.

We devote the rest of this paper to image classification systems by the content in
heterogeneous databases. The images in this type basis belong to different concepts and are
heterogeneous content. For this reason, we will test the ability of discrete orthogonal moments
of Charlier-Meixner (CMM) for image classification in heterogeneous databases. For the
purpose of objects classification, it is vital that the proposed moments of CMM is independent
of rotation, scale and the translation of the image. For this, we have proposed a new set of
discrete invariant moments of Charlier-Meixner (CMMI) under translation, scaling and rota-
tion of the image. The invariant moments of Charlier-Meixner (CMMI) are derived algebra-
ically from the geometric invariant moments.

The obtained results during the selection of the primitives made it possible to reduce the
complexity of the classification. The number of primitives has been significantly reduced
compared to all the primitives extracted from the pattern recognition system while maintaining
the system recognition rate performance. A fast computational algorithm of CMMI is also
presented using the image slice representation method. In fact, we tested the ability of
classification of our descriptor CMMI compared to other descriptors of Hu invariant moments,
Charlier invariant moments (CCMI) and Meixner invariant moments (MMMI) for the three
databases COIL-100, CALTECH-256 and COREL using as classifier the support vector
machines (SVM) for number of the classes between 3 to 35. We will also compare our
classification method with classification methods based on Convolution Neural Network
(CNN), on Histograms of Oriented Gradient (HOG) and on scalable invariant characteristic
transformation (SIFT). So, the classification results show the efficiency of the CMMI in terms
of classification accuracy of images compared to those of Hu, CCMI and MMMI.

Hence, The rest of the paper is organized as follows: In Section 2, we present the work
related to our contribution. In Section 3, we present the bivariate discrete orthogonal polyno-
mials of Charlier-Meixner. Section 4 presents the fast computation of Charlier-Meixner’s
discrete orthogonal moments. Section 5 focuses on the deriving of CMMI from the geometric
moments by two methods. Section 6 provides some experimental results concerning the
invariability, the objects classification by CMMI and the support vector machine. Section 7
concludes the work.
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2 Related work

Several works have dealt with the theory of moments and their applications in the image
domain, especially for image classification. In this context, one quotes the works of Hu [16]
which extracted seven invariant primitives of the geometric moments. Chong et al. [3, 4] have
introduced an effective method to construct the translation and scale invariants of Legendre
and Zernike moment. Zhu et al. [63] have proposed a method directly based on Tchebichef
polynomials to make the translation and scale invariants of Tchebichef moments. Karakasis
et al. [20] have proposed a generalized expression of the weighted dual Hahn moment
invariants up to any order and for any value of their parameters based on a linear combination
of geometric moments. Beyond what orthogonal moments can bring to the different fields of
imagery, these can be exploited in combination with machine learning methods in other areas
of research, such as recognition actions based on collected data [27–30], or the prediction of
your career from your data on social networks [31, 39, 54], and many other possibilities of use,
the discrete orthogonal moments are well suited for decision support.

The application of moment theory in the image domain is limited by the computational time
cost of moments. To solve this problem, Spiliotis and Mertzios [46] have presented a fast
algorithm to calculate the geometric moments for binary images using the image block
representation (IBR). Hosny [14] has given a fast algorithm to calculate the geometric
moments for gray-scale images using the image slice representation. Lim et al. [26] have
presented a fast computation technique to calculate exactly Zernike moments by using
cascaded digital filter outputs, without the need to compute geometric moments.

Shu et al. [45] introduced an approach to accelerate the time computation of Tchebichef
moments by deriving some properties of Tchebichef polynomials. Sayyouri et al. have
proposed in [41] and [42] a fast method to accelerate time computation of Charlier and Hahn
moments using the image bloc representation.

For the learning problem, several works have dealt with this subject. In this context, Zechao
et al. in [58] propose a novel data representation learning algorithm by jointly exploiting image
understanding, feature learning and feature correlation. They also proposed a deep metric
learning method by exploiting the heterogeneous data structure of community-contributed
images [56, 57].

Inspired by the statistical theory of learning, the SVM support vector classifier is a binary
classification method for supervised learning. Originally, SVM relies on the existence of a
linear classifier that separates two classes into an appropriate space. Its extension to multi-class
problems is quickly highlighted. [2, 19] In addition, to allow optimal separation in non-linearly
separable cases, SVMs have proven that the use of multiple kernels generates more flexibility
and improves the interoperability of these methods [24]. Given its performance, this classifi-
cation method has become in a short period a standard tool in the state of the art for several
recognition problems, in particular heterogeneous images by the content. Within this frame-
work, Hu et al. in [17, 18, 53, 55, 60] propose the use of the support vector machine to classify
defects in steel strip surface images, to effectively recognize aerial photographs and for
categorization of fine-grained images by hierarchically locating discriminating object parts
in each image. Other works [32, 33] are focused on the recognition of semantic involvement
and the relationship between medical and medical conditions.

Recently a new series of discrete orthogonal moments is introduced by several researchers
to improve the quality of image processing either for reconstruction or for classification. Dunkl
and Xu in [6] have proposed an excellent paper of bivariate discrete orthogonal polynomials as
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a product of two families of classical discrete orthogonal polynomials with one variable. Zhu
has studied in [61] seven types of the continuous and discrete orthogonal moments based on
the tensor product of two different orthogonal polynomials with one variable. Hmimid et al.
have proposed in [12] a new set of bivariate discrete orthogonal polynomials, which are the
product of Charlier’s discrete orthogonal polynomials with one variable by Tchebichef,
Krawtchouk, and Hahn discrete orthogonal polynomials with one variable.

3 The bivariate discrete orthogonal polynomials

In this section, we present the definition and the basic properties of classical discrete orthog-
onal polynomials of two variables of Charlier-Meixner [7, 51]. The discrete orthogonal
polynomials with two variables satisfy the following second partial order difference equation.

A1;1 x; yð ÞΔ1∇ 1Pn x; yð Þ þ A1;2 x; yð ÞΔ1∇ 2Pn x; yð Þ þ A2;1 x; yð ÞΔ2∇ 1Pn x; yð Þ
þA2;2 x; yð ÞΔ2∇ 2Pn x; yð Þ þ B1 x; yð ÞΔ1Pn x; yð Þ þ B2 x; yð ÞΔ2Pn x; yð Þ ¼ λPn x; yð Þ ð1Þ

where Ai, j and Bifor i, j = 1, 2 are polynomials and λ is a real number.
The forward and the backward partial difference operatorsΔi and ∇i for i = 1, 2 are defined by

Δ1u x; yð Þ ¼ u xþ 1; yð Þ−u x; yð Þ ; Δ2u x; yð Þ ¼ u x; yþ 1ð Þ−u x; yð Þ
∇ 1u x; yð Þ ¼ u x; yð Þ−u x−1; yð Þ ; ∇ 2u x; yð Þ ¼ u x; yð Þ−u x; y−1ð Þ ð2Þ

The bivariate discrete orthogonal polynomials are constructed from the product of the
classical discrete orthogonal polynomials with one variable [7]. Using this method, we can
produce the bivariate discrete orthogonal polynomials of Charlier-Meixner.

3.1 Bivariate discrete orthogonal polynomials of Charlier-Meixner

The bivariate discrete orthogonal of Charlier-Meixner are defined as the product of the Charlier
and Meixner discrete orthogonal polynomials with one variable as follows [51]:

CMn;m x; y; a1;β;μð Þ ¼ Ca1
n xð Þ �M β;μð Þ

n yð Þ ; n ≥ 0 ;m ≥ 0 ð3Þ

where Ca1
n xð Þ is the nth discrete orthogonal polynomials of Charlier and M β;μð Þ

n xð Þ is the nth

discrete orthogonal polynomials of Meixner.
The bivariate discrete orthogonal of Charlier-Meixner are orthogonal on the set V ¼
i; jð Þ : i ∈ IN ; j ∈ INf g with respect to the weight function of the Charlier-Meixner discrete

orthogonal polynomials wC, M(x, y):

wC;M x; yð Þ ¼ wC xð Þ � wM yð Þ ð4Þ
where wC(x) is weight function of Charlier and wM(x) is weight function of Meixner.

The bivariate discrete orthogonal polynomials of Charlier-Meixner CMn, m(x, y, a1, β, μ)
satisfy the following linear partial difference equation:

xΔ1∇ 1u x; yð Þ− 1

μ−1
yΔ2∇ 2u x; yð Þ þ a1−x½ �Δ1u x; yð Þ− 1

μ−1
μ yþ βð Þ−y½ �Δ2u x; yð Þ−nu x; yð Þ ¼ 0

ð5Þ
where u(x, y) =CMn, m(x, y, a1, β, μ).
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In the next section, we will present a brief introduction to the theoretical background of
discrete orthogonal polynomials with one variable of Charlier and Meixner [22, 36].

3.2 Discrete orthogonal polynomials with one variable of Charlier and Meixner

The discrete orthogonal polynomials with one variable of Charlier Ca1
n xð Þ and MeixnerM β;μð Þ

n

xð Þ satisfy the following first-order partial difference Eq. [31].

σ xð ÞΔ∇Pn xð Þ þ τ xð ÞPn xð Þ þ λnPn xð Þ ¼ 0 ð6Þ
Where σ(x) and τ(x) are the functions of second and first degree (Table 1), respectively, λn is an
appropriate constant.

The nth discrete orthogonal polynomials with one variable of Charlier Ca1
n xð Þ and Meixner

M β;μð Þ
n xð Þ are defined by using a hypergeometric function as follows [63]:

Ca1
n xð Þ ¼ 2F0 −n;−x; 1=a1ð Þ ¼ ∑

n

k¼0
εa1k;nx

k ð7Þ

where x, n = 0, 1, 2…. N − 1 ; a1 > 0

M β;μð Þ
n xð Þ ¼ βð Þn2F 1 −n;−x;β; 1−1=μð ¼ ∑

n

k¼0
α β;μð Þ
k;n xk ð8Þ

where x, n = 0, 1, 2. . …N − 1; β > 0 and 0 < μ < 1.
The set of Charlier’s Ca1

n xð Þ� �
, Meixner’s M β;μð Þ

n xð Þ� �
discrete orthogonal polynomials

forms and a complete set of discrete basis functions with weight function satisfy the orthogonal
condition:

∑
N

x¼0
w xð ÞPn xð ÞPm xð Þ ¼ ρ nð Þδnm ð9Þ

with Pn xð Þ ¼ Ca1
n xð ÞorM β;μð Þ

n xð Þ.
where ρ(n) denotes the square of the norm of the corresponding orthogonal polynomials, w(x)
denotes the weight function and δnm denotes the Dirac function.

Table 1 Data for Charlier Ca1
n xð Þ and Meixner M β;μð Þ

n xð Þ
~Pn xð Þ Charlier Ca1

n xð Þ Meixner M β;μð Þ
n xð Þ

σ(x) x x
τ(x) a1 − x βμ − x(1 − μ)
λn n n(1 − μ)
w(x) e−a1 ax1

x!
μxΓ βþxð Þ
Γ βð Þx!

ρ(n) n!
an1

n! βð Þn
μn 1−μð Þβ

A −a1 μ
μ−1

B x − n + 1 − a1 x−xμ−nþ1−μnþμ−βμ
1−μ

C n − 1 n−1ð Þ n−2þβð Þ
1−μ

D
ffiffiffiffia1
n

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

n βþn−1ð Þ
q

E
ffiffiffiffiffiffiffiffiffiffi
a21

n n−1ð Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2

n n−1ð Þ βþn−2ð Þ
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2

n n−1ð Þ βþn−2ð Þ
q
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To avoid fluctuations in the numerical computation of Charlier and Meixner discrete
orthogonal polynomials, we use their normalized form defined as:

~Pn xð Þ ¼ Pn xð Þ
ffiffiffiffiffiffiffiffiffiffi
w xð Þ
ρ nð Þ

s
ð10Þ

The computation of the values of polynomials of Charlier and Meixner, and from their
definitions hypergeometric, requires a high cost of computing time which drives us to use a
different strategy of computation which is the recursive strategy.

3.2.1 Recurrence relation with respect to order n

As the computation of the normalized form of Charlier and Meixner polynomials by the
hypergeometric function has a great computational time cost, we use the following three-term
recurrence relations with respect to the order n [22]:

~Pn xð Þ ¼ B� D
A

~Pn−1 xð Þ− C � E
A

~Pn−2 xð Þ ð11Þ

where A,B,C,D and E are the coefficient defined in Table 1.
The two initial values of Charlier’s and Meixner’s polynomials are defined as follows:

~C
a1

0 xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
wC xð Þ
ρC 0ð Þ

s
; ~C

a1

1 xð Þ ¼ a1−x
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
wC xð Þ
ρC 1ð Þ

s
ð12Þ

and

~M
β;μð Þ
0 xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
wM xð Þ
ρM 0ð Þ

s
; ~M

β;μð Þ
1 xð Þ ¼ β þ x−

x
μ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
wM xð Þ
ρM 1ð Þ

s
ð13Þ

3.2.2 Recurrence relation with respect to variable x

In order to extract the recurrence formula with respect to the variable x we will use the partial
difference equations and the forward and backward finite difference operators. The recurrence
relations of Charlier’s and Meixner’s discrete orthogonal polynomials with respect to the
variable x can be obtained through Eqs. (2) and (6) as follows:

~pn xð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
w xð Þp

σ x−1ð Þ þ τ x−1ð Þ

� 2σ x−1ð Þ þ τ x−1ð Þ−λnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w x−1ð Þp ~pn x−1ð Þ− σ x−1ð Þ þ τ x−1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w x−2ð Þp ~pn x−2ð Þ
" #

ð14Þ

The initial values of recurrence relation with respect to the variable x are defined as:

~C
a1

n 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
wc 0ð Þ
ρc nð Þ

s
; ~C

a1

n 1ð Þ ¼ a1−n
a1

ffiffiffiffiffiffiffiffiffiffiffiffi
wc 1ð Þ
wc 0ð Þ

s
~C
a1

n 0ð Þ ð15Þ
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and

~M
β;μð Þ
n 0ð Þ ¼ βð Þn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wM 0ð Þ
ρM nð Þ

s
; ~M

β;μð Þ
n 1ð Þ ¼ μ nþ βð Þ−n

μβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wM 1ð Þ
wM 0ð Þ

s
M β;μð Þ

n 0ð Þ ð16Þ

4 Discrete orthogonal moments of Charlier-Meixner

The two-dimensional (2-D) discrete orthogonal moments of Charlier-Meixner (CMM) of order
(n +m) for an image intensity function f(x, y) with size M ×N are defined as

CMMnm ¼ ∑
M−1

x¼0
∑
N−1

y¼0
CMnm x; y; a1;β;μð Þ f x; yð Þ ð17Þ

where CMnm(x, y, β, μ, a1) are the bivariate discrete orthogonal polynomials used as the
moment basis set.

Using the orthogonal property of discrete orthogonal polynomials, Eq.(17) also leads to the
following inverse moment transform:

f x; yð Þ ¼ ∑
M−1

n¼0
∑
N−1

m¼0
CMMnmCMnm x; y; a1;β;μð Þ ð18Þ

The computation of Charlier-Meixner discrete orthogonal moments using Eq.(17) seems to
be a time consuming task mainly due to two factors. First, the need of computing a set of
complicated quantities for each moment order. Second, the need to evaluate the polynomial
values for each pixel of the image. So, to accelerate the time computation of discrete
orthogonal moments, we propose a new computation method of moments by describing an
image with a set of blocks instead of individual pixels. Two algorithms of the image block
representation: IBR for binary images [12, 43] and ISR for gray-scale images are applied. [13]

In the following two subsections, we will present a new formula for fast computing the
discrete orthogonal moments of Charlier-Meixner by using the image block representation for
binary and the image slice representation for gray-scale images.

4.1 For gray-scale images

The approach of the image slice representation (ISR) decomposes a gray-scale image f(x, y) in
series of slices of two levels fi(x, y)

f x; yð Þ ¼ ∑
L

i¼1
f i x; yð Þ ð19Þ

where L is the number of slices and fi(x, y) the intensity function of the ith slice. After the
decomposition of the gray scale image into several slices of two levels, we can apply the
algorithm IBR [46]. The gray-scale image fi(x, y) can be redefined in terms of blocks of
different intensities as follows:

f x; yð Þ ¼ f i x; yð Þ; i ¼ 1; 2;…; Lf g ¼ bij; j ¼ 1; 2;…;Ki−1
� � ð20Þ

where bij is the block of the edge i and Ki is the number of image blocks with intensity.
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The fast discrete orthogonal moments of Charlier-Meixner for a gray-scale image f(x, y) is
given by:

CMMnm ¼ ∑
N−1

x¼0
∑
N−1

y¼O
CMnm x; y; a1;β;μð Þ f x; yð Þ

¼ ∑
N−1

x¼0
∑
N−1

y¼O

~C
a1

n xð Þ ~M
β;μð Þ
m yð Þ ∑

L

i¼1
f i x; yð Þ

¼ ∑
L

i¼1
∑
N−1

x¼0
∑
N−1

y¼O

~C
a1

n xð Þ ~M
β;μð Þ
m yð Þ f i x; yð Þ

¼ ∑
L

i¼1
f i ∑

N−1

x¼0

~C
a1

n xð Þ ∑
N−1

y¼O

~M
β;μð Þ
m yð Þ

¼ ∑
L

i¼1
f i ∑

Ki−1

j¼0
∑

x¼x1;b j

x¼x1;b j

~C
a1

n xð Þ
" #

∑
y¼y1;b j

y¼y1;b j

~M
β;μð Þ
m yð Þ

" #
ð21Þ

Note that, the binary images are particular cases of gray-scale images for L = 1.

5 Invariant moments of Charlier-Meixner

To use the Charlier-Meixner’s moments for the objects classification, it is indispensable that
these moments must be invariant under rotation, scaling, and translation of the image.
Therefore to obtain the translation, scale and rotation invariants moments of Charlier-
Meixner (CMMI), we adopt the same strategy used by Sayyouri et al., for Hahn’s moments
in [43]. Thus, we derive the CMMI through the geometric moments using the direct and the
fast method based on the image slice representation methods.

5.1 Geometric invariant moments

For a digital image f(x, y) with size M ×N, the geometric moments GMnm are defined using
discrete sum approximation as:

GMnm ¼ ∑
N−1

x¼0
∑
N−1

y¼0
xnym f x; yð Þ ð22Þ

The set of geometric invariant moments (GMI) by rotation, scaling and translation can be
written as [16]:

GMInm ¼ GM−γ
00 ∑

N−1

x¼0
∑
N−1

y¼0
x−x
� �

cos θ þ y−y
� �

sin θ
h in

y−y
� �

cos θ− x−x
� �

sin θ
h im

ð23Þ

with

x ¼ MG10

MG00
; y ¼ MG01

MG00
; γ ¼ nþ m

2
þ 1; θ ¼ 1

2
tan−1

2μ11

μ20−μ02
ð24Þ

The (n +m) th central geometric moments is defined in [16] by:

μnm ¼ ∑
N−1

x¼0
∑
N−1

y¼0
x−x
� �n

y−y
� �m

f x; yð Þ ð25Þ
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5.2 Computation of Charlier-Meixner’s invariant moments

The Charlier-Meixner’s moments of f(x, y) can be written in terms of geometric moments
as:

CMMnm ¼ ρc nð ÞρM mð Þ½ �−1=2 ∑
M−1

x¼0
∑
N−1

y¼0
ca1n xð ÞM β;μð Þ

m yð Þ f x; yð Þ

¼ ρc nð ÞρM mð Þ½ �−1=2 ∑
n

i¼0
∑
m

j¼0
εa1i;nα

β;μð Þ
j;m GMij

ð26Þ

where the nth order of Charlier and Meixner discrete orthogonal polynomials are given
by:

Ca1
n xð Þ ¼ ∑

n

k¼0
εa1k;nx

k and M β;μð Þ
n xð Þ ¼ ∑

n

k¼0
α β;μð Þ
k;n xk ð27Þ

The Charlier-Meixner’s invariant moments (CMMI) can be expanded in terms of GMI Eq.
(23) as follows:

CMMInm ¼ ∑
n

i¼0
∑
m

j¼0
εa1i;nα

β;μð Þ
j;m Vi; j ð28Þ

where εa1i;n and α
β;μð Þ
j;m are the coefficients relative to Eq.(27) and Vi, j are the parameters defined

as:

Vnm ¼ ∑
n

q¼0
∑
m

p¼0

n
p

� �
m
q

� �
N �M

2

� � pþqð Þ=2ð Þþ1

� N
2

� �n−p

� M
2

� �m−p

� GMIpq ð29Þ

5.3 Fast computation of Charlier-Meixner’s invariant moments

In order to accelerate the time computation of CMMI, we will apply the algorithms of the
image slice representation described previously.

By using the binomial theorem, the GMI defined in Eq. (23) can be calculated as
follows:

GMInm ¼ GM−γ
00 ∑

n

i¼0
∑
m

j¼0

n
i

� �
m
j

� �
cos θð Þiþ j sin θð Þnþm−i− j � −1ð Þm− jμmþi− j;nþ j−i

¼ ∑
n

i¼0
∑
m

j¼0

n
i

� �
m
j

� �
cos θð Þiþ j sin θð Þnþm−i− j � −1ð Þm− jηmþi− j;nþ j−i

ð30Þ

with ηnm are normalized central geometric moments defined as:

ηnm ¼ μnm

GMγ
00

ð31Þ
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By applying the IBR algorithm, the normalized central moments defined in Eq. (31) can be
calculated as follows:

ηnm ¼ μnm

GMγ
00

¼ 1

GMγ
00

∑
N−1

x¼0
∑
M−1

y¼0
x−x
� �n

y−y
� �m

f x; yð Þ

¼ 1

GMγ
00

∑
N−1

x¼0
∑
M−1

y¼0
x−x
� �n

y−y
� �m

∑
s

k¼1
f k x; yð Þ

� �

¼ 1

GMγ
00

∑
S

k¼1
f k � ∑

N−1

xk¼0
∑
M−1

yk¼0
x−x
� �n

y−y
� �m

¼ 1

GMγ
00

∑
S

k¼1
f k � ∑

k

j¼0
∑

xk¼x1;b j

x2;b j

x−x
� �n !

∑
yk¼y1;b j

y2;b j

y−y
� �m !" #

¼ 1

GMγ
00

∑
S

k¼1
f k � ηknm

ð32Þ

where

ηknm ¼ ∑
k

j¼0
∑

xk¼x1;b j

x2;b j

x−x
� �n !

∑
yk¼y1;b j

y2;b j

y−y
� �m !" #

ð33Þ

and fk ; k = 1, 2, . .…S is the slices intensity functions, S is the number of slices in image f. bj ;
j = 1, 2,.…k is the block in each slice. The vectors x1;bi ; y1;bi

	 

and x2;bi ; y2;bi

	 

are respectively

the coordinates in the upper left and lower right block bj.
Using the previous equations Eq.(31) and Eq.(33), the GMI of Eq.(30) can be rewritten as:

GMInm ¼ ∑
n

i¼0
∑
m

j¼0

n
i

� �
m
j

� �
cosθð Þiþ j sinθð Þnþm−i− j � −1ð Þm− jηmþi− j;nþ j−i

¼ 1

GMγ
00

∑
n

i¼0
∑
m

j¼0

n
i

� �
m
j

� �
cosθð Þiþ j sinθð Þnþm−i− j � −1ð Þm− j ∑

S

k¼1
f k � ηkmþi− j;nþ j−i

¼ 1

GMγ
00

∑
S

k¼1
f k ∑

n

i¼0
∑
m

j¼0

n
i

� �
m
j

� �
cosθð Þiþ j sinθð Þnþm−i− j � −1ð Þm− j � ηkmþi− j;nþ j−i

ð34Þ

Therefore the Charlier-Meixner invariant moments CMMI under translation, scaling and
rotation of the image can be obtained from the equations Eqs. (28), (29) and (34).

6 Results and simulations

In this section, we give experimental results to validate the theoretical results developed in the
previous sections. This section is divided into four subsections. In the first subsection, the
invariability of the proposed discrete orthogonal moments of Charlier-Meixner under three
transformations: translation, scale and rotation is shown. In the second, we test the precision of
the classification of the CMMI invariant moments for four image databases. The results of our
classification methods are compared to other moment descriptors for the classification of
objects. In the third subsection, we will compare the proposed classification method with
classification methods based on non-moment descriptors such as HOG, SIFT and CNN
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features. In the fourth subsection, we will compare the calculation time of the Charlier-
Meixner invariant moments by two methods: the direct method and the proposed fast method.

6.1 Invariability

In this section, we test the invariability of Charlier-Meixner invariant moments CMMI under
the translation, the scale and the rotation of the image. For this, we will use a gray-scale image
BCar^ (Fig. 1) whose size is 128 × 128 pixels chosen from the well-known Columbia database
(http://www.cs.columbia.edu/CAVE/databases). This image is scaled by a factor varying from
0.5 to 1.5 with interval 0.05, rotated from 00 to 3600 with interval 100 and translated by a
vectors varying from (−5,-5) to (5,5). Each translation vector consists of two elements which
represent a vertical and a horizontal image shift respectively. All invariant moments of CMMI
is calculated up to order two for each transformation. Finally, in order to measure the ability of
the CMMI to remain unchanged under different image transformations, we define the relative
error between the two sets of invariant moments corresponding to the original image f(x, y) and
the transformed image g(x, y) as:

ECMM f ; gð Þ ¼ CMMI fð Þ−CMMI gð Þk k
CMMI fð Þk k ð35Þ

where ‖.‖ denotes the Euclidean norm and CMMI(f); CMMI(g) are invariant moments of
Charlier-Meixner for the original image f and the transformed imageg.

Figure 2 compares the relative errors between the proposed invariant moments of CMMI,
the invariant moments of Meixner MMMI [44] and the invariant moments of Charlier CCMI
[12] relative to rotation of the image. It can be seen from this figure that the CMMI is more
stable under rotation (very low relative error) and has a better performance than the CCMI and
MMMI whatever the rotational angle.

Figure 3 shows the relative errors between the CMMI, CCMI, and MMMI relative to scale.
The figure shows that, in most cases, the relative error of CMMI is more stable and lower than
the CCMI and MMMI.

Figure 4 shows the relative errors between the MMMI, CCMI, and CMMI relative to
translation. The figure shows again that, in most cases, the relative error of CMMI is more stable

Fig. 1 Car gray-scale image
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and has a better performance than the CCMI and MMMI, whatever the translation vectors. Note
that, the results are plotted in Figs. (2, 3 and 4) for the case a1 = 80 for the Charlier’s polynomials
and β = 60, μ = 0.5 for Meixner’s polynomials.

The results show that the CMMI is more stable under the translation, the scale and the
rotation of the image than the CCMI, and MMMI.

To test the robustness to noise, we have respectively added a white Gaussian noise (with
mean μ = 0 and different variances) and salt and pepper noise (with different noise densities).
Results are respectively depicted in Figs. 5 and 6. It can be seen that, if the relative error
increases with the noise level, the proposed descriptors of CMMI are more robust to noise than
CCMI and MMMI.
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Fig. 2 Comparative study of relative errors between the rotated image and the original image by MMMI, CCMI
and CMMI
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Fig. 3 Comparative study of relative errors between the scaled image and the original image by MMMI, CCMI
and CMMI
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6.2 Classification

In this section, we will provide experiments to validate the precision of the classification of
objects using the CMMI. For this, we will put in place the characteristic vectors defined by:

V ¼ CMMIij
� �

; i; j ¼ 0; 1; 2 ð36Þ
To perform the classification of objects to their appropriate classes, we use classifiers based

on support vector machines SVM.
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Fig. 4 Comparative study of relative errors between the translated image and the original image by MMMI,
CCMI and CMMI
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Fig. 5 Comparative study of relative errors between the corrupted image (salt & pepper) and the original image
by MMMI, CCMI and CMMI
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6.2.1 Classifier support vectors machines (SVM)

The classifier (SVM) was introduced by Vladimir Vapanik as a binary classification method
for supervised learning [50]. This classification method has become in a short time a standard
tool in the state of the art for several recognition problems. Initially, SVM relies on the
existence of a linear classifier that separates two classes into an appropriate space. In addition,
to allow optimal separation in non-linearly separable cases, SVMs have proven that the use of
multiple nuclei generates more flexibility and improves the interoperability of these methods
[11]. For two given classes of images, the goal of SVMs is to find a linear classifier that
separates images while maximizing the distance between these two classes. This is a hyper-
separation plan. The images closest to this hyper-plane, that is to say the most difficult to
classify, are called support vectors. It is obvious that there is a multitude of valid hyper-plans
but the remarkable property of the SVMs is that this hyper-plan must be optimal. Formally, this
amounts to looking for a hyper-plane whose minimal distance to the different support vectors
is maximal. There are two cases of SVM models: the linearly separable case and the non-
linearly separable cases. The most used techniques for extending SVM to multi-class problems
are based on BOne- Against -One^ or BOne- Against -All^ algorithms.

In our case, we will use the One-Against-All algorithm to implement the classification. And
as descriptors, we use the invariant moments of Charlier-Meixner instead of using the images,
we define the classification accuracy as:

η ¼ Number of correctly classified images

The total of images used in the test
� 100% ð37Þ

To validate the precision of the classification of objects using the CMMI, we well use
three image databases. These databases are standard ones used by the scientific commu-
nity during the testing and the validation of their approach and are freely available on the
Internet. Each image database has defined the classes where each image belongs to one
class. The first database is the Columbia Object Image Library (COIL-100) database
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Fig. 6 Comparative study of relative errors between the corrupted image (white Gaussian) and the original
image by MMMI, CCMI and CMMI
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(http://www.cs.columbia.edu/CAVE/databases) (Fig. 7). The total number of images is
7200 distributed as 72 images for each object. All images of this database have the size
128 × 128. The second image database is CALTECH-256 database (http://www.vision.
caltech.edu/Image_Datasets) (Fig. 8). This latter is composed of images from 256
different categories; it contains 80 to 827 images by a category. The total number of images
contained in this database is 30,608 images of size 300 × 300 pixels. This database is known by
a large variability between and within classes. The third image database is the COREL database
(http://wang.ist.psu.edu/docs/home.shtml). The total number of images is 6000 of size
256 × 384 distributed as 29 categories (Fig. 9). These databases are considered as
references for specialists working on image classification in heterogeneous databases.
Samples of different classes of images contained in the three databases are shown in
Figs. 7, 8 and 9. We tested the ability of the classification of our descriptor CMMI
compared to other descriptors of Hu’s invariant moments [16], Charlier’s invariant
moments (CCMI) [12] and Meixner’s invariant moments (MMMI) [44] for the three
databases.

The three figures (Figs. 10, 11 and 12) show the results of the classification of three image
databases COIL-100, CALTECH-256 and COREL using as descriptors the moment invariants
of Charlier-Meixner and as a classifier the support vector machines SVM for the number of the
classes between 3 to 35. The classification results are compared with the results obtained by
Hu [16], Charlier (CCMI) [12] and Meixner (MMMI) [44] invariant moments.

The classification results (Figs. 10, 11 and 12) show the efficiency of the CMMI in terms of
classification accuracy of images, compared to those of Hu [16], CCMI [12] and MMMI [44].
Our experiments show that the proposed CMMI descriptors improve the accuracy of image
classification in heterogeneous databases compared to other descriptors. However, the accu-
racy of the conventional method is generally proportional to the number of classes. In fact, for
the database COIL-100, accuracy is more than 90%. Similarly, for the databases of
CALTECH-256 and COREL, the accuracy is over 60%. This comparison results show the

Fig. 7 Collection of Columbia objects
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effectiveness and the robustness of the proposed moments relative to other moments for three
image database and for different classes.

6.3 Comparison of classification methods

In this section, we will compare our method of classification based on the shape
descriptors which are invariant moments of CMMI with the classification method
based on the descriptors based on Convolution Neural Network (CNN) [10], on
Histograms of Oriented Gradient (HOG) [5] and on the Scale-Invariant Feature Trans-
form (SIFT) [34].

The discriptors CNN is a hierarchical deep learning architecture. It is based on repeated
convolutional operations which repeatedly filter the image at each stage. The filters are
trainable, that is, they learn to adapt to the task at hand during learning.

The discriptors HOG is based on first order image gradients. The image gradients are
pooled into overlapping oriention bins in a dense manner.

The discriptors SIFT is Based on first order gradients, it is evaluated around scale invariant
feature points obtained using the difference of gaussian key point detector.

To assess the individual discriminant power of each of these characteristics, we have
performed the tests of classification on two heterogeneous image databases COREL

Fig. 8 Collection of CALTECH-256 objects
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Fig. 9 Collection of Corel objects
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Fig. 10 Classification results of Columbia (COIL-100) database

23624 Multimed Tools Appl (2018) 77:23607–23631



(http://www.vision.caltech.edu/Image_Datasets) and CALTECH-256 (http://wang.ist.psu.
edu/docs/home.shtml).

In this test, four sub-image databases, consisting respectively of 3, 7, 10 and 20 classes are
used from the COREL database and the CALTECH-256 database. The performance of
classification corresponding to each model, for the different sub databases used, are measured
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Fig. 11 Classification results of Caltech database
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Fig. 12 Classification results of Corel database
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using simple classifiers based on Euclidean distances. Values of the accuracy of the recognition
of assessed models for the four sub-bases of the COREL database and the CALTECH-256 are
presented in Tables 2 and 3. The best and worst performances in these tables are shown in bold
for the different sub- databases of the used images. The both Tables 2 and 3 show that the
illustrated performances of classification well vary obviously depending on the different used
characteristics. The performances of classification of a model of a given characteristic vary in
terms of different sub databases of the used images. This proves that the discriminating power
of each feature is not absolute, but it varies considerably depending on the contents of the
considered image.

According to Tables 2 and 3, the descriptors of the shape of CMMI is the most efficient
among the various used CNN, HOG and SIFT for the classification of sub-bases of COREL
and CALTECH-256 with 3, 7, 10 and 20 classes.

Finally we can see that among all the extracted features: CNN, HOG, SIFT and CMMI the
descriptors of the shape of CMMI are often the most relevant that the descriptors of CNN,
HOG and SIFT.

6.4 Computational time

In this sub-section, we will compare the computational time of Charlier-Meixner’s
invariant moments by two methods: the direct method described in sub-section 6.2

Table 2 The classification rate of the sub-bases of COREL database by using the different features CNN, HOG,
SIFT and CMMI

Image subsets CNN HOG SIFT CMMI

3 clusters set 0,9100 0.9250 0.9465 0.9620
7 clusters set 0.7060 0.7420 0.7532 0.8250
10 clusters set 0.6200 0.6400 0.6400 0.7600
20 clusters set 0.5500 0.5650 0.5800 0.6540

Table 3 The classification rate of the sub-bases of CALTECH-256 database by using the different features
CNN, HOG, SIFT and CMMI

Image subsets CNN HOG SIFT CMMI

3 clusters set 0,9200 0.9300 0.9465 0.9650
7 clusters set 0.6960 0.7020 0.7132 0.8425
10 clusters set 0.6300 0.6400 0.6500 0.7700
20 clusters set 0.5400 0.5550 0.5600 0.6450

(a) (b) (c) (d) (e)
Fig. 13 Set of test binary images a Car, b Duckc Box, d Cat and e Objet
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and the proposed fast method based on the image slice representation defined previ-
ously in section 6.3. For this, we will measure the computational time of the
characteristic vector defined in equation Eq. (36) by two methods. To compare the
two computational methods we will use the execution time improvement ratio (ETIR)
as a criterion. This ratio is defined as ETIR = (1 − Time1/Time2) × 100, where Time1
and Time2 are the execution time of the first and the second methods. ETIR = 0 if
both execution times are identical.

In the this experiment, a set of five gray-scale images with a size of 128 × 128
pixels, shown in Fig. 13, selected from the Columbia Object Image Library (COIL-
100) database [52] were used as test images. The computational processes are
performed for each of the five images where the average times and execution-time
improvement ratio (ETIR) are included in Table 4 for CMMI invariant moments using
the proposed method descriped by the Eq. (28) and the direct method descriped by
the Eq. (34). The result indicates again that our proposed method has a better
performance than the direct method. Note that the algorithm was implemented on a
PC Intel Core i5 2.40 GHz, 4GB of RAM.

The table shows that the proposed method is faster than the direct method and the
saving of time reaches 60% because the computation of discrete orthogonal invariant
moments CMMI proposed by the proposed method depends solely on the number of
blocks and slices on the other hand the computation of the moments by the direct
method depends on all the image.

7 Conclusion

In this paper, we have proposed a new method for the classification of the objects. This
method is performed using a new set of discrete orthogonal moments of Charlier-Meixner
and the image slice representation. Furthermore, we have derived a new set of Charlier-
Meixner’s invariant moments from the geometric invariant moments of each block in each
slice of the image. Moreover, the accuracy of classification of the proposed CMMI in the
classification of the object is carried out for three image databases. Hence, the classifica-
tion results by our descriptor CMMI are better than that of Hu, CCMI and MMMI. In
addition, our classification method is also better than other methods non-moments like the
CNN, HOG and SIFT features. So, these moments have a desirable image representation
capability and can be useful in the the recognition domain. In order to reduce the
calculation cost of the Charlier-Meixner moments when classifying image databases
which contains a large number of classes, we propose to study the reduction of the
characteristic vector in the next work.

Table 4 Average times and reduction percentage for CMMI invariant moments of the five images

Image Direct method Proposed method ETIR %

Cat 0,3678 0,1456 60,41%
Cup 0,3456 0,1335 61,37%
Car 0,3718 0,1546 58,42%
Frog 0,3775 0,1521 59,71%
Duck 0,3605 0,1496 58,50%
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