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Abstract In this paper, a parameterless Jaya optimization based neural network filter named
as Jaya-functional link multilayer perceptron (Jaya-FLMLP) is proposed for the elimination of
Poisson noise from X-ray images. In this proposed adaptive filter, Jaya is applied for updating
the weights of the FLMLP network. The proposed neural filter is a combination of a functional
link artificial neural network (FLANN) and Multilayer Perceptron (MLP) network. The
performance of Jaya-FLMLP is also compared with other five competitive networks such as
Wiener, MLP, Least Mean Squares based Functional Link Artificial Neural Network (LMS-
FLANN), Particle Swarm Optimization based Functional Link Artificial Neural Network
(PSO-FLANN) and Cat Swarm Optimization based Functional Link Artificial Neural Network
(CSO-FLANN). The comparison of performance is investigated by the Structural Similarity
Index (SSIM), Peak Signal to Noise Ratio (PSNR) and Noise Reduction in Decibels (NRDB)
values. The simulation results and non-parametric Friedman’s test reveal the superiority of the
Jaya-FLMLP filter over others.

Keywords Poisson noise . X-ray image . Adaptive filter . Artificial neural network .

Optimization . Friedman’s test

1 Introduction

The X-ray radiography is popularly used in non-invasive medical image modalities and
provides distinctive information of internal musculoskeletal lesion. The acquired image
depends heavily on randomly released photons from a source that passes through a patient’s
body towards a specified pixel on the detector. The entire process of image reconstruction
follows the random probability procedure i.e. Poisson law, and due to this reason, the acquired
medical images may get deteriorated by Poisson noise [14]. It degrades the contrast, and clarity
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and also weakens the clinical information from the acquired images. Enhancement techniques
are required to accumulate significant information from the acquired noisy medical images. It
assists the doctor in identifying pathological symptoms. Therefore, the denoised medical X-
rays image is desirable not only for the diagnosis but also it can be further applied for post-
processing tasks like segmentation, registration, analysis and telemedicine.

Moreover, to develop an effective and efficient denoising method is still a challenging task
for researchers because most of the algorithms did not gain the appropriate applicability level
and lack generality. The conventional fixed filters such as median, mean, rank order mean
filter, weighted mean, etc. suppress a particular kind of noise and require prior knowledge of
noise. These filtering techniques depend upon different noise conditions and nature of images.
In fact, getting information about noise every time as well as selecting a filter accordingly is a
time-consuming task for any manual or automated system. Hence, to avoid such limitations of
conventional filters, adaptive filters are introduced. The parameters of an adaptive filter can be
tuned by itself, according to the change in image local statistics as well as according to the
noise characteristics. Such techniques are not only saving the valuable pre-processing opera-
tional time of the radiologist but are also very useful in situations like war and natural
calamities where the number of patients is very high. The neural network filtering is a
nonlinear adaptive filtering approach which substantially improves the overall filtering
operation.

Over the past three decades, artificial neural network (ANN) techniques are being
employed in image processing tasks, such as classification, recognition, segmentation
and restoration purpose [2, 4, 5, 29]. The ANN’s are efficient in performing the complex
mapping between the input and output space, and thus, these techniques can form
subjective nonlinear decision boundaries. Initially, the feed-forward multilayer
perceptron (MLP) networks are mostly realized to get rid of the noise. However,
designing MLP networks is a very complex task because of more than one number of
hidden layers and many numbers of nodes present in their structure. The efficiency of
any network depends upon controlling parameters like learning rate, which is again a
complicated task and sometimes quite intuitive. To overcome such difficulties, the single
layer FLANN was introduced by Pao [17] in the year 1989. It is a functionally expanded
neural network that provides better results in terms of computation time with a faster
convergence rate than the MLP. It has been effectively applied in the field of active noise
control in less computational time [24]. Although different spurious noises are removed
by the FLANN network, it does not ensure a refined outcome as compared to the MLP
network in some of the other challenging applications. This is due to the lack of a
universal approximation characteristic of any neural network based filter. Hence, the
intent of this research article is to introduce a network named as FLMLP that can
overcome the drawback of both MLP and FLANN, by exploiting their merits. Instead
of the classical derivative approach to train this network, a recently developed parameter
less heuristic-technique, i.e. Jaya, has been applied as a learning technique. This heuristic
technique will avoid trapping of solutions at local minima, with the intention that the cost
function (estimated restoration error) can be minimized. Network sluggishness is also
circumvented by the proposed algorithm which is usually realized during gradient based
learning.

The architecture of this article is as follows: Section 2 reveals the previous research in the
field image denoising using ANN based neural filters. Section 3 describes the way in which the
Jaya-FLMLP filter is formulated and applied for the X-ray’s image denoising process. In
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Section 4, the qualitative and qualitative results of the employed filtering scheme are highlight-
ed. Sections 5 and 6 present the discussion and conclusion of this paper.

2 Related work

The role and development of the neural network in the field of the image preprocessing
task such as denoising, enhancement, restoration, de-blurring have been reported by
many researchers. The neural network can be classified depending on the learning model
and the optimization algorithm applied to update the weights. How nature-inspired
optimization technique based neural filter is utilized to remove noise from different
images is discussed in this section which emphasizes the significance of the proposed
methodology.

2.1 Derivative learning based neural network filter

Zhou et al. [34] have presented the application of a nonlinear multilayer neural network
based filter in the area of image restoration. Similarly, Siva et al. [25] have discussed the
utility of a neural network filter and also shows the limitation of different linear restoration
filters such as Wiener, Kalman, inverse and pseudo inverse filter. The limitation includes
the assumption of any system as a wide sense stationary process and the condition of high
signal to noise ratio. Also, the computational complexity is very high for these types of
filters. Similarly, many researchers have applied nonlinear spatial filters such as Aniso-
tropic Diffusion (AD), Non-Local Means (NLM), Total Variance (TV), Partial Differential
Equation (PDE) etc. to overcome these bottom-holes [1, 8, 10, 30]. However, these filters
have many arbitrary parameters which regulate their performance. Furthermore, all of them
are computationally expensive and effective for a particular noise. Suzuki et al. [1, 26] have
shown the different multilayer networks based adaptive filter for the reduction of noise
from radiographic X-ray and other images while preserving the edges. Zhao et al. [33] have
discussed the importance of a single layer FLANN filter over other feedforward multilayer
networks due to the reduced computational burden because of the presence of single layer.
It expands the dimensionality of the input image pixel data using nonlinear independent
standard functions, such as Chebyshev, trigonometric, power, exponential, etc., and it can
be utilized in the problem of image segmentation, restoration, and identification [9, 15, 18].
At the same time, Radial Basis Function (RBF) has limited hidden layers and attracted the
attention of researchers as an alternative to MLP. RBF performs very well with less
computational resources. However, performances wise RBF is highly dependent upon the
truncated Volterra series [32]. Hence, FLANN is recommended by many researchers to
solve nonlinearity and any optimization problem. Usually, training of neural network filters
is executed through gradient descent (derivative) learning techniques, and these techniques
are applied for obtaining the optimal set of weight. Here, the error is considered to be a cost
function that needs to minimize. However, these techniques are not recommended for flat or
irregular functions. Apart from the weight selection, various other parameters are associ-
ated and need to fix carefully for the seamless working of neural network filter. The simple
gradient descent learning based neural network filters have all these restrictions and hence
not endorsed in the highly nonlinear environment. To eliminate above intricacy, heuristic
(nature-inspired/evolutionary) learning based neural network filters are introduced where
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heuristic technique has been applied for adjusting weights of neural network filtering model
by overcoming all the bottleneck of derivative based neural network filter.

2.2 Heuristic learning based neural network filter

Any neural network has the ability to learn from the optimization of a suitable error function.
Hence, optimization methods such as derivative or evolutionary based approaches could be
used in learning. Though the gradient based techniques are very efficient, they may get stuck at
the local and global optimal point of the solution and thus are not preferable for irregular
function [7, 16, 31]. In fact, state-of-the-art evolutionary techniques are utilized for training the
neural network in place of gradient approaches such as Least Mean Squares (LMS), Leaky
LMS (L-LMS), Normalize LMS (N-LMS), Recursive Least Squares (RLS) and the
Backpropagation (BP) algorithm. The optimization technique could be a Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Cat Swarm Optimi-
zation (CSO), Ant Colony Optimization (ACO), etc. Similarly, authors in [23] have discussed
other benefits of ANN’s (a) in hardware implementation such as FPGA and VLSI, (b)
providing parallel processing and (c) performing an adaptive and nonlinear task like the de-
blur of an image. They have also discussed the efficacy of the metaheuristic ABC algorithm
for the training of neural network filter and have successfully applied to de-blur the various
medical radiological images. Kumar et al. have provided a brief idea of the FLANN filter, and
also discussed the application of Particle Swarm Optimization (PSO), and Cat Swarm Opti-
mization (CSO) in selecting the best possible weights of in such a way that the estimated error
function get minimized in [11, 13]. They proposed the FLANN network for removing noise
from CT and X-ray images. Similarly, authors in [3, 6] cast off nature inspired techniques such
as the GA and pigeon inspired based ANN filters to denoise several digital images. Wang et al.
have proposed a novel single layer neural filter and applied the Predator-Prey PSO for
updating weights [28].

Parameter dependent techniques optimize mostly all the above mentioned heuristic
neural network filters, and the efficiency of these filters depends on the controlling
parameters value. These parameters could be a learning rate, local, social or inertial
parameters, crossover or mutation etc. Hence, for this proposed work, the Jaya optimization
technique is applied for the training of the FLMLP filter, and collectively it is named as
Jaya-FLMLP. The performance of the recently introduced Jaya algorithm does not get
affected due to any controlling parameter.

3 Proposed Jaya-functional link multilayer perceptron (Jaya-FLMLP) filter

3.1 Multilayer perceptron (MLP) filter

The structure of an MLP filter consists of one or more hidden layer between the input
and output layers. The Fig. 1 shows the structure of the Multilayer Neural Network
filter for image denoising. Initially, all the nodes of any layers and its adjacent layer
are interconnected with a pre-assigned set of random weights. In the input layer,
‘Xi(n)’ are the noisy pixel intensities which are supplied to the inputs nodes of MLP
network. These pixel intensities are obtained from the dynamic window of the noisy
image.
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Usually, the size of the window is considered as 3 × 3 hence the number of inputs become 9.
All the nodes of hidden and output layers comprise of nonlinear threshold (activation) function
known as sigmoid function. The weighted sum of inputs of each layer, and activation function
of both hidden and output layers are utilized to evaluate the final output i.e. ‘y’. The final output
‘y’ and center most pixel ‘d’ of the corresponding window of the target (noise-free) image are to
be compared to evaluate error ‘e’ which is subsequently used as an objective function. The
Backpropagation (BP) algorithm attempts to minimize this objective function by updating all
the weights of the network. Similarly, the above-discussed steps are going to repeat for the other
windows starting from top left corner to bottom right corner of the image. The iteration will
terminate if it encounters the stopping criteria i.e. the maximum number of iteration, or mean
square error below the certain threshold. After the completion of iteration, the MLP network
gets trained and obtained optimal weights is utilized for filter out any other noisy pixel.

3.2 Functional link artificial neural network (FLANN) filter

FLANN is a variant of neural network based filter, and unlike MLP network, it has no hidden
layer. The BP learning algorithm is applied to update the weights of MLP which is complex
and computationally expensive. As FLANN network is a single layer network, it avoids this
cumbersome algorithm and improves the training time significantly by applying simple
algorithms like LMS, L-LMS, N-LMS etc.

The noisy input data of the FLANN filter are expanded nonlinearly by applying functions such
as power, trigonometric, exponential, Chebyshev, etc. Fig. 2 shows the architecture of the FLANN
filter, where, ‘X1,X2……X9’ are the nine noisy input pixels obtained from the dynamicwindow
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of size 3 × 3. Then, ‘X1’ is expanded by any of above-mentioned nonlinear function and stored into
a single dimensional array as [X1, T1, T2… T4]. For example, if this expansion is exponential
then, the X1 is further extended as T1 = eX1, T2 = e2X1, etc. Similarly, other eight pixels will be
expanded and appended next to the same previous array. By considering pre-initializedweights and
activation function ‘φ’, the FLANN output ‘y’ is computed. The obtained output ‘y’ is compared
with desired (noise-free) pixel ‘d’ to evaluate error ‘e’which is considered as the cost function. By
utilizing this error function, the weights of FLANN filter is updated by applying any of the adaptive
algorithms. These algorithms may be either derivative based searches LMS, RLS, N-LMS, L-
LMS, etc. or may be of derivative-free algorithms such as GA, PSO, CSO, etc. In this research
article, most recently developed derivative-free Jaya algorithm has been applied.

3.3 Jaya

The parameterless heuristic optimization technique Jaya has recently been introduced by Rao
et al. in [12, 20–22]. They have deciphered several constrained and unconstrained benchmark
problems applying this technique. They compared Jaya with other state-of-the-art techniques
such as PSO, Teaching Learning Based Optimization (TLBO), Differential Equation (DE),
Artificial Bee Colony (ABC), etc. and show its superiority. The word Jaya means ‘Victory,’
and it originates from the ancient Sanskrit language. Jaya is an algorithm-specific and
parameterless algorithm, which makes it different from any other evolutionary based or swarm
intelligence based techniques. The notion of this algorithm is that it keeps information of best
and worst solution with successive iteration and updates itself according to the best one.
Algorithm 1 shows the basic steps of the Jaya algorithm. ‘X_(j,k, i)’ is the value of the jth

variable for the kth contender at the ith iteration and it can be updated as per the Eq. (1), where
r1 and r2 are the uniformly distributed random numbers in the range [0–1]. The term
Br1(X_(j,best,i)-|X_(j,k,i)|)^ indicates the tendency to move closer to the optimum solution
and B-r2(X_(j,worst,i)-|X_(j,k,i)|)^ indicates the solution to avoid the worse one.

X 0
j;k;i ¼ X j;k;i þ r1 X j;best;i− X j;k;i

�� ��� �
−r2 X j;worst;i− X j;k;i

�� ��� � ð1Þ

Algorithm. 1 Procedure of Jaya optimization techniques

Steps Process

Step.1. Identify the fitness function to be optimized.
Step.2. Initialize the population size, the number of iteration and variables.
Step.3. Evaluate the fitness function according to the variables values i.e. ‘Xj, k, i’ and store the best and the

worse solutions

Fig. 2 The structure of FLANN filter
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Steps Process

Step.4. Modify the variable values using Eq. (1).
Step.5. Evaluate the fitness function according to modified ‘X'j, k, i’.
Step.6. Compare the fitness function with a recent and previous solution and accept the best one only.
Step.7. Repeat the process from Step.3. for ‘ith’ iteration time.
Step.8. Save the best optimum solution.

3.4 Proposed Jaya-FLMLP filter

The basic architecture FLMLP filter structure is designed by combining MLP and FLANN
network together and has advantages of both the networks. The FLANN network has no
hidden layer and MLP may have one or more hidden layer. In the FLMLP, the input layer is
expanded by any nonlinear function similar to FLANN filter and having one hidden layer
like MLP. The nonlinearity improves due to the presence of expanded inputs and hidden
layer as compared to both MLP as well as FLANN. In fact, due to the limited layer,
programming complexity decreases as compared to MLP. Here, the Jaya optimization
technique is proposed to update the weights of this FLMLP network. Figure 3 shows the
corrupted image window of size 3X3 and exponentially expanded input pixel T1. The Fig. 4
shows the basic structure of Jaya-FLMLP filter. It is clear that the inputs to this network are
received from the noisy X-ray image and desired pixel is obtained from the window of
reference (target) image respectively. For the training of the proposed Jaya-FLMLP filter,
the noisy image ‘x’ is obtained from the original image ‘yr’ which is synthetically contam-
inated by Poisson noise ‘η’. The elementary model which takes noise into account is
mentioned in Eq. (2).

x ¼ yr þ η� yr ð2Þ

where, {X1, X2,……, X9} are the inputs of the Jaya-FLMLP network and are obtained
fromx. These pixels are selected by overlapping shifted window blocks of 3 × 3 size
starting from the first to the third row and the first column to the third column.
Subsequently, these pixels intensities are functionally expanded exponentially using

(n-1) n (n+1)

(m-1)

m

(m+1)

X1 

X4 

X7 

X2 

X5 

X8 

X3 

X6 

X9 

T1

Fig. 3 Corrupted image window of size 3X3 and exponentially expanded input pixel T1
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Eq. (3).

T1 ¼

x1
e1x1

e2x1
e3x1

e4x1

8>>><
>>>:

9>>>=
>>>;
; similarly; T2 ¼

x2
e1x2

e2x2
e3x2

e4x2

8>>><
>>>:

9>>>=
>>>;
; T3 ¼

x3
e1x3

e2x3
e3x3

e4x3

8>>><
>>>:

9>>>=
>>>;
; and so on: ð3Þ

The equivalent exponentially expanded nine noisy pixels intensities from one window in an
array are:

T ¼ T1; T2; T3;⋯⋯⋯T8; T9½ � ð4Þ
At the same time, two numbers of 10 sets of random weights W1(j)and W2(j) are initialized

between values 0–1, and multiplied with nonlinearly expanded intensities. The corresponding
set of weights at the nth iteration is

W1 nð Þ ¼ W1IH ;W1HOf g ð5Þ

W2 nð Þ ¼ W2IH ;W2HOf g ð6Þ

where,W1IHandW2IH, denote the randomweights connectivity of input and hidden layer and are
arranged in the row matrix of size 1X 45w1 i.e. W1IH={ w1,w2,… …,w45}and W2IH={,w2,…
…,w45}. Similarly,W1HO andW2HO are the weight connectivity between the hidden and output
layer having size of 1X1 i.e.W1HO={w46}. Then, weighted inputs are passed through activation
functions ϕ1(.) and ϕ2(.) in the hidden layers to evaluate the outputs ‘y1’ and ‘y2’ respectively.
Similarly, the activation function ϕ3(.) is employed in the output layer to get the final output ‘y3’.
Again, y3 is comparedwith the desired pixel d for evaluating error ‘e’.Where, d is the center most
pixel from the moving contextual window of the reference image.

y1 nð Þ ¼ ϕ1* T nð Þ*W1IH nð ÞT
h i

ð7Þ

Fig. 4 Structure of proposed Jaya-FLMLP
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y2 nð Þ ¼ ϕ1* T nð Þ*W2IH nð ÞT
h i

ð8Þ

y3 nð Þ ¼ ϕ2 y1 nð Þ*W1HO nð ÞT þ y2 nð Þ*W2HO nð ÞT
h i

ð9Þ

error : e nð Þ ¼ d nð Þ−y3 nð Þ ð10Þ

For each set of weights the objective function i.e. ‘error(.)’ will be quantified and
according to the minimum and maximum errors value the best and worst set weights are
selected which is further utilized by the Jaya algorithm to generate a new 10 sets weight
position. Again, the cost function is evaluated with new weights. In each iteration, the
previous and current errors are to be compared and on the basis of the minimum error, the
best set of weight will be stored during the training of the Jaya-FLMLP network. By
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Load normalize noisy and reference X-ray images.

Initialize FLMLP weights population, activation function and then 

functionally expand the nine pixel from 3x3 noisy image kernel.

Evaluate errors values. 

Store the worst and best errors values according to their respective 

weight positions. 

Generate or update the new sets of weights using equation (11) and again 

evaluate the errors values. 

If error correspond to updated weights <  error correspond to 

previous weight?

Accept previous weightAccept recent weight

Is termination criterion satisfied?

Report optimum sets of weights for L-Channel

Repeat above process for a and b Channels

STOP

No

No Yes
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Fig. 5 Flowchart of Jaya-FLMLP filter
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utilizing the optimal set of weights, any image corrupted by Poisson noise can be tested for
denoising with the proposed Jaya-FLMLP filter.

w nþ 1ð Þ ¼ w nð Þ þ r1 wbest nð Þ− w nð Þj jð Þ−r2 wworst nð Þ− w nð Þj jð Þ ð11Þ

3.5 Jaya-FLMLP filter encoding strategy

In this section, a vector representation of the Jaya-FLMLP algorithm has been presented. It
provides a brief idea about the matrix size of the weight vector. It presents the procedure of
finding the optimal sets of the weight of Jaya-FLMLP which is based on minimum estimated
errors. Here, the weights of hidden and output layers simultaneously updated in successive
iterations, unlike backpropagation algorithm where weight updating is from output to input
layer. Equation (12) demonstrate the functional dependency of the estimated errors i.e.
‘ê m; nð Þ’ upon the initialized weight of the Jaya-FLMLP filter. Jaya optimization technique
helps to search best possible set of weights, where, W1 and W2 represent the weight connec-
tivity between node 1 and node 2 of the hidden and output layers. Equation (13) is a simplified
matrix representation of the proposed filter that displays the associated random weights
connectivity of the input and hidden layer i.e. ‘WIH = {w1, w2… w45}’ as well as the hidden
and the output layer i.e. ‘WHO = {w46}’. Similarly, ‘Y1’, and ‘Y2’ are the outputs of input-
hidden layer, and likewise ‘Y3’ is the output of the hidden-output layers. The flowchart of the
proposed Jaya-FLMLP filter is depicted in Fig. 5.

Estimated error; ê m; nð Þ ¼ f Xð Þ ð12Þ

where, X = {WIH,WHO}

4 Results

In this article, five other filtering techniques are also considered for comparative study so that
the efficacy of the proposed filter can be examined. Hence, all the competitive filters are
applied to remove Poisson noise from the different benchmark noisy images. For experimen-
tation purpose, four grayscale images are taken for testing. Three of them are radiological X-
ray images named as ‘Chest’, ‘Severe pneumonia’ and ‘Pelvis’ and the last one is a panoramic
‘Hand1’. The Poisson noise has been introduced synthetically and generated from input image
data itself. In fact, the density or scaling factor of noise depends upon the precision (single/
double) and mean of Poisson distribution [19]. The image size of the ‘Hands1’ is 240X320 and
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the X-rays images are 616X447. All the four images are in the JPEG format. The simulation
tasks are performed in MATLAB® programming environment using a personal computer with
the specification of Intel Core i3 at 1.40 GHz, 4 Gb of RAM, 64-bit bus and Windows 10
operating system. The obtained results are examined visually along with various quality
metrics and nonparametric statistical tests.

The final fine-tuned parameters obtained analytically for different denoising algorithm are
presented in Table 1. The size of BP-MLP network is of 9–3–2-1 structure i.e. having two
hidden layers. The number of nodes in input, two hidden and output layer is 9,3,2 and 1
respectively. The number of weights between input and first hidden layer, first and second
hidden layer, hidden and output layer are 27, 6 and 2 respectively. The learning rate of back
propagation algorithm is taken as 0.02. The sigmoid functions used in two hidden layers and
output layers are tanh(.) and purelin(.) respectively. In LMS-FLANN, PSO-FLANN, CSO-
FLANN and JAYA-FLMLP filter, the input values are the 9 noisy pixels which are obtained
from the corrupted X-ray image. For the generality of comparison, exponential expansion is
applied and each pixel expanded for five times in all these approaches. Thus, LMS-FLANN
attains a total of 45 weights and for 10 sets of weights PSO-FLANN, CSO-FLANN have 450
{10×45} weights. Similarly, for the Jaya-FLMLP filter, the number of weights of input to
hidden and hidden to output layer are also depicted in this table. The learning rate is considered

Table 1 Parameters employed in different ANNs filters

Sl.
No.

ANN based denoising methodologies Parameters

1 LMS-FLANN Number of Weights = {9X5} = 45
Learning Rate = 0.02
Functional Expansion = exponential(.)
Activation Function = logsig(.)

2 BP-MLP Number of Weights:
Number of weights in Hidden layer1 = {9X3} = 27
Number of weights in Hidden layer2 = {3X2} = 6
Number of weights in Output layer = {2X1} = 2

Activation Functions:
Hidden Layers 1,2 = tanh(.)
Output Layer = purelin(.)

Learning Rate = 0.02
3 PSO-FLANN [11] and CSO-FLANN

[13]
Number of Weights = {10X9X5} = 450
Functional Expansion = exponential(.)
Activation Function = logsig(.)
Inertia =mean((2/ Number of Iteration)^0.3)
PSO Acceleration Constants C1, C2 = 2
CSO Acceleration Constant = 2

4 JAYA-FLMLP
(Proposed)

Number of Weights:
Weights for Input node to Hidden node1 = {10X45} =
450
Weights for Input node to Hidden node 2 = {10X45} =
450
Weights for Hidden node1 to Output node = {10X1} = 10
Weights for Hidden node 2 to Output node = {10X1} = 10

Functional Expansion = exponential(.)
Activation Function:
Hidden Layer activation function = tanh(.)
Output Layer activation function = purelin(.)

Multimed Tools Appl (2018) 77:24405–24425 24415



to be 0.02 for LMS-FLANN network. In PSO-FLANN filter acceleration constant i.e. C1 and
C2 which are also known as cognitive and social parameters respectively which is considered
to be 2 in our algorithm. Similarly, CSO-FLANN depends upon social parameter i.e. C1 and it
is also fixed at 2. The inertia is another common parameter for both PSO-FLANN and CSO-
FLANN filters. We have considered adaptive inertia parameter for both networks whose
mathematical expression is shown in Table 1. Logsig(.) activation function is used in both
of these filters. Unlike PSO-FLANN and CSO-FLANN filters, Jaya-FLMLP does not require

Fig. 6 a Images of Hands1, (a) Original image (b) Grayscale image (c) Corrupted image by Poisson noise (d)
Filtered image using LMS-FLANN (e) Filtered image using BP-MLP (f) Filtered image using PSO-FLANN (h)
Filtered image using CSO-FLANN (i) Filtered image using Jaya-FLMLP. (Image Courtesy: Matlab® 2015a
Image data). b Images of Chest X-rays, (a) Original image (b) Grayscale image (c) Corrupted image by Poisson
noise (d) Filtered image using LMS-FLANN (e) Filtered image using BP-MLP (f) Filtered image using PSO-
FLANN (h) Filtered image using CSO-FLANN (i) Filtered image using Jaya-FLMLP (j) Corrupted image by
Gaussian noise (μ = 0.04, σ2 = 0) (k) Removal of Gaussian noise image using Jaya-FLMLP (l) Corrupted image
by impulse noise (a==0.04) (m) Removal of impulse noise image using Jaya-FLMLP. (Image Courtesy:
radiology images database - http://cdn.lifeinthefastlane.com)

24416 Multimed Tools Appl (2018) 77:24405–24425
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Fig. 6 (continued)
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parameters like inertia and acceleration constant. The activation functions such as tanh(.) and
purelin(.) are considered for hidden and output layers of Jaya-FLMLP network. The total
number of iteration is set to be 3000 for all the competitive ANN’s networks. The first two
rows and columns pixels are padded to the noisy input image to preserve the size of the filtered
image with that of the input image during processing. This step will help in obtaining the
image quality metrics (PSNR, SSIM, NRDB, NMSE) correctly without cropping the input
image. The original distortion-free Chest X-rays image is taken as a reference image. The other
two X-rays images i.e. ‘Pelvis’ and ‘Pneumonia’ as given in the Appendix Fig. 11 of this
article are tested by applying all the proposed networks.

4.1 Subjective evaluation

The performance of the applied adaptive filters can be judged by observing and comparing the original
and the filtered image. The grayscale images have been taken to carry out all the experiment. The
following Figs. 6a and b show the filtered images of the ‘Hand1’ and ‘Chest X-ray’ image.

4.2 Adopted evaluation metrics

Performance metrics such as PSNR, NRDB, and NMSE are chosen to measure the quantitative
aspect of the adopted filters. The mathematical forms of the respective quality metrics are
mentioned in Eqs. (14)–(18). Studies such as the SSIM are also included in this paper for
analyzing the qualitative and quantitative perspectives of the denoised image. The SSIM
evaluates the structural similarity by comparing local patterns of the pixel intensities that have
been normalized for contrast and luminance. It is based on the principle of a human visual

Table 2 Image quality metrics values obtain from Experiment I

Image Filters Image Quality Metrics

SSIM PSNR NRDB NMSE

Hands1 SSIM WIENER 0.9089 31.88 20.01 −25.99
0.8046 BP-MLP 0.8534 31.59 20.11 −26.79
PSNR LMS-FLANN 0.9019 31.75 20.13 −27.96
28.87 PSO-FLANN 0.9153 31.92 21.87 −28.04
Noisy CSO-FLANN 0.9462 32.03 22.10 −28.08

Jaya-FLMLP 0.9473 33.97 23.49 −28.37

Table 3 Image quality metrics obtain from Experiment II

Image Filters Image Quality Metrics

SSIM PSNR NRDB NMSE

Chest X-ray SSIM WIENER 0.5627 33.86 20.14 −25.99
0.4290 BP-MLP 0.6086 33.97 20.68 −26.54
PSNR LMS-FLANN 0.7029 34.21 20.90 −26.67
30.71 PSO-FLANN 0.7821 34.34 21.54 −27.47
Noisy CSO-FLANN 0.7932 35.14 22.10 −27.77

Jaya-FLMLP 0.7981 35.26 25.36 −27.95
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system for extracting information from any structure. The SSIM can be expressed mathemat-
ically by combining three attributes i.e. luminance ‘l’, contrast ‘c’ and structure ‘s’ as shown in
Eq. (14), where, SSIM depends upon the local mean, standard deviation and cross-covariance
of an image. The default value exponents ‘α’, ‘β’ and ‘ϒ’ are considered as 1 [27].

SSIM i; jð Þ ¼ l i; jð Þ½ �α � c i; jð Þ½ �β � s i; jð Þ½ �γ ð14Þ
PSNR is the ratio between the maximum possible power of an image signal and the power

of the corrupting noise. NMSE is an estimator of the overall deviations between the original
and restored images. Similarly, NRDB is applied to measure noise removal capability of any
filtering technique. These performance indices are mathematically expressed as:

MSE ¼ 1

M � N
∑
M−1

i¼0
∑
N−1

j¼0
x i; jð Þ−x̂

�
i; j

�h i2
ð15Þ

PSNR ¼ 10� log10
MAX 2

I

MSE

� �
ð16Þ

NRDB ¼ 10� log10
MSEIN

MSEOUT

� �
ð17Þ

NMSE ¼
∑
r

i¼1
∑
c

j¼1
x i; jð Þ−x̂ i; jð Þð Þ2

∑
r

i¼1
∑
c

j¼1
x i; jð Þð Þ2

ð18Þ

Table 4 Image quality metrics obtain from Experiment III

Image Filters Image Quality Metrics

SSIM PSNR NRDB NMSE

Severe pneumonia SSIM WIENER 0.6277 32.40 21.16 −25.99
0.6076 BP-MLP 0.6365 32.70 21.19 −26.21
PSNR LMS-FLANN 0.6388 33.31 21.54 −26.21
29.26 PSO-FLANN 0.6599 33.61 21.89 −26.89
Noisy CSO-FLANN 0.6798 34.22 22.10 −27.51

Jaya-FLMLP 0.6801 34.10 24.16 −27.80

Table 5 Image quality metrics obtain from Experiment IV

Image Filters Image Quality Metrics

SSIM PSNR NRDB NMSE

Pelvis SSIM WIENER 0.7767 34.55 20.21 −25.89
0.7247 BP-MLP 0.7791 34.68 20.26 −26.12
PSNR LMS-FLANN 0.7804 34.96 20.54 −26.67
27.98 PSO-FLANN 0.7891 35.84 21.43 −27.54
Noisy CSO-FLANN 0.8231 36.39 20.97 −27.83

Jaya-FLMLP 0.8245 36.62 22.91 −26.96
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where, ‘MSEIN’ is the mean square error between the original and noisy images and ‘MSEOUT’ is the
mean square error between the original and filtered images. Similarly, ‘x(i, j)’ and ‘̂x i; jð Þ’ are the
original and restored image respectively. The other indices such as convergence characteristics rate and
computational time are also examined for the performance evaluation of the different filters. Quan-
titative measures obtained during the simulation studies are depicted in Tables 2, 3, 4, and 5 and are
utilized to compare the proposed Jaya-FLMLP filter with the linear adaptive (Wiener) and nonlinear
adaptive neural (BP-MLP, LMS-FLANN, PSO-FLANN and CSO-FLANN) filters. In the experi-
ment, the PSNR, SSIM values of the noisy Hands1 image are 28.87 dB and 0.8046 respectively and
are represented vertically in Table 2. The values of the performance indices of the filtered images are
presented horizontally in this table. Accordingly, Tables 3, 4, and 5 specify the experimental output
obtained from the radiographic X-ray images by applying these filters.

The Figs. 8 and 9 are showing the convergence characteristics and noise reduction
capability of all competitive image filters. The convergence graph is acquired from the
filtration of Chest X-ray image. The average time taken during training and testing of all
experiment is depicted in Fig. 10. The time consumed by LMS-FLANN is as 1684.09 s.
However, training time of proposed Jaya-FLMLP was as 3466.80 s.

5 Discussion

Table 1 demonstrates the parameter values obtained for the different neural filter algorithms,
and it clearly shows the significance of how less number of controlling parameters are required

Noisy BP-MLP LMS-FLANN

PSO-FLANN CSO-FLANN Jaya-FLMLP

Fig. 7 Images obtained from difference SSIM Index Map and Mean SSIM values

Table 6 Average ranking of filtering algorithms based on the Friedman’s test using PSNR

Algorithms WIENER BP-MLP LMS-FLANN PSO-FLANN CSO-FLANN Jaya-FLMLP

Ranking 5.80 5.06 4 3.06 1.96 1.1
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for the proposed Jaya-FLMLP filter than the others adaptive filters. In Figs. 6a and b, the
denoised images are obtained from applying the various neural filter, and these filters can
remove Poisson noise from the ordinary and the X-ray images. It is evident from Fig 6b (j) -
(m), that the trained Jaya-FLMLP filter can remove common noise like Gaussian and impulse
noises. For the experimental task, the mean ‘μ’ and variance ‘σ2 = 0’ of Gaussian noise were
0.04 and 0 respectively. Similarly, density ‘a’ of impulse noise was considered as 0.04. In the
same manner Fig.7 shows the qualitative view of the filtration chest X-ray image in terms of
SSIM. In fact, the above images represent the gradual improvement in clearing noise using the
state-of-the-art filters like PSO-FLANN, CSO-FLANN, and Jaya-FLMLP. After observing the
images of Figs. 6 and 7 it is evident that the proposed Jaya-FLMLP filter provides compar-
atively better result than the other evolutionary neural network filters. If we consider the
quantitative aspect of Experiment I, the PSNR, SSIM, NRDB, NMSE values of the filtered
image using the Jaya-FLMLP network are 33.97, 0.7981, 23.49 and −28.37 respectively which
are the highest among the other networks. However, In Table 2, the SSIM and PSNR values of

Table 7 Friedman Statistical test parameters using PSNR

Source Sum of square (SS) Degree of freedom (df) Mean square (MS) Chi-square Critical value (p)

Columns 488.8 5 97.6 139.66 2.11e−28

Error 36.2 145 0.2497
Total 525 179
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Fig. 8 Convergence characteristics of ANNs filters

Fig. 9 Noise reduction bar-graph capabilities of various image filters
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the Wiener filter are more than those of the BP-MLP and LMS-FLANN filter. Hence, the
linear adaptive filter may also provide better results than the nonlinear neural filter. Hence, to
avoid vagueness, the non-parametric statistical test, i.e. Friedman’s test is conducted for
comparing all the implemented methodologies. Tables 6 and 7 present the results obtained
from the Friedman’s test, and the lower ranking and critical values suggest the superiority of
the proposed Jaya-FLMLP filter. The PSNR data of the 30 images are considered for analyzing
the nonparametric test.

Figure 8 shows the convergence characteristics graph of ANN filters in terms of the NMSE
and the faster convergence rate of the Jaya-FLMLP network. Figure 9 shows the noise clearing
ability of all the employed filters, and it indicates that the efficiency of the proposed filter is the
highest among all. Similarly, Fig. 10 demonstrates the average computational time for the
training all the networks. The Jaya-FLMLP takes less time for learning than any other
evolutionary network-based filters such as PSO-FLANN and CSO-FLANN. However, the
LMS-FLANN and BP-MLP adaptive filters have taken the minimum and maximum time for
training the network. The reason is, it mostly depends on the network architecture and the size
of the image because that much of execution loop will increase. In the case of evolutionary
ANNs filtering techniques, it depends upon the population size and controlling parameters of
the filtering algorithms.

6 Conclusion

The above result of the simulation studies shows that the proposed Jaya-FLMLP filter can be
successfully applied to filter ‘Poisson’ noise from the X-ray images and it exhibits satisfactory
performance under different noise conditions. The qualitative and quantitative inspections
establish the excellence of the Jaya-FLMLP over the other five filtering techniques i.e. Wiener,
LMS-FLANN, BP-MLP, PSO-FLANN, and CSO-FLANN. The comparison of performance
comprises of computational time, performance indices such as PSNR, SSIM, NRDB, NMSE
and convergence rate. The simulation results show that the parameterless Jaya has enormous
potential to solve any optimization problem in lesser time with limited hidden nodes and it can
be used as a learning algorithm for any ANNs. The Friedman’s test is also considered to assess

Fig. 10 Average computational time of various image filters
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the dominance of the proposed Jaya-FLMLP filter over others. Our future line of research
includes testing the effectiveness and adaptability of the Jaya-FLMLP filter, irrespective of the
noise and medical image type. It can be hybridized with other heuristic techniques for
achieving a more accurate level of the FLMLP.
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