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Abstract Graph-based unsupervised feature selection has been proven to be effective in
dealing with unlabeled and high-dimensional data. However, most existing methods face a
number of challenges primarily due to their high computational complexity. In light of the
ever-increasing size of data, these approaches tend to be inefficient in dealing with large-
scale data sets. We propose a novel approach, called Fast Unsupervised Feature Selection
(FUFS), to efficiently tackle this problem. Firstly, an anchor graph is constructed by means
of a parameter-free adaptive neighbor assignment strategy. Meanwhile, an approximate
nearest neighbor search technique is introduced to speed up the anchor graph construction.
The �2,1-norm regularization is then performed to select more valuable features. Experi-
ments on several large-scale data sets demonstrate the effectiveness and efficiency of the
proposed method.

Keywords Unsupervised feature selection · Anchor graph · �2,1-norm

� Rong Wang
wangrong07@tsinghua.org.cn

1 The Xi’an Research Institute of Hi-Tech, Xi’an 710025, China

2 The Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical
University, Xi’an 710072, China

3 The School of Information Engineering, Guangdong University of Technology,
Guangzhou 510006, China

4 The School of Electronic and Information Engineering, Xi’an Jiaotong University,
Xi’an 710049, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-017-5582-0&domain=pdf
http://orcid.org/0000-0001-9240-6726
mailto:wangrong07@tsinghua.org.cn


22100 Multimed Tools Appl (2018) 77:22099–22113

1 Introduction

High-dimensional data are commonly generated in a range of real-world applications,
including computer vision, pattern recognition, data mining and machine learning. How-
ever, the use of high-dimensional data can not only increase storage costs, but also introduce
redundancy and irrelevant information [9, 32, 36], that degenerates the performance of
learning tasks. Accordingly, feature selection, which aims to select the most representa-
tive feature set from the original features is preferred in these instances [6, 17, 20, 23, 29,
31]. Since practical large-scale data are usually collected without labels being appended,
and annotating these data is a dramatically expensive and time-consuming process [2, 11],
unsupervised feature selection has become a ubiquitous and challenging problem [5]. In
recent years, the development of various unsupervised feature selection methods has signif-
icantly facilitated the performance of many machine learning tasks, such as classification,
clustering, retrieval, and ranking [7, 8, 13, 14, 16].

In this letter, we focus on the family of graph-based unsupervised feature selection
(GUFS) methods, in which the manifold geometry structure of the whole feature set is char-
acterized in graph form. A range of typical GUFS methods have been proposed over the
past decade, including Laplacian Score (LS) [9], Spectral Feature Selection (SPEC) [37],
Multi-Cluster Feature Selection (MCFS) [1], and Robust Unsupervised Feature Selection
(RUFS) [28]. However, most traditional GUFS methods focus on learning task performance
while neglecting the underlying computational complexity, which is of great importance
given the ever-increasing size of data. This complexity arises primarily due to two aspects:
the first is the graph construction, and the second is the feature selection on the graph.
Both of these processes are time-consuming for large-scale data, and have a time com-
plexity of at least O(n2d), where n and d denote the number of samples and features,
respectively.

To address this issue, and inspired by recent works that have scaled up graph-based
learning models using anchors [3, 4, 18, 19], we propose a novel approach named Fast
Unsupervised Feature Selection (FUFS) incorporating an anchor graph and �2,1-norm reg-
ularization. The main contributions of our work are as follows. First, the anchor graph
is constructed using a parameter-free adaptive neighbor assignment strategy. Meanwhile,
an approximate nearest neighbor search (ANNS) technique is introduced to speed up the
construction of the anchor graph. Second, the �2,1-norm regularization [22, 26, 34] is
performed in order to select more valuable features, and a simple yet efficient iterative
algorithm is designed to optimize the proposed objective function. Thirdly, the compu-
tational complexity of the FUFS algorithm can be reduced to O(ndmt), where m and
t are the number of anchors and iteration, respectively, giving our proposed method a
great advantage over conventional GUFS methods. Comprehensive experiments on several
large-scale data sets demonstrate the efficiency and effectiveness of the proposed FUFS
algorithm.

2 The FUFS algorithm

In this section, we introduce our FUFS method for large-scale data sets. First, the anchor
graph is constructed, after which the �2,1-norm regularization is adopted to select more
valuable features on this graph.
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2.1 Graph construction

Let X = [x1, x2, · · · , xn]T ∈ R
n×d represent the data matrix, where n and d denote

the number of data points and the dimension of features, respectively. Each data point xi

is represented as a vertex on the affinity graph, while each edge represents the similarity
relationship of one pair of vertexes. The weight of the edge between xi and xj is defined as
aij and A = {aij } ∈ R

n×n denotes the similarity matrix of the affinity graph.

2.1.1 Traditional graph construction

The first step of all the traditional GUFS methods is to construct the similarity graph by
computing all pairwise similarity between the data points. There are usually three different
similarity graphs:

1. The ε-neighborhood graph: We connect all points whose pairwise distances are
smaller than ε.

2. k-nearest neighbor graph: The vertexes xi and xj are connected if xi is among the
k-nearest neighbors of xj or xj is among the k-nearest neighbors of xi .

3. The fully connected graph: All points are connected with positive similarity with each
other.

We can apply all graphs mentioned above to weight the edges by the similarity, while the
choice of different graphs may result in different learning performance. Since local geomet-
ric structure of data can usually get better performance than global geometric structure, and
the value of positive integer k is easier to tune than ε, almost all the graph-based methods
tend to apply k-nearest neighbor graph (KNN) to construct similarity graph. A reasonable
way to define the weight aij is by using the Gaussian kernel function, then we can define

aij =
{
eps(−‖xi−xj ‖2

2σ 2 ) xi ∈ N (xj )or xj ∈ N (xi )

0 otherwise,

where N (x) denotes the set of k-nearest neighbors of x, σ is a parameter that controls the
width of the neighborhoods. Since the extra parameter σ in the Gaussian kernel function
is very sensitive [24, 33] and is difficult to tune in practice, we are more likely to adopt a
parameter-free method to construct similarity graph.

2.1.2 Anchor graph construction

Recent studies have adopted an anchor-based strategy to construct the similarity matrix A.
Generally, this strategy requires two steps to construct A: first, m (m � n) anchors are
generated from data points, after which the similarity between data points and anchors are
measured by the matrix Z ∈ R

n×m.
Anchor generation can be achieved either by random selection or by using the k-means

method [3, 4, 18, 19]. Random selection selects m anchors by random sampling from data
points and takes O(1) computational complexity. Although random selection cannot guar-
antee that the selected m anchors are always good, it is extremely fast for large-scale data
sets. The k-means method makes use of m clustering centers as anchors. Although use of
these clustering centers results in more representative anchors, the k-means method needs
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O(ndmt) computational complexity , where t is the number of iterations, which makes its
use for large-scale data sets impossible.

After the anchors are generated, the similarity matrix Z needs to be constructed. Con-
ventional methods usually use kernel-based neighbor assignment strategy (e.g., Gaussian
similarity function), which typically requires extra parameters. To avoid this, we adopt
an adaptive neighbor assignment strategy [24] to obtain the the similarity matrix Z. Let
U = [u1, ..., um]T ∈ R

m×d denotes the set of anchor points. The similarity zij between xi

and uj can be defined as probability that ui is to be the neighbor of xi . We use the square
of Euclidean distance ‖xi − uj‖22 as the distance measure. For the i-th data point xi , all
the anchor points can be connected to xi with probability zij . Evoked by the intuition that
nearby points should have similar properties [10, 25], a smaller distance should be assigned
a larger probability. Thereby, a natural method to obtain neighbor probabilities for the i-th
sample is by solving following problem

min
zT
i
1=1,zi≥0

m∑
j=1

‖xi − uj‖22zij . (1)

However, Eq. (1) has a trivial solution, only the nearest anchor point can be the neighbor
of xi . To avoid this dilemma, a regularization term is added to Eq. (1), then we have

min
zT
i 1=1,zij ≥0

m∑
j=1

‖xi − uj‖22zij + γ

m∑
j=1

z2ij , (2)

where zT
i denotes the i-th row of Z, zij is the j -th element of zT

i and γ is the regularization
parameter. Let dij = ‖xi − uj ||22, while d i ∈ R

m×1 is a vector with the j -th element as dij ,
Eq. (2) can be rewritten in vector form as

min
zi

‖zi + d i

2γ
‖22 s.t. zT

i 1 = 1, zij ≥ 0. (3)

In light of [24], it is preferred to learn a sparse zi which has exactly k nonzero values. Thus,
the learned Z is sparse, and the computation burden of subsequent spectral analysis can
be largely alleviated. The parameter γ can be set as γ = k

2di,k+1 − 1
2

∑k
j=1 dij , such that

optimal solution to Eq. (3) is

zij = di,k+1 − dij

kdi,k+1 − ∑k
j=1 dij

. (4)

For detail derivation, see [24]. The computational complexity of calculating matrix Z using
Eq. (4) is O(ndm). To improve the efficiency of the anchor graph construction, we investi-
gate an ANNS technique so as to achieve k-nearest neighbors matching. Thus, the process
of computing the matrix Z can be efficiently implemented in O(nd log(m)) [21].

Accordingly, the similarity matrix A can be obtained by [18]

A = Z�−1ZT , (5)

where the diagonal matrix � ∈ R
m×m is defined as �jj = ∑n

i=1 zij .

2.2 Feature selection with anchor graph and �2,1-norm regularization

According to the manifold learning theory, high-dimensional data lies in or is close to a
low-dimensional manifold, and there is always a matrix W ∈ R

d×l that can preserve the
manifold structure after projection, where d is the original dimension, l is the projection
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dimension. A typical dimensionality reduction algorithm is proposed in [12, 27] to solve
the following problem:

min
WT W=I

T r(W T XT LXW ), (6)

where I denotes the identity matrix, L ∈ R
n×n is Laplacian matrix which is defined byL =

D − A, D is a diagonal matrix, and the i-th entry is defined as Dii = ∑n
j=1 aij . Problem

(6) is a dimensionality reduction model and the projected feature is a linear combination of
all original features. However, in many applications, we are more interested in the feature
selection model. Since only a few important features are involved in the projection and the i-
th row of matrix W could be used to measure the importance of i-th feature of original data.
The task of our proposed method is to find the optimal projection matrix that is constrained
to be a row sparse matrix, which can be achieved by means of �2,1-norm regularization.
Therefore, problem (6) can be rewritten as follows for feature selection:

min
WT W=I

T r(W T XT LXW ) + α‖W‖2,1, (7)

where α is the regularization parameter, ‖W‖2,1 is defined as
∑d

i=1 ‖wi‖2, where wi ∈
R

l×1 is the transpose of the i-th row of W . From (5), A can be written as A = BBT , where

B = Z�− 1
2 . For the degree of each data point, we have Dii = ∑

sj Zis(�ss)
−1Zjs =∑

s Zis = 1. Therefore, it is easy to see that A is a double stochastic matrix, and we
obtain the diagonal matrix D = I and L = I − BBT . Accordingly, we propose our fast
unsupervised feature selection (FUFS) model by solving the following problem:

min
WT W=I

T r[W T XT (I − BBT )XW ] + α

d∑
i=1

‖wi‖2. (8)

Obviously, ‖wi‖2 can be zero in theory, however, this will make Eq. (8) non-differentiable.

To avoid this issue, ‖wi‖2 is replaced by
√

wT
i wi + ε to make Eq. (8) differentiable, where

ε is a small enough constant. Therefore, we obtain

min
WT W=I

T r[W T XT (I − BBT )XW ] + α

d∑
i=1

√
wT

i wi + ε, (9)

which is evidently equal to problem (8) when ε is infinitely close to zero. The Lagrangian
function of problem (9) is

L(W , �) = T r[W T XT (I − BBT )XW ]

+α

d∑
i=1

√
wT

i wi + ε + T r(�(W T W − I )), (10)

where � is the Lagrangian multiplier. By taking the derivative of L(W ,�) w.r.t W , and set
the derivative to zero, we obtain

∂L(W ,�)

∂W
=XT(I −BBT )XW +αQW +W�=0. (11)

where Q ∈ R
d×d is a diagonal matrix, and the i-th element is defined as

Qii = 1

2
√

wT
i wi + ε

. (12)
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Note thatQ is also a unknown variable and dependent onW . We now propose an alternative
iterative algorithm to solve problem (9). When W is fixed, then Q is obtained by Eq. (12).
When Q is fixed, solving Eq. (11) is equivalent to solving

min
WTW=I

T r[W TXT(I −BBT)XW ]+αT r(W TQW ), (13)

and problem (13) can be solved directly to obtain W . Let M = XT (I − BBT )X; as such,
the details of this algorithm are summarized in Algorithm 1. The convergence of Algorithm
1 has been proved in our previous work. For detail and proof, see lemma 1 in [26].

2.3 Computational complexity analysis

Our proposed method (FUFS) consists of four steps:

1. We need O(1) and O(ndmt) to generate m anchors by random selection and the k-
means method respectively, where t is the iterative number of the k-means.

2. We need O(nd log(m)) to obtain the matrix Z.
3. We need O(ndm + nd2 + d2m) to calculate M .
4. We need O(d2l) to obtain projection matrix W by performing eigenvalue decomposi-

tion on (M + γQ).

Considering that d � m � n for very large-scale data sets, l and the iterative number of our
proposed iterative algorithm are usually fairly small; the overall computational complexity
of FUFS-R and FUFS-K is O(ndm) and O(ndmt) respectively.

3 Experiments

In this section, several experiments are performed to demonstrate the effectiveness and effi-
ciency of our proposed method (FUFS), and then show several analysis of experimental
results. As there are two common ways to generate anchor points, FUFS can be further sub-
divided into FUFS-R and FUFS-K, where anchor points are generated by random selection
and the k-means method respectively.
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3.1 Experimental setup

We conduct experiments on four benchmark data sets in terms of clustering and running
time. These data sets include one face data set (MSRA25), three hand written digit image
data sets (USPS, MNIST and Extended MNIST). The above four data sets can be catego-
rized into small, medium and large sizes. In our experiment, we regard MSRA25 and USPS
as small-sized data sets, MNIST as medium-sized data set, while Extended MNIST is con-
sidered large-sized data sets. The important statistics of these data sets are summarized in
Table 1.

For our proposed method (FUFS), there are two unique parameters that need to be set
in advance: projection dimension (i.e., l) and the number of anchor points (i.e., m). In
our experiment, we set the projection dimension as the number of clusters for FUFS-R
and FUFS-K, then set the number of anchor points as 500 for small-sized data sets, 1000
for medium-sized data sets, and 2000 for large-sized data sets. To ensure a fair compar-
ison between the different unsupervised feature selection algorithms, we fix k = 5 for
all data sets to specify the size of neighborhoods. The number of selected features is set
from half of the total number to the full feature size, while all other parameters are tuned
from {10−3, 10−2, 10−1, 1, 10, 102, 103}. After the different combinations of parameters
are fixed, each feature selection algorithm is first executed to rank features, after which the
k-means was repeated 30 times in the selected feature subspace and compute the average
results to alleviate the stochastic effect. Owing to space limitations, only the best results
from the optimal parameters are reported here. All these compared methods are imple-
mented in MATLAB R2015b, and run on a Windows 7 machine with 3.40 GHz i7-6700
CPU, 16 GB main memory.

3.2 Evaluation metrics

To evaluate the clustering results, we adopt two widely used evaluation metrics to measure
the learning performance:

Clustering Accuracy (ACC) discovers the one-to-one relationship between clusters and
classes and measures the extent to which each cluster contained data points from the
corresponding class. Clustering Accuracy is defined as follows:

ACC =
∑n

i=1 δ(map(ri), li )

n
, (14)

where ri denotes the cluster label of xi and li denotes the true class label, n is the total number
of samples, δ(x, y) is the delta function that equals one if x = y and equals zero otherwise,
and map(ri) is the permutation mapping function that maps each cluster label ri to the
equivalent label from the data set. The larger the value of ACC is, the better performance is.

Table 1 Data Set Description

Data Set Samples Features Classes

MSRA25 1799 256 12

USPS 9298 256 10

MNIST 70000 784 10

Extended MNIST 630000 900 10
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Normalized Mutual Information (NMI) is used for determining the quality of clusters.
According to the definition in [30], NMI is estimated by

NMI =
∑c

i=1
∑c

i=1 ni,j log
ni,j

ni n̂j√
(
∑c

i=1 ni log
ni

n
)(

∑c
j=1 n̂j log

n̂j

n
)

, (15)

where ni is the number of data contained in the cluster Ci(1 ≤ i ≤ c), which is generated
by a clustering algorithm. While n̂j is the number of data belonging to the j -th ground truth
cluster, and ni,j denotes the number of data that are in the intersection between cluster Ci

and the class Lj . Similarly,a larger NMI indicates a better clustering result.

3.3 Compared algorithms

In the experiments, we have compared our methods (FUFS-R and FUFS-K) with following
unsupervised feature selection approaches:

– Baseline: All original features are adopted as the baseline in the experiments.
– LS: Laplacian Score [9] where features are ranked according to their power of locality

preserving in a descending order.
– MCFS: Multi-Cluster Feature Selection [1] which selects those features that can best

preserve multi-cluster structure of the data by using spectral regression with �1-norm
regularization.

– UDFS: Unsupervised Discriminative Feature Selection [35] which simultaneously
exploits discriminative information and feature correlations.

– NDFS: Nonnegative Discriminative Feature Selection [15] which selects features by a
joint framework of nonnegative spectral analysis and �2,1-norm regularized regression.

3.4 Results and analysis

The average running time of all methods is shown in Table 2, while the clustering per-
formance is shown in Tables 3 and 4. From the results, the following observations can be
made. First, feature selection can not only make the subsequent processing more efficient
by selecting a subset of original features, but also significantly improves the learning per-
formance. All feature selection methods exhibit better performance than Baseline in terms
of ACC. This is mainly caused by the removal of redundant and noisy features. Second, for
small-sized data sets, our FUFS method has no obvious advantages over traditional graph-
based unsupervised feature selection methods; however, the performance is much better than
LS, which has the lowest computational complexity of all the compared methods. Moreover,
for medium-sized and large-sized data sets, the proposed FUFS-R and FUFS-K achieve

Table 2 Running time (in seconds) for different selection methods

Data Set LS MCFS UDFS NDFS FUFS-R FUFS-K

MSRA25 0.128 1.036 1.252 2.012 0.747 1.063

USPS 0.967 22.239 23.665 7.969 2.454 5.041

MNIST 918.7 1147.5 3980.3 5086.1 33.4 95.4

Extended MNIST OM OM OM OM 293.8 3458.5

(Top 2 highest-ranked methods are highlighted in bold, ’OM’ means ’out-of-memory error’)
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Table 3 Clustering results (ACC%) for different selection methods

Data Set Baseline LS MCFS UDFS NDFS FUFS-R FUFS-K

MSRA25 56.5 59.6 63.1 59.0 64.2 61.8 62.0

USPS 67.7 68.0 69.1 68.1 75.6 72.5 76.5

MNIST 57.9 59.4 59.9 60.2 60.4 58.7 59.9

Extended MNIST 46.3 – – – – 50.1 50.9

(Top 2 highest-ranked methods are highlighted in bold)

significant improvements in running time. FUFS-R and FUFS-K only need 33.474 and
95.466 seconds, respectively, which is 28 and 6 times faster than the third-fastest method
(LS) on the medium-sized data set (MNIST). Meanwhile, our methods achieve competi-
tive performance for almost all data sets, and FUFS-K achieves the best performance on
USPS and Extended MNIST. In addition, we can expect to obtain a more accurate similar-
ity matrix as the number of anchor points increases, meaning that the performance of both
FUFS-R and FUFS-K could conceivably achieve even higher performance. Third, although
FUFS-R selects anchor points randomly, its performance is not significantly lower than that
of FUFS-K, while the running time is much smaller than that of FUFS-K. Compared with
FUFS-R, the extra running time of FUFS-K is derived from the use of the k-means method
to generate anchors, and this method may require a large number of iterations to converge
in some cases. Therefore, considering both accuracy and efficiency, FUFS-R is the best
unsupervised feature selection method among all of the compared approaches, especially
for very large-scale data sets.

3.5 Studies on parameter sensitivity and convergence

In this subsection, we first evaluate parameter sensitivity for our proposed method FUFS-
R. From the results shown in Figs. 1 and 2, we can see that different combinations of
parameters may result in different learning performance. To illustrate the influence of the
regularization parameter and number of features on the learning performance, we conduct
experiments to assess Clustering Accuracy on four benchmark data sets. Figure 1 shows that
our method is robust to the parameter α with wide ranges, while comparatively sensitive to
the number of selected features. We also study the parameter sensitivity with regard to the
number of anchor points. Figure 2 shows that as the number of anchor points increases, the
performance does not always improve, while the running time increases in a linear fashion.
Thus, we can make a tradeoff between computational complexity and learning performance
by selecting an appropriate number of anchor points. Theoretically, the optimal number of

Table 4 Clustering results (NMI%) for different selection methods

Data Set Baseline LS MCFS UDFS NDFS FUFS-R FUFS-K

MSRA25 55.8 62.4 68.9 65.3 67.7 64.9 67.6

USPS 60.4 61.5 61.8 61.5 64.1 62.5 64.3

MNIST 48.1 51.4 52.2 49.5 51.5 49.4 51.2

Extended MNIST 38.8 – – – – 40.1 40.6

(Top 2 highest-ranked methods are highlighted in bold)
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Fig. 3 Convergence curves of the proposed algorithm (FUFS-R)

anchor points is larger corresponding to a larger scale data set; however, determining the
optimal number of anchor points for different data sets is still an open problem.

To solve the objective function, we have developed an efficient iterative algorithm. And
now we experimentally study the speed of its convergence. Figure 3 shows the objective
function values versus the number of iteration. From the figure, we can see that the conver-
gence curves of the objective value monotonically decreases with a faster speed, and our
algorithm converges to the optimum, almost within four iterations. The fast convergence of
Algorithm 1 validates the efficiency of our proposed method.

4 Conclusion

In this paper, we propose a fast graph-based unsupervised feature selection method,
which applies an anchor-based strategy to construct a similarity graph by means of a
parameter-free adaptive neighbor assignment strategy with fast approximate nearest neigh-
bor matching, then adds a �2,1-norm regularization into the objective function. To solve
the optimization problem of FUFS, an efficient iterative algorithm was executed to obtain
the projection matrix. Extensive experiments have shown that FUFS-R overcomes the
limitations of existing graph-based strategy in dealing with extremely large-scale data sets.
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