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Abstract In this paper, we propose a new simple one-dimensional chaotic map. The chaotic
characteristics have been declared by using bifurcation analysis and Lyapunov exponent
analysis. Furthermore, we propose a new image encryption algorithm based on this new
chaotic map. Both shuffling algorithm and substitution algorithm are related to this map.
Many statistical tests and security analysis indicate that this algorithm has an excellent security
performance, and can be competitive with some other recently proposed image encryption
algorithms.

Keywords Chaos . One-dimensional chaotic map . Bifurcation . Lyapunov exponent . Image
encryption

1 Introduction

Chaos is a kind of nonlinear phenomenon in the physical world. The first chaotic system was
proposed by Lorenz in [11]. After then, many different kinds of chaotic systems have been
provided and constructed, eg, Logistic map [13], Tent map [6], Henon Map [7], Chen system
[12], coupled map lattices [9], and very recently, Bulban map [1], Lorenz-like system [2],
spatiotemporal chaotic system [19], et al.

In these studies, the high-dimensional chaotic system and hyper-chaotic systems
have received much more attentions than one-dimension map. One of the main reasons
is that the control parameter of the one-dimensional chaotic map is rather limited,
which makes the chaotic map easier to be attacked. As we know, one-dimensional
chaotic map is easy to implement and can also provide good chaotic characteristics,
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which is also important for practical use. Therefore, in this paper, we propose a new
simple one-dimensional chaotic map with two control parameters, where one of the
parameter can be infinite, which greatly increase the parameter space. We theoretically
analyze the linear stability of the fixed points of this new map, and use numerical
simulations to reveal the bifurcation and Lyapunov exponent, the results show that the
chaotic performance is only related to one of the system parameter, and has no
correlation to the other.

With the rapid development in internet technology and multimedia technology,
communications with images have become more and more popular. In order to ensure
communication security, image encryption has become an increasingly serious issue
and urgently needed [18]. However, traditional encryption algorithms, such as RSA,
DES and IDEA, are not suitable for image encryption due to image’s intrinsic
properties such as bulky data capacity, strong redundancy and strong correlations
among adjacent pixels [4, 5, 10].

Recently, chaotic systems have been widely used in image encryption for their
significance nonlinear performance, such as sensitivity to both initial value and
parameter, unpredictability, and pseudorandomness, et al. [8, 15–17, 20]. Wang
and Guo [17] proposes an image alternate encryption algorithm based on Logistic
map. In this algorithm, the shuffling and diffusion stages are combined in en-
cryption process. However, Logistic map is proved to be not secure enough for its
small key space and some other weaknesses [10]. Zhou and Liao [20] presents a
digital image encryption algorithm with different precisions by three collision-
based dynamical systems. This algorithm induces three chaotic systems, which
increases its implementation cost. Sun et al. [15] proposes a new image encryp-
tion algorithm based on a new spatial chaos system. Tong et al. [16] proposes a
new high-dimensional chaotic system, and presents a novel image encryption
based on this map and Cat map. In order to enhance the security, a new separated
Cat map with variable parameters is designed for the permutation process. These
two algorithms are based on high-dimensional chaotic systems. Although the
security performances are quite good, the encryption speed is not satisfactory.
Hua et al. [8] proposes an image encryption algorithm based on new two-
dimensional Sine Logistic modulation map. This map is derived from Logistic
map and Sine map, while the use of original Logistic map makes this algorithm
not that convincing.

In this paper, we propose a new image encryption algorithm based on our new one-
dimensional chaotic map. Both shuffling and substitution algorithms are related to this
new map. Many statistical tests and security analysis are carried out to evaluate the
performances of our algorithm, including histogram analysis, information entropy
analysis, key space analysis, key sensitivity analysis, correlation analysis, resistance
to differential attack analysis, and randomness analysis. The results prove that our
algorithm has a high security level, and can be competitive with other recently
proposed image encryption algorithms.

The rest of this paper is organized as follows. The mathematically model of this new
chaotic map is introduced in Section 2, and its dynamical performances are revealed in
Section 3. In Section 4, we propose a new image encryption algorithm based on the new
chaotic map. Statistical tests and security analysis of our algorithm are presented in Section 5.
Finally, Section 6 concludes the whole paper.
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2 A new one-dimensional chaotic map

The mathematical model of our new one-dimensional chaotic map is described as follow

xnþ1 ¼ f xnð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ax2n þ bxn

q
ð1Þ

here, n is the iteration number, a, b > 0 are the two control parameters of this equation, f: I→ I
is the nonlinear iterative function, xn = f

(n)(x0) is the one-dimensional state variable after n
times iteration by initial condition x0.

A chaotic map must be bounded. By Eq. (1), obviously, we have 0 < xn < b/a, for every n.
Thus, I = [0, b/a]. The nonlinear function f can be estimated as

f xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a x−

b
2a

� �2

þ b2

4a

s
≤

b
2

ffiffiffi
a

p ð2Þ

the B=^ holds if and only if x = b/2a. In order to make the state variable x bounded in the
interval I, it should have

b
2

ffiffiffi
a

p ≤
b
a

ð3Þ

Eq. (3) indicates that a ≤ 4. Set a = 4, b = 3, the trajectory diagram is shown in Fig. 1.

3 Dynamical performances

In this section, we will analyze the dynamical characteristics of our new chaotic map, including
fix point, linear stability and bifurcation analysis.

Fig. 1 (a) The trajectory diagram of Eq. (1); (b) Enlargement of (a)
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3.1 Fixed points, linear stability and bifurcation analysis

We consider the fixed points and also the equilibrum points of our map, which can be
calculated as x* = f(x*). After calculation, there exist two fixed points, which are found as

x* ¼ 0 and x* ¼ b
1þ a

; ð4Þ

respectively. In order to get bifurcation, the fixed points should be unstable. We consider a
point xn close to the fixed point x* with a small difference Δx, we get

Δxn ¼ xn−x* ð5Þ

Afterward, we do the Taylor expansion of function f, and get

x* þΔxnþ1 ¼ xnþ1 ¼ f xnð Þ ¼ f x*ð Þ þ f
0
x*
� �

Δxn þ⋯ ð6Þ
Here f'(x) is the derivation of function f at point x, which can be calculated as

f
0
xð Þ ¼ −2axþ b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ax2 þ bx

p ð7Þ

Put x* = f(x*) into Eq. (6), Eq. (6) can be simplified as

Δxnþ1 ¼ f
0
x*
� �

Δxn þ⋯ ð8Þ
Therefore, if |f'(x*)| is larger than 1, we have that the difference |Δxn + 1| is larger than |Δxn|,

which means that the fixed point is unstable.
Next, we consider the value of |f'(x*)|. Substituting x* = 0 into Eq. (7), we have |f'(x*)|

approach to infinity. Thus, the fixed point 0 becoming unstable. When substituting x* = b/(1 +
a) into Eq. (7), we get

f
0
x*
� � ¼ −2a⋅

b
1þ a

þ b

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a⋅

b2

1þ að Þ2 þ b⋅
b

1þ a

s ¼ 1−a
2

ð9Þ

In order to make the fixed point x* unstable, it should have

f
0
x*
� � ¼ 1−a

2
> 1 ð10Þ

or

f
0
x*
� � ¼ 1−a

2
< −1 ð11Þ

From Eq. (10), we can get a < −1. This contradicts the requirement that a > 0, and thus, be
neglected. From Eq. (11) we have that a > 3. This solution gives the first bifurcation point on
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a > 3, and the fixed point becoming unstable, which means the chaotic behavior of Eq. (1).
Furthermore, the second bifurcation point can be calculated using the period 2 points of f(2)(xn).

f 2ð Þ xnð Þ ¼ f f xnð Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a −ax2n þ bxn

� �2 þ b −ax2n þ bxn
� �q

ð12Þ

By using the similar method of fixed points, the second bifurcation point can be approx-
imately calculated as a > 3.6451. Moreover, by using simulations on Matlab, the bifurcation
diagram of parameter a is shown in Fig. 2. From Fig. 2 we have that this map will be chaotic
when 3.7835 < a ≤ 4. Another interesting result is that the bifurcation point has no relevance to
the parameter b, the similar result can also be achieved in the Lyapunov exponent analysis.
Parameter b only affects the interval I.

Fig. 2 Bifurcation diagram of parameter a (a) b = 4; (b) b = 6; (c) b = 8; (d) b = 10
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3.2 Lyapunov exponent

The one-dimensional chaotic map has only one largest Lyapunov exponent. The largest
Lyapunov exponent is used to measure whether the map is chaotic or not. For an exponent
larger than zero, the map is chaotic, and vice versa. The larger the Lyapunov exponent is, the
more complex (less predictable) the map is. The largest Lyapunov exponent can be calculated
as [14]:

LE ¼ lim
n→∞

1

n
∑
n

i¼1
λi ð13Þ

where

λn ¼ lnj f 0
xnð Þj ð14Þ

f'(xn) is given by Eq. (7). For different parameter b, Fig. 3 show the Lyapunov exponents with
the variation of parameter a. From Fig. 3 we have that the Lyapunov exponent diagram is the
same with different parameter b, which means that the chaotic characteristics has no relevance
to parameter b. This gets the same conclusion as bifurcation analysis. The Lyapunov exponent
of Eq. (1) reaches its maximum value when a = 4, which is about LE = 0.5547. The conver-
gence process is shown in Fig. 4.

Based on the above analysis, the significant advantages of this map can be described as

1) This map is one-dimensional, which is much easier to implement than high dimensional
maps. For most of 1D chaotic maps, such as Logistic map, Chebyshev map, Tent map,
et al., they have only one control parameter, which leads to a relatively small key space.
While in our map, there are two control parameters, and the key space is larger, which is
more suitable for image encryption.

2) Generally, the dynamics of chaotic map will be influenced by its control parameters. All
the parameters will affect the dynamics of chaotic map, such as [1], which makes the
dynamical behavior of map hard to control. For our map, the chaotic performance is only
related to one of the system parameter, and has no correlation to the other, which indicates
that our map is easier to control in this sense.

4 A new image encryption algorithm

In this section, we propose a new image encryption algorithm based on this new one-
dimensional chaotic map. Our new algorithm is combined with two steps, shuffling algorithm
and substitution algorithm.

4.1 Shuffling algorithm

The shuffling algorithm is used to disturb the positions of each pixel of a plain image A, which
can reduce the correlationship between adjacent pixels. In our algorithm, we use the proposed
chaotic map Eq. (1) to shuffle the pixels.
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Assume {Aij} be the pixel matrix of M ×N plain image A, and a real-valued sequence {xk}
is generated by the Eq. (1) with a given initial value with length MN. Rearrange the sequence
{xk} according to the ascending order, and get the rearranged sequence

xk1 ; xk2 ;…; xkMN ð15Þ
where

xk1 < xk2 < ⋯ < xkMN ð16Þ
and kl∈{1, 2, ...,MN}, 1 < l <MN, is different from each other. Now, the integer sequence {kl}
is used as the shuffling sequence. Scanning the matrix A into a sequence {bs} as

b i−1ð ÞNþ j ¼ Aij; 1≤ i≤M ; 1≤ j≤N ð17Þ

Fig. 3 Lyapunov exponent with the variation of parameter a (a) b = 10; (b) b = 8; (c) b = 6; (d) b = 4
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Then, the shuffled sequence {ct} can be calculated as

cki ¼ bi; 1≤ i≤MN ð18Þ
Finally, reconstruct the sequence {ct} to a matrix as

Cij ¼ ct ð19Þ
where

i ¼ floor t−1ð Þ=Nb c þ 1 ð20Þ
and

j ¼ t− i−1ð ÞN ð21Þ
Thus, the matrix C is the shuffled matrix of plain A by using our shuffling algorithm. This

shuffled matrix is based on the chaotic sequence {xk}, which can be regarded as unpredictable
and randomness.

4.2 Substitution algorithm

The Substitution algorithm is used to change the pixel value of plain image A. Based on the
chaotic characteristics of our proposed map, here, we also use this map in our substitution
algorithm.

Also, assume a real-valued sequence {xk} is generated by the Eq. (1) with a given initial
value with length MN. In order to get good statistical properties, we first change the sequence
{xk} into a uniformly distributed integer sequence {dk}. In this paper, we propose the following
coding algorithm to generate uniformly distributed integer sequence

dk ¼ 600000 xk þ 2350ð Þ mod256 ð22Þ
The distribution of sequence {xk} and {dk} are shown in Fig. 5, which indicate that our

uniformly distributed algorithm is quite effective.

Fig. 4 Convergence of the Lyapunov exponent for a = 4
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Change the sequence {dk} into a substitution matrix D by using the same method as Eq.
(19), (20) and (21). The substituted image matrix E can be written as

Eij ¼ Dij þ Cij mod256 ð23Þ

Remark 1 In our algorithm, the newly proposed chaotic map is the key factor to ensure the
security of encrypted images. Eq. (22) is used to improve the statistical characteristics of
chaotic sequences. The randomness tests are provided in Section 5.8. Certainly, we can replace
this generator by another one. If other generators can make the sequence {dk} with good
randomness, there will have no much differences in the security of encrypted images.

4.3 The new image encryption algorithm

In order to have a high chaotic characteristics of Eq. (1), we always set a = 4 in our algorithm.
The detailed steps of our algorithm are described as follows.

Step 1: Read the plain image A. Assume the size of plain image A be M ×N, and set R = 1.
Step 2: Set secret values x0,1, x0,2, ..., x0,T, y0,1, y0,2, ..., y0,T and b1, b2, ..., bT for T round

encryption. Secret values x0,1, x0,2, ..., x0,T are used in the shuffling phase, and y0,1,
y0,2, ..., y0,T are used in the substitution phase. b1, b2, ..., bT are the parameters of our
chaotic map which are used in both shuffling and substitution phases.

Step 3: Generate the real-valued chaotic sequences {xk} and {yk} with length MN based on
Eq. (1) by the initial values x*i = x0,i +mean{A}/256 mod (bi/4), and y*i = y0,i +
mean{A}/256 mod (bi/4), i = 1, 2, ..., T, and denote as {X1}, {X2},…, {XT} and {Y1},
{Y2}, …, {YT} respectively. Here, x0,i and y0,i can be selected arbitrarily in the
interval I. In generating the chaotic sequences, the average pixel value of plain image
A is used, which makes our algorithm to resist the chosen-plaintext attack. The item
mod (bi/4) is used to ensure the initial values locates in the interval I.

Step 4: Change the real-valued sequences {XR} into shufflingmatrix according to Eq. (15), (16)
and (17), and then generate the shuffled matrix {CR} by Eq. (18), (19), (20) and (21).

Step 5: Change the sequence {YR} into uniformly distributed sequence by Eq. (22), and
construct this sequence into matrix according to Eq. (19), (20) and (21).

Fig. 5 Distribution of (a) chaotic sequence {xk}; (b) coding sequence {dk}
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Step 6: Encrypt the shuffled matrix {CR} by Eq. (23).
Step 7: Set R = R + 1.
Step 8: If R ≤ T, go to step 4. Else, break out.
Step 9: Save as encrypted image A*.

The flowchart of our algorithm is shown in Fig. 6. The values x0,1, x0,2, ..., x0,T, y0,1, y0,2, ...,
y0,T and b1, b2, ..., bT can be used as the security keys. The decryption algorithm is the inverse
process of our encrypt algorithm which is neglected here.

Our encryption algorithm is based on our newly proposed 1D chaotic map. In order to
enhance the security, we use Eq. (22) to generate a uniformly distributed sequence. Our
encryption scheme is quite different from other chaotic image encryption algorithms since
the chaotic source used here is completely different from others.

As we know, the security of the encrypted image is mainly depended on the chaotic
sequences generated by chaotic sources. In our algorithm, the parameter is selected in the
chaotic region, and Eq. (22) is used to improve its statistical characteristics. Therefore, the
output chaotic sequence is with good randomness (We use NIST test suite to confirm the
randomness of the output chaotic sequence in Section 5.8), and thus the encrypted images have
relatively high security (uniformly distribution, weak correlation between pixels, large entropy,
et al.). Furthermore, the average pixel value of plain image A is used in generating the chaotic
sequences to resist the chosen-plaintext attack.

5 Statistical tests and security analysis

In this section, we make some experiments to evaluate the security and statistical properties of
our image encryption algorithm, and compare the results with some other algorithms in [8,
15–17, 20]. The experiment image is 256 × 256 plain image, and the encryption round is one.

Fig. 6 The flowchart of our image encryption algorithm

21454 Multimed Tools Appl (2018) 77:21445–21462



All the tests are processed by Matlab 7.0 on computer with 1.99 GHz CPU and 1.92 GB
memory. The security keys are selected as x0,1 = 0.1236, y0,1 = 0.3278 and b1 = 4.

5.1 Encryption and decryption experiment tests

The encryption and decryption results are shown in Fig. 7. Four plain images are used in the
encryption phase, including BLena^, BHorse^, BCameraman^ and BCameo^, where BCameo^
is a computer generated image. From Fig. 7 we know that all the encrypted images are
completely unrecognized. In the decryption phase, as the results are quite similar, so we only
present the decryption results of Lena image here. By using the correct keys, the decrypted
image is the same as the plain image, while with a wrong key, the decrypted image is also
unrecognized.

5.2 Histogram analysis

The histogram is use to evaluate the distribution of ciphered image. In order to withstand the
statistical attack and cipher-only attack, the histogram should be uniform. The histogram of

(a) (b) (c) (d)

(e) (f)

(i) (j)

(g) (h)

Fig. 7 Encryption and decryption results (a) Lena plain image; (b) Lena encrypted image; (c) Horse plain image;
(d) Horse encrypted image; (e) Cameo plain image; (f) Cameo encrypted image; (g) Cameraman plain image; (h)
Cameraman encrypted image; (i) Decryption of Lena image with correct key; (j) Decryption of Lena image with
wrong key
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plain Lena image and the encrypted Lena image are shown in Fig. 8, which indicates that the
distribution of our encrypted image is rather uniform comparing to the plain image.

5.3 Information entropy analysis

Information entropy, proposed by Shannon, is widely used to evaluate the uncertainty or
unpredictability, and can be calculated as

H mð Þ ¼ − ∑
M

i¼1
p mið Þlog2p mið Þ ð24Þ

here,M is the total number if symbols, and p(mi) is the probability of symbol mi. For a random
image with 256 Gy levels, the entropy should ideally be 8. In this test, the entropies of plain
image and encrypted image are calculated in Table 1, which indicates that the entropies of the
encrypted images by our encryption algorithm are all close to 8, and is better than the results in
[15, 17, 20], but a little less than the entropy in [16].

5.4 Key space analysis

The key space should be large enough to resist brute-force attacks. In our proposed encryption
algorithm, values x0,1, x0,2, ..., x0,T, y0,1, y0,2, ..., y0,T and b1, b2, ..., bT are always be selected as
security keys. If the precision of a real number is 10−14, the key space of our algorithm can be
approximately written as.

1

4
⋅1014⋅1014⋅1014

� �T

ð25Þ

Set the round T = 2. the key space is about 0.25 × 1084 ≈ 2277, which is large
enough to resist all kinds of brute-force attacks and is much larger than some recently
proposed algorithms, such as 2160 in [17], 2140 in [16], and 2256 in [8], under the
same precision.

Fig. 8 Statistical histogram of (a) Lena plain image; (b) Lena encrypted image
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5.5 Key sensitivity analysis

A good encryption scheme should be extremely sensitive to its security key. Key sensitivity
means that for the same plain image, if there is a small change (only 1 bit) of the secret keys,
the encrypted image should be totally different. In this test, we test the key sensitivity of x0,1
and b1, the sensitivity of y0,1 is similar which we omitted here. Change each secret key by only
10−14, the test results are shown in Fig. 9.

Figure 9a is the encrypted image by changing the key x0,1 to 0.1236 + 10−14. Figure 9b
shows the difference between Fig. 9a and Fig. 7b, which is vastly different from each other.
Figure 9c is the encrypted image by changing the key b1 to 4 + 10−14. Figure 9d shows the
difference between Fig. 9c and Fig. 7b, which is totally different from each other as well.
These results show that the security keys have good sensitivity.

5.6 Correlation analysis

The pixels of a plain image always have a high correlation with their neighboring pixels, either
in horizontal, vertical or diagonal directions. Therefore, a good image encryption algorithm
should remove this strong correlation between adjacent pixels.

In this test, we first randomly select 2040 pairs of adjacent pixels along with the horizontal,
vertical and diagonal directions. The distributions of these pixel sequence pairs are plot in
Fig. 10. From Fig. 10, we have that the points of plain Lena image are located nearby the
diagonal line, while the points of encrypted Lena image are uniformly located in the whole
space. These results show that we can remove the correlation between adjacent pixels.

Fig. 9 Key sensitivity analysis in the encryption process

Table 1 Information entropy analysis of plain image and encrypted image

Images Information entropy

Plain image (Lena) 7.4532
Encrypted image (Lena) 7.9979
Ref. [17] (Lena) 7.9977
Ref. [20] (Lena) 7.9966
Ref. [15] (Lena) 7.9965
Ref. [16] (Lena) 7.9989
Encrypted image (Horse) 7.9973
Encrypted image (Cameo) 7.9977
Encrypted image (Cameraman) 7.9974
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Furthermore, we test the correlation coefficient of pixel sequence pairs by using the
following equation

Corr ¼ N∑N
i¼1 xi � yið Þ−∑N

i¼1xi � ∑N
i¼1yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N∑N
i¼1x

2
i − ∑N

i¼1xi
� �2� �

� N∑N
i¼1y

2
i − ∑N

i¼1yi
� �2� �r ð26Þ

where xi and yi be the two pixel sequences, N is the length. If the correlation value is close to 1,
then these two sequences have a high correlation. If the correlation value is close to 0, then
these two sequences have little correlation with each other. The value of Corr for each pair is
shown in Table 2. From Table 2 we have that the correlation coefficients of our encrypted

Fig. 10 Distributions of adjacent pixel sequence pairs of Lena image (a) horizontal of plain image; (b) vertical of
plain image; (c) diagonal of plain image; (d) horizontal of encrypted image; (e) vertical of encrypted image; (f)
diagonal of encrypted image

Table 2 Correlation analysis

Images Horizontal Vertical Diagonal

Plain image (Lena) 0.9686 0.9677 0.9172
Encrypted image (Lena) – 0.0026 – 0.0054 0.0082
Ref. [17] (Lena) 0.0063 0.0063 0.0069
Ref. [20] (Lena) 0.0139 – 0.0231 – 0.004
Ref. [15] (Lena) 0.0013 – 0.0026 – 0.0013
Ref. [16] (Lena) 0.0038 0.0058 0.0133
Ref. [8] (Lena) 0.0024 – 0.0086 0.0402
Encrypted image (Horse) 0.0036 0.0018 – 0.0068
Encrypted image (Cameo) – 0.0039 – 0.0044 – 0.0076
Encrypted image (Cameraman) – 0.0068 – 0.0046 0.0020
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images are all close to 0, which also means that our algorithm has successfully disrupted the
correlation between adjacent pixels. Some comparisons to other proposed methods show that
our algorithm is quite competitive.

5.7 Resistance to differential attack analysis

The differential attack, also called the chosen-plaintext attack, is a well-known and effective
image analysis method. To resist the differential attack, the algorithm should have good
sensitivity to plaintext. Two measures are often used to evaluate this property, which are the
number of pixels change rate (NPCR) and unified average changing intensity (UACI), and can
be calculated as Eq. (27) and (29), respectively [3].

NPCR ¼
∑
i; j
D i; jð Þ
L

� 100% ð27Þ

D i; jð Þ ¼ 0; C1 i; jð Þ ¼ C2 i; jð Þ
1; C1 i; jð Þ≠C2 i; jð Þ

	
ð28Þ

UACI ¼ 1

L
∑
i; j

jC1 i; jð Þ−C2 i; jð Þj
H

" #
� 100% ð29Þ

Where C1 and C2 are two images with the same size, L is the number of pixels and H
is the largest allowed pixel value in the images. In our test, L = 65,536, H = 255. For
the random gray image, the ideal value of NPCR and UACI are 0.9961 and 0.3346,
respectively.

We randomly change 1 bit of the plain image. The values of NPCR and UACI of two
encrypted images with the same keys are shown in Table 3. Table 3 indicates that both NPCR

Table 3 Sensitivity to plaintext test

Test name Result

NPCR (Lena) 0.9955
UACI (Lena) 0.3327
NPCR (Horse) 0.9961
UACI (Horse) 0.3347
NPCR (Cameo) 0.9959
UACI (Cameo) 0.3344
NPCR (Cameraman) 0.9952
UACI (Cameraman) 0.3360
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and UACI values of all images are close to the ideal value, which means that our encryption
algorithm has good performance to resist the differential attack.

5.8 Randomness analysis

In our substitution algorithm, we use Eq. (22) to generate the sequence {dk} with uniformly
distributed. Here, we further evaluate the randomness of these sequences by using NIST sp-
800-22 test suites.

The significance level of each test in NIST is set to 0.01, which means that 99%
of test samples pass the tests if the random numbers are truly random. The P-value ≥
0.01 would mean that the sequence would be considered to be random with a
confidence of 0.99. In this test, we have generated 500 different sequences randomly
by using different initial values and parameter, each sequence having a length of
125,000. Use Eq. (22) to change these sequences into integer sequences. By coding dk
into binary sequence with 8 b, (as: 0 is encoded into B00000000^ and 255 is encoded
into B11,111,111^), we can totally get 500 pseudorandom binary sequences with
length 1,000,000. We test the passing ratio of each test from the NIST test suite
and the uniformity of the p-values of each test. The results are shown in Table 4.
From Table 4 we know that the sequences have passed all tests suite, which can be
regarded as random.

6 Conclusions

In this paper, we propose a new simple one-dimensional chaotic map. The bifur-
cation of this system is analyzed by both theoretical and experimental methods.

Table 4 The passing ratio and the uniformity of the p-values of each test from the NIST suite

Test index Passing ratio P_value Results

Approximate entropy 0.996 0.577562 SUCCESS
Block frequency 0.994 0.481245 SUCCESS
Cumulative sums 0.998 0.427677 SUCCESS
FFT 0.994 0.247963 SUCCESS
Frequency 1.000 0.845457 SUCCESS
Linear complexity 0.994 0.457133 SUCCESS
Random excursions 0.996 0.135379 SUCCESS
Random excursions variant 1.000 0.237967 SUCCESS
Longest runs of ones 0.998 0.453458 SUCCESS
Overlapping template of all ones 0.998 0.213579 SUCCESS
Rank 0.994 0.237794 SUCCESS
Runs 0.996 0.874754 SUCCESS
Serial 0.996 0.232765 SUCCESS
Universal statistical 0.996 0.575694 SUCCESS
Lempe-Ziv Compression Test 0.998 0.612345 SUCCESS
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The Lyapunov exponent is also calculated by numerical simulation. The results
show that the chaotic characteristics of this new map have no correlation to the
parameter b. Furthermore, we propose a new image encryption algorithm based on
this new chaotic map. Many statistical tests and security analysis are carried out to
evaluate our algorithm, including histogram analysis, information entropy analysis,
key space analysis, key sensitivity analysis, correlation analysis, resistance to
differential attack analysis, and randomness analysis. The results show that our
algorithm has an excellent security performance, and can be competitive with some
other recently proposed image encryption algorithms. Four different plain images
are test here, including natural image and computer generated image. The results
also show that our algorithm is effective to different images, and has no content
dependency.
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