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Abstract As one of the most significant image local features, corner is widely utilized
in many computer vision applications. A number of contour-based corner detection algo-
rithms have been proposed over the last decades, among which the chord-to-point distance
accumulation (CPDA) corner detector is reported to produce robust performance in corner
detection, especially compared with curvature scale-space (CSS) based corner detectors,
which are sensitive to local variation and noise on the contour. In this paper, we investi-
gate the CPDA algorithm in terms of its limitations, and then propose the altitude-to-chord
ratio accumulation (ACRA) corner detector based on CPDA approach. Altitude-to-chord
ratio is insensitive to the selection of chord length compared with chord-to-point distance,
which allows us utilize a single chord instead of the three chords used in CPDA algorithm.
Besides, we replace the maximum normalization used in CPDA algorithm with the linear
normalization to avoid the uneven data projection. Numerical experiments demonstrate that
the proposed ACRA corner detection algorithm outperforms the CPDA approach and other
seven state-of-the-art methods in terms of the repeatability and localization error evaluation
metrics.

Keywords Altitude-to-chord ratio accumulation · Contour-based corner detection ·
Low-level feature detection

1 Introduction

As one of the most significant local features of images, corners are frequently utilized
in many computer vision applications, such as scene analysis, 3D reconstruction, image
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retrieval [10], camera calibration and saliency detection [11], to name just a few. Corner
detection algorithms of gray images can be divided into three kinds mainly: contour-based
[1, 3, 4, 7, 9, 12, 14, 15, 17–19, 22, 24–32], gradient-based [8, 16, 21] and template-based
[20, 23]. Compared with gradient-based and template-based corner detectors, contour-based
corner detectors have some specific applications for their low rate of detection error.

In the field of contour-based corner detection, corner is usually defined as the point with
local maximal curvature on the contour or the intersection point of two line contours in
images. Each point on the contour has a calculated corner response value which reflects
the sharpness of the curve changes at that location. For both single-scale and multi-scale
contour-based corner detectors, what really counts is how to measure the corner response
function effectively, since it usually decides the performance and computational complexity
of corner detectors.

Plenty of contour-based corner detectors have been proposed over the last few decades
and the most classical one is the CSS [15] corner detector. Mokhtarian proposed curvature
scale-space (CSS) corner detector based on curvature scale-space technique and it became
the landmark algorithm in this field. After that, various CSS based corner detectors were
proposed, making certain improvements based on the original CSS detector, such as ECSS
[14], ACSS [9], ARCSS [3], DCSS [32] andMSCP [27]. For instance, Zhong et al. proposed
direct curvature scale-space (DCSS) algorithm [32] as a derivative technique of CSS to
decrease the computational complexity.

All of these CSS based corner detectors utilized the curvature as the corner response
value, but as described in [1], the curvature is very sensitive to the local variation and
noise on the curve. Hence, researchers also proposed various contour-based corner detec-
tors which apply other mechanisms such as geometric relations between the points on the
contour to extract corners [1, 4, 24, 28]. Among those methods, a corner detector named
CPDA [1] using chord-to-point distance accumulation to measure the corner response value
is reported to have robust performance compared with other contour-based corner detectors
[1, 2, 4–6]. But there still are some drawbacks. The first one is the maximum normaliza-
tion utilized in CPDA corner detector, since the normalized corner response function cannot
reflect the curvature of contour when the corner response values on the contour are almost
equal, such as the contour of straight-line or circle. Besides, in CPDA corner detector, three
different values of chord parameter are utilized to calculate the corner response value, which
is computationally expensive. Last but not least, the chord-to-point distance used in CPDA
detector cannot well reflect the curvature of the contour because the distance is closely
related to the selection of chord length.

In this paper, we overcome these drawbacks in CPDA corner detector and propose a
new corner detector named altitude-to-chord ratio accumulation (ACRA) corner detector
on the basis of CPDA detector. Firstly, we utilize the altitude-to-chord ratio which is insen-
sitive to the selection of chord length to measure the corner response degree of contour
points. Then a linear normalization is adopted to replace the maximum normalization used
in CPDA detector, which projects the corner response value into the range [0, 1]. Finally,
instead of using three different values of chord parameter in CPDA corner detector, we just
utilize a single chord length parameter to calculate the corner response value because the
measurement proposed by us is insensitive to the selection of the chord length. Numerical
experiments demonstrate that our proposed ACRA corner detector outperforms CPDA and
other seven state-of-the-art methods.
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Fig. 1 The overall flowchart of CPDA and ACRA corner detection algorithms

The rest of this paper is organized as follows. Introduction of the CPDA corner detec-
tion algorithm is described in Section 2. The proposed ACRA approach based on CPDA
algorithm is presented in Section 3. Section 4 presents the performance analysis and
result discussion in terms of two evaluation datasets and two evaluation metrics. Finally,
conclusions are presented in Section 5.

2 CPDA corner detection algorithm

CPDA algorithm was proposed by Awrangjeb et al. [1], in which the authors theoretically
analyzed the shortcomings of existing contour based corner detection algorithms, especially
for CSS based corner detection algorithms, and introduced the corner response function
based on the chord-to-point distance accumulation technique.

For various contour based corner detection algorithms, as shown in Fig. 1, the key point
lies in the calculation of the corner response function, which directly determines the perfor-
mance of the algorithm. For a contour Γ shown in Fig. 2 , it is made up of various points P1,
P2, P3, · · · , Pn, where P1 is the starting point and Pn is the terminal point. Take the point
Pk as an example. As for a certain chord length parameter L, we take Pk as the beginning
and count backward L numbers of points along the curve so we can get the point Pk−L.
Likewise, we count forward one point along the curve so we can get the point Pk+1. Then
we calculate the distance between point Pk to the chord Pk−L+1Pk+1, and the distance is
marked as dk,k−L+1. Next we move the two end-points for one point along the curve then

P1P2P3

Pn

Pk

Pk+4

Pk+7

Pk-L+7

Pk-L+4

dk, k-L+7 dk, k-L+4

Fig. 2 Chord-to-point distance accumulation technique for a chord length L = 10
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we can also get the distance dk,k−L+2. We calculate all the distances until one of the two
end-points is Pk . The summation of all the distances is the distance accumulation hL(k).
The process can be represented as

hL(k) =
k−1∑

i=k−L+1

dk,i (1)

The main steps of CPDA algorithm can be summarized as:

(1) Utilize Canny algorithm to detect the edges of images and do some basic preprocessing
so as to get the image contours and T-corners [1].

(2) Calculate the chord-to-point distance accumulation hL(k) based on (1) under three
different chord length parameters L as 10, 20, 30, and perform maximum normaliza-
tion

h′
L(k) = hL(k)

max (hL)
(2)

Then multiply three distance accumulation values as the final corner response value

H(k) = h′
10(k) × h′

20(k) × h′
30(k) (3)

(3) Choose those points with local maximal value of H(k) as the candidates and eliminate
pseudo corners using a global threshold Q.

(4) Calculate the global angle of every candidate and eliminate the pseudo candidates
based on an angle threshold. Compare T-corners with the detected corners and add
those T-corners which are far away from the detected corners. [1]

Figure 1 displays the overall flowchart of the CPDA algorithm. CPDA algorithm is able
to conquer some shortcomings that exist in the CSS based methods. For example, the cal-
culation of curvature used in CSS based approaches involves the first and second order
derivatives, resulting that the algorithms are sensitive to noise and local variations, while the
CPDA algorithm uses the chord-to-point distance accumulation technique instead, which
can successfully get rid of the above-mentioned problems.

3 ACRA corner detection algorithm

In this section, we identify the weakness of CPDA corner detection algorithm and introduce
the proposed ACRA approach on the basis of CPDA algorithm. As is mentioned in Sections 1
and 2, the disadvantages of CPDA algorithm lie in three aspects and we make corresponding
improvement for every drawback.

3.1 Corner response function

The most serious drawback of CPDA corner detection algorithm is the definition of corner
response function. As is shown in (1) and Fig. 3 , the distance hL(k) is closely related to
the selection of chord length. For point Pk on a contour, selecting different values of chord
length parameters, the chord to point distance may be tremendously changed. Although
three different chords with L = 10, 20, 30 are utilized to tackle this problem, it also restricts
the performance of corner detection to some extent. Besides, it increases the computational
complexity correspondingly.
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Fig. 3 Chord-to-point distance vs. altitude-to-chord ratio in terms of a hypothetical contour

Inspired by [24] and our previous work [13] on 3D mesh corner detection, we introduce
the triangular principle into our ACRA detector to make improvement in the definition of
corner response function, in which we utilize the altitude-to-chord ratio to calculate the
corner response function. For a contour shown in Fig. 3, the distances d1 and d2 are closely
related to the selection of chord, but the ratios d1/C1 and d2/C2 are almost equal, which is
insensitive to the selection of the chord.

Here as for the considered point Pk in Figs. 2 and 3, it is able to form a triangle with the
near two points Pk−L+i and Pk+i , where k−L+1 ≤ i ≤ k−1, as is described in Section 2.
Then we calculate the ratio between two distances. The first distance dk,i is between the
point Pk to chord Pk−L+iPk+i , and the second distance is the chord length. Then all of the
possible ratios are accumulated to form the final corner response function:

hL(k) =
k−1∑

i=k−L+1

dk,i

Ck,i

(4)

where Ck,i represents the chord length for the point Pk . Because the ratio in (4) means
fully considering the local geometric relations of the analyzed point, it can well reflect the
sharpness of the curve change at that location.

3.2 Normalization operation

It is unreasonable to use maximum normalization method to normalize the accumulation of
distance value into range [0, 1], which is described in step 2 of CPDA detection process. It
may cause uneven data projection in some situations. For instance, if the image contour is a
straight line or a circle, each value of the points on the contour would be almost equal. When
we perform normalization operation using (2), each value would be close to 1. Since the
CPDA method is defined to regard those points with local maximal value as candidate cor-
ners, it would be misleading using maximum normalization. Although the authors designed
an angle threshold step to eliminate the pseudo corners which may be caused by the nor-
malization process, it decreased the performance and computational efficiency of the whole
CPDA algorithm.

In order to solve this problem, we use the linear normalization method in the proposed
ACRA approach, which can be described as:

h′
L(k) = hL(k) − min (hL)

max (hL) − min (hL)
(5)
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where min (hL) and max (hL) represent the minimal and maximal corner response value
of the points on the contour. Using linear normalization can project these values into range
[0, 1] appropriately and evenly, hence it works well by choosing those points with local
maximal value as candidate corners.

3.3 Chord length parameter selection

In CPDA algorithm, three different chord length parameters are considered, which is
described in step 2 of CPDA detection process. The reason why in CPDA algorithm three
different chord length parameters are required is that the chord-to-point distance is closely
related to the selection of chords, and cannot fully reflect the sharpness of the curve. How-
ever, in the proposed ACRA approach, the corner response function is able to fully deal
with almost all of the situations, which means it is unnecessary to perform the distance
accumulation step for three times in different parameter values. So in the proposed ACRA
approach, we just utilize a single chord to calculate the corner response function.

4 Numerical experiments

In this section, we evaluate the performance of the proposed ACRA corner detection algo-
rithm and compare it against eight state-of-the-art corner detection methods in terms of
two datasets and two evaluation metrics. The eight popular contour-based corner detection
algorithms are MSCP[27], ARCSS [3], He & Yung [9], GCM [29], DoG [28], CPDA [1],
FAST-CPDA [4] and ANDD [22]. Because the ACRA approach is based on the CPDA
algorithm, we emphasize the comparison with CPDA algorithm, in terms of both detection
accuracy and computational complexity.

4.1 Evaluation datasets and metrics

Following the standard process in literatures [1, 4, 6], we use the publicly available CPDA
dataset,1 including some synthetic images like ”Block” and real world images like ”Lena”,
to evaluate the performance of the contour-based corner detectors. Figure 4 shows that sev-
eral synthetic images and natural images for testing in CPDA dataset. There are totally
23 original images in CPDA dataset. As is shown in Table 1 and Fig. 5, seven types of
image transformations are done for the images of CPDA dataset to generate the testing
images, including rotation, uniform scale, non-uniform scale, combined transformations,
lossy JPEG compression, Gaussian noise and shearing. Awrangjeb and Lu [1] gives the
associated information about the seven types of image transformation. For any one of the
original images in dataset, there are total 378 transformed images as testing ones. Except for
the CPDA dataset, similar with [12], we also randomly select 32 natural scene images from
Mikolajczyk’s dataset2 to construct a dataset. And the seven types of image transformations
[1] are also done to generate the testing dataset.

The repeatability and localization error are the two basic evaluation metrics for corner
detection [1, 3, 4, 24, 29]. Repeatability R measures the proportion of repeated corners
between original and testing images. Localization error Le is defined as the amount of pixel

1http://users.monash.edu.au/mawrangj/corner.html
2http://lear.inrialpes.fr/people/mikolajczyk/
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Fig. 4 Several synthetic images (the first row) and natural images (the second rows) in the CPDA dataset

deviation of a repeated corner. It is measured as the root-mean-square-error (RMSE) of the
repeated corner locations in the original and test images. All of them can be computed as
follows:

R = Nr

2

(
1

No

+ 1

Nt

)
, (6)

Le =
√√√√ 1

Nr

Nr∑

i=1

(xoi − xti)2 + (yoi − yti)2, (7)

where No represents the number of reference corners in the original image; Nt represents
the number of detected corners in the test image; Nr represents the number of repeated
corners between the original and test image; (xoi, yoi) and (xti , yti ) are the positions of the

Table 1 Seven types of image
transformations (gn: Gaussian
noise; jpg: Lossy JPEG
compression; rot: Rotation; us:
Uniform scale; nus: Non-uniform
scale; rotscl: Rotation and scale;
sh: shearing)

Num Range Tips

gn 10 σ ∈ [0.005, 0.05], μ = 0

jpg 20 Q ∈ [5,100]

rot 18 θ ∈ [−90◦, 90◦] excluding 0◦

us 15 sx = sy ∈ [0.5, 2.0] excluding 1

nus 117 sx ∈ [0.7, 1.5]

sy ∈ [0.5, 1.8] excluding sx = sy

rotscl 150 θ ∈ [-30◦, 30◦]
sx, sy ∈ [0.8, 1.2] excluding 0◦

sh 48 shx, shy ∈ [0, 0.012] excluding shx = shy
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Fig. 5 Seven types of image transformations of ”Lena” image. a Original image; b Gaussian noise; c
Lossy JPEG compression; d Non-uniform scale; e Uniform scale; f Shearing; g Rotation; h Combined
transformations (rotation and scale)

i-th repeated corners in the original image and test image respectively. An RMSE value of
maximum three pixels is allowed to find a repetition.

4.2 Experimental results and analysis

4.2.1 Parameters setting

Parameter L in Section 3 has a direct influence on how many neighborhood contour points
are utilized in our approach. Because corner is a local feature, a small parameter L will lead
to the lack of available information to detect corners. But a large parameter L will damage
the local structure information of current contour point. Parameter Q controls the number
and quality of corner candidates. The larger the parameterQ is, the sharper the corner is, and
the less the number of corner candidates is. Those contour points with corner response value
smaller than a threshold Q are directly detected as non-corners. Fig. 6 shows the average
repeatability scores of the proposed ACRA approach for CPDA dataset under various values
of parameters L and Q. In the proposed ACRA approach, we set the parameter L = 16 and
parameter Q = 0.15.

4.2.2 Computational efficiency

For both CPDA and the proposed ACRA corner detection algorithms, the main operation
related to computational efficiency is the square root operation. So, we compare the com-
plexity of CPDA algorithm and the proposed ACRA approach by counting the CPU times
of calculating square root operation. Besides, we calculate the CPU times of CPDA and the
proposed ACRA algorithms to further demonstrate the superiority of the proposed ACRA
approach in computational efficiency.

Multimed Tools Appl (2019) 78:177–195184
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Fig. 6 Average repeatability scores of the proposed ACRA approach in terms of CPDA dataset under various
parameters L (chord length) and Q (global threshold)

For CPDA algorithm, as is shown in (1), a contour with n points is estimated using three
chord length parameters. So, the total number of square root operations calculated by the
CPDA algorithm is n(L10 −2)+n(L20 −2)+n(L30 −2), while the total number of square
root operations needed by the proposed ACRA approach is n(L16 − 1). Table 2 displays the
average times for each image with CPDA and Mikolajczyk’s dataset, the experiments are
done with the MATLAB 2016 (a) environment is obtained on a Windows 7 computer with
3.09 GHZ AMDA8-7600 and 8.00 GB RAM. From the Table 2, we can see that the average
CPU time clearly demonstrates the superiority of the proposed ACRA approach compared
against CPDA algorithm.

4.2.3 Module performance study

In order to further verify that the three improvements are valid. In this section, three variants
of ACRA algorithms are developed to do comparison experiments. We use the scheme of
control variables to study the impact of each module on the performance of the algorithm.
As shown in Tables 3 and 4, we denote the three algorithms as ACRA1, ACRA2, ACRA3
respectively, where

– ACRA1: replace the altitude-to-chord ratio accumulation in ACRA with the chord-to-
point distance accumulation used in CPDA, which corresponds with the improvement
described in Section 3.1.

– ACRA2: replace the linear normalization in ACRA with maximum normalization used
in CPDA, which corresponds with the improvement described in Section 3.2.

Table 2 Computational efficiency comparison between CPDA and ACRA algorithms with two datasets

CPDA dataset (s) Mikolajczyk’s dataset (s) Square root operations

CPDA 0.0322 0.0692 54 n

ACRA 0.0120 0.0259 15 n

Multimed Tools Appl (2019) 78:177–195 185



Table 3 Repeatability of the
three variants of ACRA, ACRA
and CPDA algorithms in terms of
CPDA benchmark

CPDA ACRA ACRA1 ACRA2 ACRA3

gn 0.6726 0.7002 0.6905 0.6930 0.6006

jpg 0.8892 0.9056 0.9033 0.9054 0.8570

rot 0.8049 0.8306 0.8217 0.8306 0.7425

us 0.6858 0.6823 0.6739 0.6824 0.6165

nus 0.6810 0.7002 0.6960 0.7001 0.6086

rotscl 0.7591 0.7834 0.7730 0.7832 0.6854

sh 0.6710 0.6988 0.6916 0.6985 0.6407

overall 0.7377 0.7572 0.7500 0.7562 0.6788

– ACRA3: replace the one chord length parameter in ACRA with three chord length
parameters used in CPDA, which corresponds with the improvement described in
Section 3.3.

From Tables 3 and 4, it is obvious that for each improvement, there are different gain
in performance. When compared ACRA against ACRA1, we can see that the altitude-to-
chord ratio accumulation is more robust than chord-to-point distance accumulation, not
only in terms of repeatability, but also in terms of localization error. From the results of
ACRA and ACRA2, it seems that there is no large gain in performance. But it does not
mean that this improvement does not make sense. The normalization operations have direct
influence on the corner candidates. But for the ACRA and CPDA algorithms, as is shown
in Fig. 1, there exists a step to refine the corner candidates, which reduces the effect of this
improvement to some extent. But from the analysis shown in Section 3.2, linear normal-
ization does make more sense compared with maximum normalization. When compared
ACRA against ACRA3, it is obvious that using one chord length is much better than using
three chord lengths in ACRA algorithm. The main reason lies in that the corner response
function defined in this paper is not sensitive to the chord length. Using three chord lengths
will decrease the performance of the algorithm in return.

4.2.4 Compared performance study

To fully verify the performance, we compare the proposed ACRA approach with other
eight algorithms. Visualizations of comparative results can be found in Fig. 7 , where the

Table 4 Localization Error of
the three variants of ACRA,
ACRA and CPDA algorithms in
terms of CPDA benchmark

CPDA ACRA ACRA1 ACRA2 ACRA3

gn 1.1215 0.8776 0.8777 0.8888 1.1304

jpg 0.57458 0.4518 0.4663 0.4515 0.5404

rot 1.0985 0.8965 0.9084 0.8960 1.1166

us 1.2586 1.2971 1.2915 1.2973 1.2719

nus 1.1849 1.1300 1.1035 1.1298 1.2239

rotscl 1.0943 0.8968 0.8964 0.8964 1.1176

sh 1.7433 1.7181 1.7272 1.7180 1.7237

overall 1.1537 1.0383 1.0387 1.0397 1.1606
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Fig. 7 Corners of ”Block” image detected by nine contour based corner detection algorithms.

corners of ”Block” image detected by the proposed ACRA and other eight corner detec-
tion algorithms are presented. In Fig. 7 , we can see that on the one hand, the proposed
ACRA approach can detect corners more accurately compared with CPDA, FAST-CPDA,
ARCSS andMSCPmethods. On the other hand, the corners detected by the proposed ACRA
approach include less pseudo corners, such as noise, local variations and these points located
on the edges, compared with DoG, GCM, He & Yung and ANDD methods.

In order to quantitatively analyze the performance of nine algorithms, we calculate the
repeatability and localization error of various testing images under different image trans-
formations. Figures 8, 9, 10 and 11 shows the repeatability and localization error of nine
algorithms in terms of four kinds of image transformations respectively. At the top of each
figure, the corresponding descriptions are given. For example, Repeatability - Gaussian -
CPDA means the repeatability metric in terms of Gaussian transformation for the CPDA
dataset. In this section, we analyze these situations one by one.

For Gaussian noise image transformation, as is shown in Fig. 8, with the increase of
Gaussian standard deviation, the repeatability scores of all the methods are decreased grad-
ually, and the localization error of all the methods are increased gradually. The more the
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Fig. 8 Repeatability and localization error in terms of two datasets under Gaussian noise image
transformations
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Fig. 9 Repeatability and localization error in terms of two datasets under lossy JPEG compression image
transformations
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Fig. 10 Repeatability and localization error in terms of two datasets under rotation image transformations

GCM DoG He & Yung MSCP F -CPDA

CPDA ARCSS ANDD AC A

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Repeatability - U. Scale - CPDA

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Localization error - U. Scale - CPDA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Repeatability - U. Scale - Mikolajczyk

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Localization error - U. Scale - Mikolajczyk

Fig. 11 Repeatability and localization error in terms of two datasets under uniform scale image
transformations
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testing image polluted by noise, the poor the performance of algorithm is. From the Fig. 8,
we can see that our proposed ACRA approach performs best in general compared with
other methods, followed by the CPDA algorithm. For both datasets, ACRA algorithms out-
performs other methods largely in terms of localization error metric, shown in right part
of Fig. 8. Although the CPDA algorithm has good performance in terms of repeatabil-
ity, the proposed ACRA approach also has remarkable performance compared with CPDA
algorithm, shown in left part of Fig. 8.

For lossy JPEG compression image transformation, as is shown in Fig. 9, with the
increase of the quality factors, the repeatability scores of all the methods are increased grad-
ually, and the localization error of all the methods are decreased gradually. The low the
quality of testing image is, the poor the performance of algorithm is. From Fig. 9, we can see
that ACRA slightly outperforms other methods in terms of repeatability metric, but largely
outperforms other methods in terms of localization error metric.

For rotation image transformation, as is shown in Fig. 10, when the rotation angle close
to π/4 and −π/4, all the algorithms perform terrible. The main reason lies in that in
these situations, the quality of the corresponding contour is poor, which directly impact
the performance of the corner detection algorithm. Although the proposed ACRA approach
doesn’t outperform other methods like DoG, GCM, etc, for Mikolajczyk’s dataset in terms
of repeatability metric, in other situations shown in Fig. 10 proposed ACRA approach enjoys
the excellent performance compared with other eight methods, in other situations shown in
Fig. 10.
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Fig. 12 Average repeatability and localization error in two datasets with seven types of image transforma-
tions. (gn: Gaussian noise; jpg: JPEG compression; rot: rotation; us: uniform scale; nus: non-uniform scale;
rotscl: combined transformations; sh: shearing)
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Table 5 Performance of various
contour-based corner detection
algorithms in CPDA and
Mikolajczyk’s datasets

Algorithms CPDA dataset Mikolajczyk’s dataset

R Le R Le

ACRA 0.7572 1.0383 0.5752 1.0587

GCM 0.6728 1.2658 0.5417 1.3803

DoG 0.6803 1.2312 0.5423 1.3592

He & Yung 0.6495 1.3476 0.5349 1.4563

MSCP 0.7338 1.2741 0.5717 1.2798

FAST-CPDA 0.7232 1.1672 0.5608 1.1316

CPDA 0.7377 1.1537 0.5693 1.1280

ARCSS 0.5781 1.3970 0.4529 1.3489

ANDD 0.6326 1.2597 0.4910 1.4259

For uniform scale image transformation, as is shown in Fig. 11, with the increase or
decrease of scale factor, the repeatability scores of all the methods are decreased gradually,
and the localization error of all the methods are increased gradually. Most of contour
based corner detection algorithms do not have excellent performance in terms of scale
image transformation, especially for Mikolajczyk dataset, and the same with the proposed
ACRA approach. The main reason for this phenomenon lies in that for most contour based
corner detection algorithms, the corner response is defined only using the fixed neighbor-
hood contour points, which is not scale-adaptive. The proposed ACRA approach performs
mediocre under uniform scale transformation compared with other eight methods, shown in
Fig. 11.

To reach an overall performance ranking, Fig. 12 shows the overall experimental results
under seven types of transformations, where average repeatability and localization error
in two datasets are calculated. In general, all the methods perform remarkable in terms of
lossy JPEG compression and perform terrible in terms of shearing and uniform scale. For
most situations, the proposed ACRA approach offer highest average repeatability and lowest
localization error compared with other eight methods. Although for some individual cases,
such as rotation, uniform scale, and combined transformations of Mikolajczyk’s dataset, the
proposed ACRA approach does not offer highest average repeatability or lowest localization
error as shown in Fig. 12, the proposed ACRA approach still performs best in most of the
situations and shows its superiority over the original CPDA algorithm. Table 5 gives the
quantitative experimental results. It is obvious that the proposed ACRA approach proves to
perform best in two metrics for two datasets.

5 Conclusion and future work

In this paper, we propose ACRA algorithm to overcame three drawbacks in CPDA corner
detection algorithm. Altitude-to-chord ratio accumulation is utilized to calculate the corner
response function for its insensitive to the selection of chord length compared with chord-to-
point distance accumulation technique. Instead of maximum normalization used in CPDA
algorithm, we utilize the linear normalization to avoid the uneven data projection. Finally,
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since the measurement is insensitive to the selection of chord, we utilize a single chord
instead of three chords used in CPDA method. Numerical experiments demonstrate that the
proposed ACRA approach outperforms eight testing methods.

As discussed in Section 4.2, all the contour based corner detection algorithms seriously
depends on the extracted contours, which is a bottleneck for contour based corner detection
algorithms. Besides, most of them only utilize the fixed number of neighborhood contour
points to calculate the corner response function, which might be sensitive to some situations,
for example, uniform scale image transformation.

In the future, we will address these two problems to further improve the performance of
ACRA approach, and an adaptive scheme of selecting neighborhood contour points and a
robust contour extraction scheme will be utilized.
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