
Multimed Tools Appl (2018) 77:21131–21161
https://doi.org/10.1007/s11042-017-5574-0

Evaluating color and texture features for forgery
localization from illuminant maps

Divya S. Vidyadharan1,2 ·Sabu M. Thampi3

Received: 31 March 2017 / Revised: 29 November 2017 / Accepted: 21 December 2017 /
Published online: 4 January 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Images are widely accepted as a record of events even when images are prone to
easy manipulations. It is difficult to identify image alterations by the human visual system.
Once an image is identified as forged, the next step is to locate forged regions. Recently, dis-
tribution of scene illumination across an image has been analyzed to detect forged images
and to locate forged image regions. In this paper, we investigate the problem of locating
spliced image region based on illumination inconsistency. We investigated the discrimina-
tive power of a number of color and texture descriptors in locating spliced image regions.
During digital crime investigations, often it is required to detect the spliced face in a group
photo. Here, we have selected forged images containing human facial regions where the
regions to be compared are of similar object material, human skin regions. We evaluated
various color, texture, and combined color-texture descriptors in an unsupervised manner by
comparing the distance between the feature vectors to identify the inconsistent image region.
We also investigated the performance of different histogram similarity measures including
heuristic histogram distance measures, non-parametric test statistics, information theoretic
divergences, and cross-bin measures. Experiments show that the Local Phase Quantization
(LPQ) descriptor performs best in identifying the spliced image region from the illuminant
map.
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1 Introduction

Image contents are considered as an authentic representation of events. Plenty of images
are encountered in our day-to-day life as more and more hand-held devices are equipped
with image capturing and image editing tools in addition to traditional digital still cameras.
This substantiated with the handiness of a lot of image processing software makes it easier
to manipulate images. This has attracted the attention of researchers and has led to the
development of a lot of image forensic techniques that reveal image alterations.

Digital crimes involving forged images containing human facial regions are increas-
ing recently. Once an image is proved as a forged image, the next step is to locate the
forged facial region. The techniques that locate forged regions are termed as forgery local-
ization techniques. For example, in a forged group photo, the task is to locate the spliced
facial region among various facial regions in the image. Usually, forgery localization
techniques detect the presence of irregularities in forged regions. Whenever an image con-
tent is altered by adding/modifying an image region, it changes the original patterns of
scene information such as the color of scene illumination, thus creating an inconsistent
region.

In this work, we analyze the inconsistency in the scene illumination across different
image regions for detecting forged region. For this, we rely upon the scene illumination
representation proposed by Riess and Angelopoulou [33]. The color of scene illumination
is recorded in the pixels and if the scene were illuminated by multiple light sources, then
different image regions will exhibit different illuminant color, introducing a pattern. The
properties of this pattern will be different at a spliced (copy-pasted) image region when
compared to the untouched regions within the image. Since the surface reflectance proper-
ties depend on the material of the object, only similar object materials can be compared for
checking the inconsistency. Therefore, the illumination pattern and color, in the facial skin
regions are analyzed to reveal the spliced facial region.

Forgery detection and localization in spliced images by exploiting inconsistencies in illu-
mination is addressed earlier in [6, 8, 11, 13, 15, 16, 27, 33, 46, 47, 51, 52]. Gholap and Bora
developed a technique based on the difference in the illuminant color observed from differ-
ent image regions [16]. Here, an image is declared as authentic if different image regions
report the same illuminant color, otherwise declared as forged. Cao et al. developed a forgery
detection method that considers color histograms and illuminant color differences estimated
from foreground and background image regions [6]. Wu and Fang proposed another forgery
localization method [51], where the image is divided into different overlapping blocks and
one of the blocks is selected as the reference block. The image block is declared as spliced
if the illuminant color difference between the corresponding block and the reference block
is greater than a threshold.

Fan et al. devised a forgery localization technique that automatically selects reference
illuminant color [13]. Here, the image is divided into different vertical and horizontal
regions, a region is declared as spliced if the difference between the estimated illuminant
color and the reference illuminant color is greater than a threshold. Illuminant estimation
is carried out using 5 different algorithms, and for each algorithm the inconsistent regions
are identified. Finally, the intersection of all inconsistent regions is declared as the spliced
region. Vidyadharan and Thampi proposed a forgery localization technique by applying
histogram distance measures on brightness distribution obtained from facial skin regions
[46].

Among the forensic techniques that consider illumination inconsistency, certain works
consider forgery localization in spliced images by analyzing human facial regions [8, 11,
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15, 27, 33, 47]. Riess and Angelopoulou, in their pioneering work that forensically analyze
illuminant distribution across an image, found that a manual examination of illuminant
representation could reveal forged image regions [33]. This finding is further explored by
Carvalho et al., by utilizing edge and texture features generated from the facial regions
extracted from the illuminant maps [11]. They automated forgery detection by developing a
machine learning technique that classifies forged and authentic images based on the discrep-
ancies in the texture and edge features from the illuminant representation. Later, Carvalho
et al. improved forgery detection and considered forgery localization as well, by consid-
ering color, and shape features, in addition to texture features with the help of a classifier
ensemble [8].

Meanwhile, there are certain techniques that followed non-machine learning approaches
for forgery detection and localization [15, 27, 47] from images containing spliced human
facial regions. Francis et al. developed a forgery localization technique based on differ-
ences in illuminant color estimated from the nose tips of different persons in a group photo
[15]. Vidyadharan and Thampi proposed a technique where a Principal Component Anal-
ysis (PCA) is carried out on facial regions extracted from the illuminant maps for locating
spliced facial region [47]. Mazumdar and Bora devised a Dichromatic Plane Histogram
(DPH) based technique to detect forged images [27]. The DPH is considered as an illu-
mination signature for a face, and DPHs obtained from facial regions captured at similar
illumination will be similar. The similarity between DPHs are examined using correlation
measure. If the correlation measure of any of the face pairs in an image is lower than a
threshold the image is considered forged.

In the proposed work, we investigate the discriminative power of different color, texture
and combined color-texture features in locating spliced facial region from the illumination
representation of an image. This evaluation is inspired by Van de Sande’s evaluation of
color descriptors for scene recognition [36]. The attempt to consider combined color and
texture features is motivated by the work of Khan et al. where a compact texture and color
descriptor is used for texture classification [21].

The main contributions of the work are,

– An evaluation of 5 texture descriptors, 5 color descriptors, 3 descriptors that combined
color and texture features, 5 color moments and histogram descriptors, and 5 color-
shape descriptors for forgery localization from illuminant maps.

– Evaluation of the performance of various categories of histogram distance measures.
– A comparison exhibiting a better detection accuracy for forgery localization based on

texture descriptors than existing non-machine learning approaches.

Even though we evaluated the discriminative power of various descriptors on forgery
localization, the results of the study can be applied to other image processing domains that
consider the similarity of segmented images. Also, the comparison of features to detect
similarity in digital data can be used in different applications [34, 41, 53, 54].

The rest of the paper is organized as follows. In Section 2, we discuss the representa-
tion of scene illumination and illuminant maps briefly. The texture descriptors considered
in the work are briefed in Section 3. The color descriptors used for locating spliced face
is discussed in Section 4. The combination features, such as color-texture descriptors are
discussed in Section 5. Additional features considered are mentioned in Section 6. The eval-
uation framework illustrating how various descriptors are generated from the illumination
representation and how the descriptor representing the spliced face is located is mentioned
in Section 7. The details of experiments including the experimental setup, distance met-
rics used for comparing the feature descriptors, performance evaluation criteria, and the
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experimental analysis conducted are detailed in Section 8. Finally, the conclusion of the
work is given in Section 9.

2 Representing scene illumination

When an image is captured by the camera sensor, the illumination present in the environ-
ment is recorded in the pixels. The scene illumination information present in an authentic
unaltered image will be consistent whereas, in a forged image, the scene illumination will
be inconsistent at the forged region. For studying the change in the pattern and color of
illumination, we used illuminant maps - the scene illumination representation proposed by
Riess and Angelopoulo [33].

For generating the illuminantmap, an image is first segmented into regions of similar color.
Each region is further divided into small patches. From each patch, the color of illumination,
termedas illuminant color is estimated. Finally, amajority voted illuminant color is selected as
the illuminant color of the region. Since illuminant color is estimated locally at a region this
representation is capable of representing the multi-illuminant environment [33]. In [11], Car-
valho et al. have used two variants of illuminant maps, such as Inverse Intensity Chromatic-
ity (IIC) Map and Generalized Grey World (GGW) map. In GGW, the illuminant color in an
image patch within a region is computed using the statistical approach followed in General-
ized Grey Edge Framework proposed by Van de Weijer in [44]. In IIC map, the illuminant
color in the image patch is computed using the Inverse Intensity Chromaticity space pro-
posed by Tan et al. in [42] based on the physics-based Dichromatic Reflection Model [14].
Figure 1 shows an example of original unmodified image, a spliced image, corresponding
illuminant maps, and facial regions extracted from the respective illuminant maps.

In our work, we evaluated the discriminative power of color, texture, and combined color-
texture features in IIC and GGW illuminant maps. The illuminant maps show a texture
pattern that varies in color, depending on the scene illumination intensity and the direction
of light. Thus, the texture properties and color properties at a spliced region may differ
from the rest of the untouched regions in the image. Here, we explore how the difference in

Fig. 1 An example of the original image and spliced image, corresponding illuminant maps and extracted
facial regions. Both the original and spliced image are taken from tifs-database [11]
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the texture and color properties among different facial regions within an image can locate
forged regions.

3 Texture descriptors

In this work, we evaluate the discriminative power of 5 popular texture descriptors.
Local Binary Pattern (LBP). Ojala et al. proposed a local texture descriptor known as

Local Binary Pattern capable of capturing texture patterns [30, 40]. Here, the pixels in a
local neighborhood are compared with the central pixel. If the neighboring pixel is greater
than the central pixel, that pixel is coded with a one and otherwise a zero. Finally, these
binary values are concatenated to get the LBP code. All these LBP codes are counted and
the distribution is represented as the LBP histogram (256-bin).

Completed Local Binary Pattern (CLBP). Guo et al. devised a completed LBP descriptor
that makes use of the Local Difference Sign-Magnitude Transform (LDSMT) [17]. In tradi-
tional LBP, texture pattern around the neighborhood of a pixel is represented by the sign of
the difference between current and the central pixel. In complete LBP, both the magnitude
of the difference and the central pixel value are also considered. The sign and magnitude
CLBP representations, when joined, is represented as CLBP S/M (59049-bin).

Local Phase Quantization (LPQ). T Ojansivu and Heikkilä [31] proposed blur invariant,
local texture descriptor that performed better on non-blurred images as well. The phase of
low-frequency components in the Fourier domain are used to represent texture. The phase
values of four low-frequency components are decorrelated and quantized to get the LPQ
codeword. Finally, the codewords are represented as LPQ histogram (256-bin).

Binarized Statistical Image Features (BSIF). BSIF is a 256-bin dense descriptor where
a binary code for a pixel is generated by convolving a neighborhood region of pixels with
filters that are learned by prior training by independent component analysis [20]. Training
is performed using image patches randomly sampled from a small set of natural images.
Thus, the filters capture the statistical properties of natural images.

Binary Gabor Pattern (BGP). Zhang et al. proposed a texture feature using Gabor filters
[55]. Here, an image is convolved with even symmetric and odd symmetric Gabor filters at
three different resolutions to obtain a 216 bin histogram termed as the Binary Gabor Pattern.

4 Color descriptors

Inconsistencies in illumination are visible as noticeable color changes in the illuminant maps
of forged images. Thus, to study the discriminative power of color for forgery localization,
we considered various color descriptors, including color name descriptors, color histograms
and color moments.

ColorNames.Color name descriptors represent colors based on human perception of color
as linguistic terms such as ‘Red’ and ‘Blue’. Benavente et al. devised an 11-bin color name
descriptor, Automatic Color Names (ACN), based on the parametric model with fuzzy set
membership for different colors [2]. Van de Weijer et al. devised an improved version of lin-
guistic color names, termed as Color Names (CN), by learning from real-world images [50].

Discriminative Color Descriptors(DCD).Khan et al. proposed a discriminative color des-
criptors that represent the color features with clusters grouped based on their discriminative
power in classifying images [22]. The color descriptors with 11, 25, or 50 clusters are
available.
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In addition to the above color descriptors, we have studied the performance of a few more
color histograms and color moment descriptors mentioned in Table 1.

5 Combined color-texture descriptors

Although color and textures can be represented well as separate descriptors, certain attempts
have been made to combine the features for computer vision tasks such as texture classifica-
tion [21]. Currently, color and texture features are combined in either of two ways described
as follows. In the first approach, color and texture features are computed separately and the
final descriptors are combined together by concatenating the feature vectors. In the second
approach, known as the joint approach, the texture descriptor is computed in different color
channels separately and all these texture descriptors are concatenated later [1].

Color LPQ. Pedone and Heikkilä proposed an extension to LPQ that considers color
features [32]. Here, the 1280-bin descriptor is computed from a multi-vector representation
of color.

Color Texton Descriptors. Alvarez and Vanrell extended the traditional texton theoretic
approach considering the color and shape of image blobs [1]. The basic image blob repre-
sentation is as follows. A perceptual blob is defined as a region with similar color identified
from opponent color space. Later, shape attributes and color attributes of blobs are extracted.
Shape attributes include width, length, and orientation. Color attributes include the intensity,
rg and by components extracted using the median of color information of all pixels belong-
ing to the blob. Thus, there is a total of six attributes. Each attribute value is then quantized
in m intervals resulting in 6 x m terms. Finally, the attributes are described by concatenat-
ing the probability distribution of all six attributes. This representation is further improved
by adding the perceptual relationships between attributes and the co-occurrence of shape
and color attributes of blobs. Perceptual relationships between shape attributes are added by
transforming the attributes into shape space. The two axes in the shape space represent the
width and length and the third axis represents the angle. Three quantization models such

Table 1 Details of color
histograms and color moments
considered in the evaluation

Descriptor Dimension Based on

Opponent histogram 36 combined histograms of

[21, 36] O1,O2,O3

channels in opponent color space

Hue histogram 36 by weighing the hue samples

[36, 49] by saturation

rgb histogram 45 combined histograms of

[21, 36] r,g,b channels.

rg histogram 45 normalized RGB

[21, 36]

Transformed 36 normalizing each channel

[21, 36] of RGB histogram

Color moments 36 generalized color moments

[21, 36]

Color moment invariants 24 generalized color moments

[29]
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as Cartesian, Cylindrical and Circular models are used for shape space representation. The
color attributes are represented as HSI-Carron [7] and HSV-Smith spaces [38]. These color
and shape attributes can be represented either as combined at the blob level or separate at
the image level resulting in the following texton descriptors.

Co-joint Texton Descriptor (JTD): This descriptor represents the color and texture
attributes as a joint probability distribution. Thus the co-occurrence of color and shape
attributes are taken care of.

Semi-joint Texton Descriptor (STD): This descriptor represents color and texture by
concatenating the probability distribution of color and texture.

6 Additional features

For analyzing the differences in underlying pixel statistics, we have used two more features
such as edge features and Grey Level Run Length features (GLRLM) [43]. Edge features are
represented by Histogram of Oriented Gradients (HOG) proposed by Dalal and Triggs [10].
HOG and GLRLM features are 81-bin dimensional and 44-bin dimensional respectively.

We also considered features based on Scale Invariant Feature Transform (SIFT). The
SIFT, proposed by Lowe [25] represents the local features representing regions around iden-
tified keypoints within an image. Since keypoint based feature extraction is performed,
SIFT represents the spatial information of image regions. Here, different variants of SIFT
such as HSV-SIFT [4], Opponent-SIFT [36], C-SIFT [5], rg-SIFT [36] and rgb-SIFT [36]
as discussed by van de Sande et al. in [36], are considered. Details are given in Table 2.

7 Evaluation framework

We used the evaluation framework shown in Fig. 2 for evaluating the forgery localization
capability of different feature descriptors. At first, the given image is represented as an
illuminant map showing the variation in the illumination pattern across the image. The facial
regions are extracted from this illuminant map by specifying the bounding box around each
face. Then, the feature descriptor to be evaluated is generated from each face. Finally, the
distance between the descriptors are compared among themselves, to identify the descriptor

Table 2 Details of color-shape descriptors considered for the evaluation

Descriptor Dimension Based on

SIFT [25] 128 local features around keypoints

Hue-SIFT [36] 165 concatenation of Hue histogram
with SIFT feature vector

HSV-SIFT [4] 384 SIFT descriptors from 3 channels
of HSV color space

Opponent SIFT [36] 384 SIFT descriptors from 3 channels
of Opponent color space

rg-SIFT [36] 384 SIFT descriptors from the r,g components
of normalized RGB color space

C-SIFT [5] 384 SIFT descriptors based on C-invariant

rgb-SIFT [36] 384 SIFT descriptors computed on R,G,B channels
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that represents the spliced face. The descriptors representing faces captured at same illu-
minant environment will be similar compared to the descriptor representing spliced face.
Therefore, the distance between descriptors representing authentic faces will be less com-
pared to the descriptor representing spliced face. Accordingly, the spliced face is located.
We evaluated different histogram distance measures to identify the most dissimilar feature
descriptor. The steps involved in evaluating a feature descriptor with M number of distance
measures is given in Algorithm 1.

8 Experiments and results

8.1 Datasets

For experimental evaluation we used spliced images from three datasets, such as i) DSO-
I ii) SwapMe and iii) FaceSwap. The DSO-I dataset is taken from tifs-database1 [11].
The tifs-database contains 100 spliced images containing human facial regions, saved in
Portable Network Graphics (PNG) with a resolution of 2,048 x 1536 pixels. We used a sub-
set of 55 spliced images that contain more than two facial regions for evaluating the forgery
localization capability of various color and texture descriptors.

The SwapMe and FaceSwap datasets contains spliced images created by exchanging a
source facial region with a destination facial regions [56]. For our experiments, we selected

1http://ic.unicamp.br/∼rocha/pub/downloads/2014-tiago-carvalho-thesis/tifs-database.zip

http://ic.unicamp.br/~rocha/pub/downloads/2014-tiago-carvalho-thesis/tifs-database.zip
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Fig. 2 The framework illustrating the steps involved in the evaluation process. For clarity, scaled version of
feature descriptors are shown. The input image shown is taken from tifs-database [11]

a subset of 55 spliced images from the Swapme dataset. From the FaceSwap dataset, we
selected 33 images that were not present in Swapme. Along with FaceSwap images, we
combined our own set of 7 spliced images to create a Combined FaceSwap dataset. All the
selected spliced images in both Swapme and Combined FaceSwap contained three or more
facial regions.

We used two variants of illuminant maps such as GGW and IIC. In Sections 8.2–8.13, we
present the feature extraction process, performance evaluation criteria, and the evaluation
of various descriptors for forgery localization from illuminant maps.

8.2 Feature extraction

For illumination representation, the two variants of illuminant maps such as IIC and
GGW maps were generated using the software2 [33]. From the illuminant map, all the
facial regions are extracted. Then, feature descriptors are computed for each facial region.
The similarity among the feature vectors is measured using different histogram distance
measures.

2http://www5.cs.fau.de/research/areas/computer-vision/image-forensics/scene-illumination-as-an-indicator-
of-image-manipulation/

http://www5.cs.fau.de/research/areas/computer-vision/image-forensics/scene-illumination-as-an-indicator-of-image-manipulation/
http://www5.cs.fau.de/research/areas/computer-vision/image-forensics/scene-illumination-as-an-indicator-of-image-manipulation/
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8.3 Distance measures considered

Feature descriptors extracted from the facial regions in the illuminant maps can be con-
sidered as a distribution. As studied in the work of Meshgi and Ishii [28], we compared
feature descriptors using various categories of histogram distance measures such as, heuris-
tic distance measures, non-parametric test statistics, information theoretic divergences, and
cross-bin distance measures.

From heuristic distance measures, we considered the L2 distance and the Pearson Cor-
relation Coefficient [3]. From the non-parametric test statistics, we used the Kolmogorov-
Smirnov distance (KS) [26], Cramer-von Mises Statistics (CM) [12], Chi-square (CS)
statistics [23, 39], and Bhattacharya Distance (BD) [19]. The Kullback-Leibler divergence
(KL) measure, is based on information theoretic divergences [23]. The Diffusion Distance
(DF) [24] and the Earth Mover’s Distance (EMD) consider cross-bin information capable
of capturing the perceptual similarity of images [23, 35].

8.4 Performance evaluation criteria

In forgery localization, the objective is to locate forged image region within spliced images.
Hence, the performance of a method can be measured by the detection rate of detecting
forged facial regions within spliced images. Here, the performance is evaluated using the
following performance metrics,

Sensitivity or Recall or T PR = FacesLocated

ImagesSpliced
(1)

where FacesLocated = No. of spliced faces located correctly,
ImagesSpliced = Total no.of spliced faces, and TPR is the True Positive Rate.

Specif icity or T NR = AuthenticFacesDetected

FacesAuthentic
(2)

where AuthenticFacesDetected = No. of authentic faces detected correctly, and
FacesAuthentic = Total no.of authentic faces.

Accuracy = T P + T N

T P + FP + FN + T N
(3)

Precision = T P

T P + FP
(4)

F − Score = 2
Precision.Recall

P recision + Recall
(5)

8.5 Experiment 1: evaluating texture descriptors

LBP and LPQ descriptors are obtained using the software provided by the respective authors
3. The BSIF 4 and BGP 5 features are estimated using the source code provided by the
corresponding authors. The CLBP features are generated by using the source code provided
by Guo et al. 6 [17].

3http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
4http://www.ee.oulu.fi/∼jkannala/bsif/bsif.html
5http://sse.tongji.edu.cn/linzhang/BGP/BGP.htm
6http://www.comp.polyu.edu.hk/∼cslzhang/code/CLBP.rar.

http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
http://www.ee.oulu.fi/~jkannala/bsif/bsif.html
http://sse.tongji.edu.cn/linzhang/BGP/BGP.htm
http://www.comp.polyu.edu.hk/~cslzhang/code/CLBP.rar
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Fig. 3 Sensitivity obtained for texture descriptors from IIC maps using different distance measures

First, we considered texture descriptors and the sensitivity obtained from IIC and GGW
illuminant maps are shown in Figs. 3 and 4 respectively. It is interesting to note that, the
distance measure providing the best sensitivity is different for different texture features. The
reason is that the nature of the feature vectors and the discriminative capability of different
texture descriptors varies. Among the various distance measures, CS, BH, and KL yielded
the best results for LBP and LPQ descriptor in IIC map. For BGP, the distance measures
L2, and DF provided the best results. BSIF, and CLBP showed highest sensitivity with the
distance measures BH and, KL respectively.

In GGW map, the distance measures-CS and BH yielded best result for LBP and LPQ
(see Fig. 4). BGP showed good performance with CR, DF, EM distance measures and BSIF

Fig. 4 Sensitivity obtained for texture descriptors from GGW maps using different distance measures
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Table 3 Evaluation of texture descriptors on different datasets using IIC maps

Texture Descriptor DSO-I dataset

Precision Recall TNR Accuracy F-Score

LBP 54.24 58.18 80.15 73.82 56.14

LPQ 61.02 65.46 83.09 78.01 63.16

BGP 44.07 47.27 75.74 67.54 45.61

BSIF 41.38 43.64 75.00 65.97 42.48

CLBP 36.67 40.00 72.06 62.83 38.27

SwapMe Dataset

LBP 33.87 38.18 76.16 66.96 35.90

LPQ 33.90 36.36 77.33 67.40 35.09

BGP 36.07 40.74 76.92 68.16 38.26

BSIF 16.67 18.18 70.76 57.96 17.39

CLBP 30.16 34.55 74.27 64.60 32.20

Combined FaceSwap Dataset

LBP 31.92 37.50 76.30 67.43 34.48

LPQ 36.36 40.00 79.26 70.29 38.10

BGP 25.53 30.77 73.28 63.5294 27.91

BSIF 14.00 17.50 68.15 56.5714 15.56

CLBP 25.00 30.00 73.33 63.43 27.27

The texture descriptor LPQ gave best performance in DSO-I dataset and Combined FaceSwap dataset. In
SwapMe dataset, BGP gave best performance

The bold values show the highest values obtained for a particular dataset

exhibited highest sensitivity with KL distance measure. For comparing the performance
of the texture descriptors in different datasets such as DSO-I, SwapMe, and Combined
FaceSwap, we selected the distance measure-BH that provided better sensitivity in both IIC
and GGW maps.

The precision, sensitivity, specificity, accuracy and F-Score obtained for texture descrip-
tors using BH distance on IIC and GGW maps are shown in Tables 3 and 4, respectively.
Compared to the performance of texture descriptors on IIC maps, the descriptors exhibited
better performance on GGWmaps on all the three datasets. This means that the GGWmaps
carried more texture variations capable of discriminating spliced regions from authentic
regions.

8.6 Experiment 2: evaluating color descriptors

For evaluating various color descriptors for forgery localization, we used the software pro-
vided by Joost van de Weijer 7. The sensitivity obtained for various color descriptors on IIC
and GGW illuminant maps of spliced images in DSO-I dataset are shown in Figs. 5 and 6
respectively.

7http://cat.cvc.uab.es/∼joost/software.html

http://cat.cvc.uab.es/~joost/software.html
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Table 4 Evaluation of texture descriptors on different datasets using GGW maps

Texture Descriptor DSO-I dataset

Precision Recall TNR Accuracy F-Score

LBP 61.29 69.09 82.35 78.53 64.96

LPQ 68.42 70.91 86.76 82.20 69.64

BGP 37.29 40.00 72.79 63.35 38.60

BSIF 33.93 34.55 72.79 61.78 34.23

CLBP 47.54 52.73 76.47 69.63 50.00

SwapMe Dataset

LBP 33.90 36.36 76.92 66.96 35.09

LPQ 27.12 29.09 74.56 63.39 28.07

BGP 40.68 44.44 78.92 70.45 42.48

BSIF 36.21 38.18 77.98 68.16 37.17

CLBP 21.31 23.64 71.43 59.64 22.41

Combined FaceSwap Dataset

LBP 28.89 32.50 76.30 66.29 30.59

LPQ 23.91 27.50 74.07 63.43 25.58

BGP 28.57 30.77 77.10 66.47 29.63

BSIF 25.53 30.00 74.07 64.00 27.59

CLBP 20.45 22.50 74.07 62.29 21.43

Texture descriptors - LPQ, BGP, and LBP gave best performance in DSO-I, SwapMe and Combined
FaceSwap datasets respectively

The bold values show the highest values obtained for a particular dataset

Fig. 5 Sensitivity obtained for color descriptors from IIC maps using different distance measures
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Fig. 6 Sensitivity obtained for color descriptors from GGW maps using different distance measures

As in the case of texture descriptors, here also, for both IIC and GGW maps, the highest
sensitivity obtained for each color descriptor is different for different distance measures.
This indicates that the nature of the feature vector obtained with different descriptors are
different. In IIC map, distant measure DF resulted in the best sensitivity with DCD25 and
DCD50 descriptors. But, on GGW, the descriptor - Opponent histogram yielded highest
sensitivity using KS distance measure. This shows that both IIC and GGW may contain
varied color features, that can be captured using different color descriptors. Hence, it would
be better if both illuminant maps are considered in forgery localization techniques.

The precision, recall, TNR, accuracy and F-Score obtained for color descriptors on the
three datasets using IIC and GGW maps (with DF distance measure) are shown in Tables 5
and 6, respectively. For DSO-I dataset, the IIC maps showed better performance for color
descriptors compared to GGWmaps. But, for SwapMe and Combined FaceSwap, the varia-
tion in the performance of descriptors are less noticeable. This is due to the fact that, DSO-I
dataset contains images in uncompressed PNG format, and the IIC and GGWmaps showed
visible color variations. In addition to this, the clarity of facial regions in DSO-I dataset were
better compared to the clarity of facial regions in both SwapMe and Combined FaceSwap.

8.7 Experiment 3: evaluating combined color and texture descriptors

In this section, the discriminative power of descriptors that consider both color and texture
features, such as Color-LPQ, two variants of color textons - JTD and STD are evaluated. The
source code for computing Color LPQ descriptor was provided by Pedone [32]. The JTD
and STD descriptors are generated using the source code provided by Alvarez and Vanrell
8 [1]. The sensitivity obtained for various combined color and texture descriptors on IIC
and GGW illuminant maps of spliced images in DSO-I dataset are shown in Figs. 7 and 8
respectively.

In IIC map, Color LPQ and STD provided highest sensitivity with the distance measure
CR as shown in Fig. 7. Similarly, Color LPQ showed highest sensitivity with CR distance
measure in GGWmaps too. The precision, recall, TNR, and F-Score obtained for combined

8http://www.cat.uab.cat/Research/ColorTextureDescriptors/

http://www.cat.uab.cat/Research/ColorTextureDescriptors/
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Table 5 Evaluation of color descriptors on different datasets using IIC maps

Texture Descriptor DSO-I dataset

Precision Recall TNR Accuracy F-Score

Opponent 35.71 36.36 73.53 62.83 36.04

Hue 35.59 38.18 72.06 62.30 36.84

ACN 33.87 38.18 69.85 60.73 35.90

CN 41.67 45.45 74.26 65.97 43.48

DCD11 46.26 56.36 73.53 68.59 50.82

DCD25 54.24 58.18 80.15 73.82 56.14
DCD50 54.24 58.18 80.15 73.82 56.14

SwapMe Dataset

Opponent 18.97 20.00 72.51 59.73 19.47

Hue 22.73 27.27 70.18 59.73 24.79

ACN 28.81 30.91 75.44 64.60 29.82
CN 17.59 18.18 72.51 59.29 17.86

DCD11 22.41 23.64 73.68 61.50 23.01

DCD25 20.00 23.64 69.59 58.41 21.67

DCD50 20.00 23.64 69.59 58.41 21.67

Combined FaceSwap Dataset

Opponent 19.15 22.50 71.85 60.57 20.69

Hue 16.00 20.00 68.89 57.71 17.78

ACN 27.27 30.00 76.30 65.71 28.57

CN 19.15 22.50 71.85 60.57 20.69

DCD11 15.22 17.50 71.11 58.86 16.28

DCD25 12.77 15.00 69.63 57.15 13.79

DCD50 12.77 15.00 69.63 57.15 13.79

The descriptors -DCD25 and DCD50 showed better performance in DSO-I dataset, and ACN descriptor
showed best performance SwapMe dataset and Combined FaceSwap dataset

The bold values show the highest values obtained for a particular dataset

color-texture descriptors on various datasets using CR measure on both IIC and GGWmaps
are shown in Tables 7 and 8, respectively.

8.8 Experiment 4: evaluating color histograms, moments and color shape
descriptors

Color histograms, moments and shape descriptors are generated using the source code
provided by Koen van de Sande 9 [37].

Figure 9 shows the sensitivity obtained for color histogram moments and moment
descriptors in IIC map. The color moment invariants and rgb histogram yielded the highest
sensitivity of 64.58%with CS and KL distance measures. Table 9 shows the evaluation using
various performance metrics obtained on different datasets using CS distance measure.
Fig. 10 shows the sensitivity evaluation of color-shape descriptors. Among the different

9http://koen.me/research/colordescriptors/readme

http://koen.me/research/colordescriptors/readme
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Table 6 Evaluation of color descriptors on different datasets using GGW maps

Texture Descriptor DSO-I dataset

Precision Recall TNR Accuracy F-Score

Opponent 28.81 30.91 69.12 58.12 29.83

Hue 31.15 34.55 49.21 59.16 32.70
ACN 29.82 30.91 70.59 59.16 30.36

CN 30.00 32.73 69.12 58.64 31.30

DCD11 28.81 30.91 69.12 58.12 29.85

DCD25 29.82 30.91 70.59 59.16 30.36

DCD50 29.82 30.91 70.59 59.16 30.36

SwapMe Dataset

Opponent 24.14 25.45 73.96 62.05 24.78

Hue 28.81 30.91 75.15 64.29 29.82

ACN 25.81 29.09 72.78 62.06 27.35

CN 31.67 34.55 75.74 65.63 33.04

DCD11 22.41 23.64 73.37 61.16 23.09

DCD25 22.73 27.27 69.83 59.38 24.79

DCD50 22.73 27.27 69.83 59.38 24.79

Combined FaceSwap Dataset

Opponent 20.00 25.00 70.37 60.00 22.22

Hue 13.46 17.50 66.67 55.43 15.22

ACN 21.74 25.00 73.33 62.29 23.26

CN 5.77 7.50 63.70 50.86 06.52

DCD11 11.36 12.50 71.11 57.71 11.90

DCD25 11.11 12.50 70.37 57.14 11.76

DCD50 11.11 12.50 70.37 57.14 11.76

Among the various descriptors Hue, CN and ACN gave comparatively better results in DSO-I, SwapMe, and
FaceSwap datasets respectively

The bold values show the highest values obtained for a particular dataset

Fig. 7 Sensitivity obtained for combined color texture descriptors from IIC maps using different distance
measures
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Fig. 8 Sensitivity obtained for combined color texture descriptors from GGWmaps using different distance
measures

variants of color shape descriptors, Hue-SIFT exhibited the highest sensitivity of 54.17%
using L2 distance measure. Table 10 shows the evaluation of various performance metrics
obtained on DSO-I dataset using L2 distance measure.

8.9 Experiment 5: evaluating HOG and GLRLM descriptors

GLRLM and HOG features are computed using the Matlab source codes provided by Wei
[48] and Ludwig et al. [18] respectively. The highest sensitivity obtained for HOG is 43.64%
in IIC map using CR, DF distance measures, and 52.73% in GGW map with distance
measure DF. In both, IIC and GGW, the HOG descriptors performed better than GLRLM
descriptors. Figures 11 and 12 shows the sensitivity obtained for various distance measures

Table 7 Evaluation of combined color-texture on different datasets using IIC maps

Texture Descriptor DSO-I dataset

Precision Recall TNR Accuracy F-Score

Color LPQ 61.02 65.46 83.09 78.01 63.16

JTD 56.90 60.00 81.62 75.39 58.41

STD 59.02 65.46 81.62 76.96 62.07

SwapMe Dataset

ColorLPQ 32.00 32.65 74.81 63.59 32.32

JTD 37.70 46.94 71.21 64.64 41.82

STD 30.91 34.69 71.21 61.33 32.69

Combined FaceSwap Dataset

ColorLPQ 34.15 35.90 79.23 69.23 35.00

JTD 34.88 38.46 78.29 69.05 36.59

STD 34.09 38.46 77.52 68.45 36.14

The descriptor Color LPQ exhibited highest performance in DSO-I dataset, and JTD exhibited highest
performance in SwapMe and Combined FaceSwap

The bold values show the highest values obtained for a particular dataset
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Table 8 Evaluation of combined color-texture on different datasets using GGW maps

Texture Descriptor DSO-I dataset

Precision Recall TNR Accuracy F-Score

Color LPQ 63.16 65.45 84.56 79.06 64.29

JTD 43.86 45.46 76.47 67.54 44.64

STD 36.67 40.00 72.06 62.83 38.26

SwapMe Dataset

ColorLPQ 36.36 37.04 76.03 65.50 36.70

JTD 43.33 48.15 76.22 68.53 45.61

STD 35.71 37.04 74.83 64.47 36.36

Combined FaceSwap Dataset

ColorLPQ 30.23 34.21 76.56 66.87 32.10

JTD 22.92 28.95 71.09 61.45 25.58

STD 25.58 28.95 75.00 64.46 27.16

The descriptor ColorLPQ showed better performance in DSO-I and Combined FaceSwap datasets. On
SwapMe dataset, JTD showed better performance

The bold values show the highest values obtained for a particular dataset

in IIC and GGW maps respectively. The evaluation of HOG and GLRLM descriptors on
different datasets using IIC maps and GGWmaps is shown in Tables 11 and 12 respectively.

8.10 Evaluation of deep features

For evaluating the performance of deep features, we used the pretrained Convolutional Neu-
ral Network (CNN)model, vgg-f [9] available inMatConvNet library [45]. The CNNmodel,
vgg-f consists of 8 layers - 5 convolutional, and 3 fully-connected layers. The input image is
resized to 224 x 224 pixel regions. The 4096 dimensional deep features are extracted from
the 7th layer. We evaluated the deep features obtained from both IIC and GGW maps with
various distance measures. Tables 13 and 14 shows the performance obtained using IIC and
GGW maps with deep features extracted from the vgg-f model.

Fig. 9 Sensitivity obtained for color histogram and moment descriptors from IIC maps using different
distance measures.
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Table 9 Evaluation of color histogram and moment descriptors on different datasets using IIC maps

Texture Descriptor DSO-I dataset

Precision Recall TNR Accuracy F-Score

rgb histogram 56.00 58.33 80.18 73.59 57.14

rg histogram 54.90 58.33 79.28 72.96 56.57

Transformed color 47.06 50.00 75.68 67.92 48.48

Color moments 42.00 43.75 73.87 64.78 42.86

Color moment Invariants 44.00 45.83 74.77 66.04 44.90

SwapMe Dataset

rgb histogram 28.57 28.57 69.70 57.45 28.57

rg histogram 42.86 42.86 75.76 65.96 42.86

Transformed color 35.71 35.71 72.73 61.70 35.71

Color moments 50.00 57.14 75.76 70.21 53.33

Color moment Invariants 28.57 28.57 69.70 57.45 28.57

Combined FaceSwap Dataset

rgbHistogram 27.27 33.33 63.64 54.84 30.00

rgHistogram 22.22 22.22 68.18 54.84 22.22

Transformed color 11.11 11.11 63.64 48.39 11.11

Color moments 33.33 33.33 72.73 61.29 33.33

Color moment Invariants 44.44 44.44 77.27 67.74 44.44

The descriptor, rgb histogram, color moments, and color moment invariants exhibited better performance in
DSO-I, SwapMe and Combined FaceSwap datasets respectively

The bold values show the highest values obtained for a particular dataset

In IIC maps, the BH distance measure yielded best performance on DSO-I dataset,
wheras the distance measure KL resulted in best performance on SwapMe dataset. The dis-
tance measure L2 provided best results on Combined FaceSwap dataset. Alternatively, on
GGW maps, CR and KL distance measures showed good results on DSO-I dataset, and for
SwapMe, the best performance is obtained with CR and DF distance measures. For Com-
bined FaceSwap dataset, the best results are obtained with L2 distance. However, in both
IIC and GGW maps, the performance of deep features was less compared to the texture

Fig. 10 Sensitivity obtained for color shape descriptors from IIC maps using different distance measures
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Table 10 Evaluation of color shape descriptors on DSO-I dataset using IIC maps

Color-Shape Descriptor Precision/Specificity Recall/Sensitivity TNR Accuracy F-Score

SIFT 42.59 47.92 72.07 64.78 45.10

Hue-SIFT 52.00 54.17 78.38 71.07 53.06
HSV-SIFT 40.00 41.67 72.97 63.52 40.82

Opp-SIFT 44.00 45.83 74.77 66.04 44.90

C-SIFT 47.06 50.00 75.68 67.93 48.49

rg-SIFT 40.00 41.67 72.97 63.52 40.82

rgb-SIFT 46.94 47.92 76.58 67.93 47.42

Among the various descriptors, Hue-SIFT showed best performance

The bold values show the highest values obtained for a particular dataset

descriptor-LPQ in DSO-I. But, for Swapme, and Combined FaceSwap datasets deep fea-
tures resulted in comparable performance. Therefore, as in various computer vision domains
were deep features yielded better performance, an application specific model could provide
better performance for forgery localization from illumination maps too.

8.11 Effect of JPEG compression

The robustness of texture, color, and combined color-texture descriptors are evaluated
against JPEG compression. Experiments are conducted on DSO-I dataset as the dataset con-
tains images in uncompressed PNG format. For evaluation, the images in the DSO-I dataset
are compressed with JPEG quality factors 60, 70, 80 , and 90. Figure 13 shows the per-
formance of various texture features at different compression levels (60-90). Experiments
are conducted on DSO-I dataset using IIC maps for exploring the effect of JPEG com-
pression, since images in DSO-I dataset are in uncompressed PNG format. In Figs. 13, 14

Fig. 11 Sensitivity obtained for HOG and GLRLM descriptors from IIC maps using different distance
measures
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Fig. 12 Sensitivity obtained for HOG and GLRLM descriptors from IIC maps using different distance
measures

and 15, the performance on the uncompressed version is marked as ’100’. As depicted in
Fig. 13, the texture descriptors such as LBP, LPQ, and BSIF showed a performance varia-
tion on JPEG compressed images (marked as 60-90) compared to the uncompressed images
(marked as ’100’). When the images are compressed, the JPEG boundary artifacts and the
encoding scheme alter the underlying pixel boundaries, thereby affecting the segmentation
of image during the generation of illumination map. An interesting observation is that the
BGP and CLBP features perform relatively consistently in all JPEG compression levels and
uncompressed version.

Figures 14 and 15 show the performance of various color and combined color-texture fea-
tures respectively at the different compression levels. In Fig. 14, the color descriptors such
as Opponent, Hue, ACN, CN, and DCD11 performs evenly at different JPEG compression
levels and the uncompressed version. But, for color descriptors-DCD25 and DCD50, the

Table 11 Evaluation of HOG and GLRLM descriptors on different datasets using IIC maps

Texture Descriptor DSO-I dataset

Precision Recall TNR Accuracy F-Score

HOG 42.86 43.64 76.47 67.02 43.24

GLRLM 34.92 40.00 69.85 61.26 37.29

SwapMe Dataset

HOG 32.79 36.36 76.02 66.37 34.48

GLRLM 36.07 40.00 77.19 68.14 37.93

Combined FaceSwap Dataset

HOG 40.00 45.00 80.00 72.00 42.35

GLRLM 20.45 22.50 74.07 62.29 21.43

The HOG descriptor showed best performance in DSO-I and Combined FaceSwap datasets, and GLRLM
descriptor showed best performance in SwapMe dataset

The bold values show the highest values obtained for a particular dataset
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Table 12 Evaluation of HOG and GLRLM descriptors on different datasets using GGW maps

Texture Descriptor DSO-I dataset

Precision Recall TNR Accuracy F-Score

HOG 51.79 52.73 80.15 72.25 52.25
GLRLM 24.59 27.27 66.18 54.97 25.86

SwapMe Dataset
HOG 30.00 32.73 75.15 64.73 31.30
GLRLM 23.33 25.45 72.78 61.16 24.35

Combined FaceSwap Dataset
HOG 38.10 40.00 80.74 71.43 39.02
GLRLM 27.90 30.00 77.04 66.29 28.92

The HOG descriptor showed best performance all the three datasets

The bold values show the highest values obtained for a particular dataset

Table 13 Evaluation of deep features extracted from pre-trained model vgg on IIC maps of different datasets

Distance/ Precision/ Recall/
Dataset Measure Specificity Sensitivity TNR Accuracy F-Score

DSO-I L2 42.37 45.45 75.00 66.49 43.86
CR 41.94 47.27 73.53 65.97 44.44
CS 41.27 47.27 72.79 65.45 44.07
BH 43.55 49.10 74.27 67.02 46.15
KL 43.33 47.27 75.00 67.02 45.22
DF 40.68 43.64 74.26 65.45 42.11
KS 34.92 40.00 69.85 61.26 37.29
CM 32.20 34.55 70.59 60.21 33.33
EM 35.59 38.18 72.06 62.31 36.85

SwapMe L2 36.67 40.00 77.78 68.59 38.27
CR 36.36 43.64 75.44 67.70 39.67
CS 34.38 40.00 75.44 66.81 36.97
BH 35.39 41.82 75.44 67.26 38.36
KL 53.45 56.36 84.21 77.43 54.87
DF 34.92 40.00 76.02 67.26 37.29
KS 27.87 30.91 74.27 63.72 29.31
CM 25.81 29.09 73.10 62.39 27.36
EM 26.56 30.91 72.51 62.39 28.57

Combined FaceSwap L2 40.38 52.50 77.04 71.43 45.65
CR 40.43 47.50 79.26 72.00 43.68
CS 39.22 50.00 77.04 70.86 43.96
BH 40.82 50.00 78.52 72.00 44.94
KL 31.48 42.50 72.59 65.71 36.17
DF 36.54 47.50 75.56 69.14 41.30
KS 36.96 42.50 78.52 70.29 39.53
CM 38.78 47.50 77.78 70.86 42.70
EM 37.21 40.00 80.00 70.86 38.55

The best performance for DSO-I, SwapMe and FaceSwap datasets were obtained with BH, KL, and L2
distance measures respectively

The bold values show the highest values obtained for a particular dataset
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Table 14 Evaluation of deep features extracted from pre-trained model vgg on GGW maps of different
datasets

Distance/ Precision/ Recall/
Dataset Measure Specificity Sensitivity TNR Accuracy F-Score

DSO-I L2 53.33 58.18 79.41 73.30 55.65

CR 59.32 63.64 82.35 76.96 61.40
CS 54.24 58.18 80.15 73.82 56.14

BH 50.85 54.55 78.68 71.73 52.63

KL 59.32 63.64 82.35 76.96 61.40
DF 51.67 56.36 78.68 72.25 53.91

KS 40.98 45.45 73.53 65.45 43.10

CM 34.43 38.18 70.59 61.26 36.21

EM 31.67 34.55 69.85 59.69 33.04

SwapMe L2 42.37 45.45 79.88 71.43 43.86

CR 49.12 50.91 82.84 75.00 50.00
CS 47.37 49.09 82.25 74.11 48.21

BH 46.55 49.09 81.66 73.66 47.79

KL 38.24 47.27 75.15 68.30 42.28

DF 49.12 50.91 82.84 75.00 50.00
KS 32.76 34.55 76.92 66.52 33.63

CM 28.33 30.91 74.56 63.84 29.57

EM 31.59 32.73 76.92 66.07 32.14

Combined FaceSwap L2 40.38 52.50 77.04 71.43 45.65
CR 40.43 47.50 79.26 72.00 43.68

CS 39.22 50.00 77.04 70.86 43.96

BH 40.82 50.00 78.52 72.00 44.94

KL 31.48 42.50 72.59 65.71 36.17

DF 36.54 47.50 75.56 69.14 41.30

KS 36.96 42.50 78.52 70.29 39.53

CM 38.78 47.50 77.78 70.86 42.70

EM 37.21 40.00 80.00 70.86 38.55

The bold values show the highest values obtained for a particular dataset

performance degraded on JPEG compression. In Fig. 16, the combined color-descriptors-
Color LPQ, JTD, and STD showed a performance degradation with JPEG compression.
Also, the performance lowers at lower JPEG compression levels. This indicates that the
combined color-texture descriptors are affected by JPEG encoding scheme.

8.12 Comparison with other illumination inconsistency based methods

We found that the descriptors-LPQ, JTD, and HOG exhibited better performance on DSO-I,
SwapMe and Combined FaceSwap datasets respectively. The performance of the descriptors
are compared with the performance of two previous works proposed by Gholap and Bora
[16], andMazumdar and Bora [27]. Figures 16, 17 and 18 show the performance comparison
on DSO-I datset, SwapMe and Combined FaceSwap datasets respectively. It is clear that
compared to both the previous works, the feature descriptors such as LPQ, JTD, and HOG
showed better results on DSO-I, SwapMe and Combined FaceSwap datasets respectively.
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(a) (b)

(c)

(e)

(d)

Fig. 13 The performance of various texture descriptors at different JPEG compression levels. Quality factors
considered are 60, 70, 80, 90. The uncompressed level 100 indicates the image without any compression.
Experiments are carried on DSO-I dataset using IIC maps. a LBP b LPQ c BGP d BSIF e CLBP
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(a) (b)

(c) (d)

(e)

(g)

(f)

Fig. 14 The performance of various color descriptors at different JPEG compression levels. Quality factors
considered are 60, 70, 80, 90. The uncompressed level 100 indicates the image without any compression.
Experiments are carried on DSO-I dataset using IIC maps. a Opponent b Hue c ACN d CN e DCD11 f
DCD25 g DCD50
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(a)

(c)

(b)

Fig. 15 The performance of various combined color-texture descriptors at different JPEG compression lev-
els. Quality factors considered are 60, 70, 80, 90. The uncompressed level 100 indicates the image without
any compression. Experiments are carried on DSO-I dataset using IIC maps. a ColorLPQ b JTD c STD

Fig. 16 Comparison of LPQ features with previous methods on DSO-I dataset
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Fig. 17 Comparison of JTD features with previous methods on SwapMe dataset

8.13 Discussion

In general, the experimental results reveal that the texture features and combined color-
texture features are better at locating forged image regions from illuminant maps than color
features. The reason is that, the changes in texture patterns are more prominent than the
variations in color. In many of the images in the dataset, the color variations are too subtle
to be captured by the color descriptors. The color variation will be subtle to detect unless
there is a drastic difference in the illumination environment where the two photographs are
captured. For example, in a spliced image composed of image regions captured at indoor
and outdoor environments, there will be prominent variations in the color distribution.

Fig. 18 Comparison of HOG features with previous methods on Combined FaceSwap dataset
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9 Conclusion

Inconsistencies in illumination distribution can reveal forged image regions. In the proposed
work, we carried out a comprehensive evaluation of the discriminative power of a number of
texture, color and combined color-texture descriptors in forgery localization. For evaluation,
forged images containing human facial regions were used and two variants of illumination
distribution, such as IIC and GGW maps were considered. The discriminating capability of
different features are assessed using 9 different histogram distance measures.

From the experiments, it is clear that texture descriptors are more capable of locating
forged region compared to color features, and combined color-texture features. Also, among
the various descriptors evaluated, we found that, LPQ descriptor showed the highest sensi-
tivity of 70.91% in GGW map and 65.45% in IIC maps. We also evaluated deep features
based on the pre-trained CNN model, vgg-f. But, evaluation showed that the performance
of texture features is better compared to the deep features from the pre-trained model using
the illuminant maps on DSO-I dataset.

We observed that the detection performance varied with different histogram distance
measures for different descriptors indicating the differences in the nature of color and
texture patterns captured by the feature descriptors. This suggests that a combination of fea-
tures, such as a multi-feature representation may improve the detection accuracy. Hence, in
future, we plan to consider future fusion for improving the accuracy in forgery localization.
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