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Abstract Video-based smoke detection plays an important role in the fire detection com-
munity. Such interesting topic, however, always suffers from great challenge due to the large
variances of smoke texture, shape and color in the real applications. To effectively exploit-
ing the long-range motion context, we propose a novel video-based smoke detection method
via Recurrent Neural Networks (RNNs). More concretely, the proposed method first cap-
tures the space and motion context information by using deep convolutional motion-space
networks. Then a temporal pooling layer and RNNs are used to effectively train the smoke
model. Finally, to promote further research and evaluation of video-based smoke models,
we also construct a new large database of 3000 challenging smoke video clips that cover
large variations in illuminance and weather conditions. Experimental results demonstrate
that our proposed method is capable of achieving state-of-the-art performance on all public
benchmarks.

Keywords Smoke detection - Motion context information - Deep convolution - RNNs

1 Introduction

Recently, smoke detection in video surveillance is a valuable technique in the early fire
detection. It has attracted more and more researchers to make effort in this field. The goal
of smoke detection is to prevent fires by detecting smoke at the early stage of fire, which is
deemed as an essential problem in fire detection.
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There are two main methods of smoke detection: video-based smoke detection and
image-based smoke detection. Existing methods mainly combine motion region detection
with various visual representation of smoke such as color, texture and shape features. In
Fig. 1a shows the process of smoke detection methods based on moving region detection
and feature extraction. In the early video-based smoke detection methods, color and motion
characteristics are widely used to extract suspected moving areas. An energy-based smoke
detection model is proposed in [32], properties in wave-let space are studied to detect smoke
that are unstable to light. In [6, 8], a chrominance-based static decision rule and a diffusion-
based dynamic decision rule with RGB contrast-image and shape constrain are proposed to
reduce the interference of pure color objects in the wavelet domain. Millangarcia et al.[23]
applies the rule to YCbCr color space and propose a new representing method. A compu-
tational intelligence classifier [11] is adopted to identify the presence of smoke combined
with YUV color space. Krstini et al. [16] focuses on a pixel level analysis and segmenta-
tion of smoke colored pixels based on HSI color space. Being enlightened by the fact that
smoke moves upward influenced by the heat, a fast accumulative motion orientation model
[36] based on integral image is proposed. Together with the rule that R,G, and B values are
close to each other, this algorithm has good efficiency and robustness.

With further study of human visual perception system and visual information mech-
anism, quantized visual features [3, 4] have been widely used in robust image analysis.
Smoke texture [22, 28], diffuse and fuzzy characteristics [9] are also widely used in smoke
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Fig. 1 The basic process of smoke detection: a shows the process of smoke detection methods based on
moving region detection and feature extraction. Smoke detection based on Convolutional Neural Network
(CNN) is described in (b)
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detection. Additionally, to get high robustness and low false positive rate, the temporal and
spatial characteristics are studied. Avgerinakis et al. [2] and Barmpoutis et al. [5] extract
smoke candidate blocks through five continuous frames. Subsequently, histograms of ori-
ented gradients (HOGs) and histograms of optical flows (HOFs) descriptors are used to
distinguish moving smoke-color objects. To achieve intelligent smoke detection models, as
a crucial part of artificial intelligence, machine learning is gradually applied to smoke detec-
tion system. Block based Inter-Frame Difference and dynamic texture features from smoke
histogram image [7] are combined to train an SVM classifier. Later, local binary patterns
(LBP) features of the candidate blocks [12, 37] are used to train AdaBoost. Combined with
AdaBoost, a robust classifier [35] is constructed using multiple neural networks combined
with BP to classify smoke and non-smoke objects. But it could not work well when smoke-
color objects or transverse flow occur. A dual threshold AdaBoost algorithm with a staircase
searching technique [38] is used for video smoke detection. More recently, a random for-
est classifier is built in the process of training by using bag-of-features (BOF) [25] which
will make smoke detection near real-time and increase detection accuracy. Smoke detection
of single images is still a challenging problem in both theoretical and practical implica-
tions. The recent advances [26, 27, 29] propose a novel feature to detect smoke of single
image. An image formation model that regard an image as a linear combination of smoke
and non-smoke components is proposed based on the atmospheric scattering models. The
separation of the smoke and non-smoke components is formulated as convex optimization
that solves a sparse representation problem. Using the separated quasi-smoke and quasi-
background components, the feature is constructed as a concatenation of the respective
sparse coefficients.

However, existing methods for smoke detection still have high false alarm and low detec-
tion rate. Traditional smoke detection methods based on feature extraction can not extract
the characteristics of smoke accurately because they are vulnerable to light, airflow and
obstruction. For example, the color of the smoke varies widely from white to light gray
to black. Lots of non-smoke objects such as roads, gray clothes and clouds are similar to
smoke in some extent. Additionally, the shapes and areas of smoke are greatly affected by
the airflow. Furthermore, the clarity and range of smoke are susceptible to the occlusion
of foreground objects resulting in unreliable features extracted from these blurred images.
Thus, it is still of great challenge to detect smoke accurately.

Recently, deep learning methods have shown superior performance for many tasks such
as image classification [21, 34], pedestrian detection [30, 31]and age estimation [1, 24].
Furthermore, these methods perform better in the fields of automatical makeup for female
[18], face aging [19] and surveillance video parsing [20]. The multi-layer neural networks
can learn representative and essential features of data and forms abstract high-level attributes
through combining low-level features. It is reasonable to make smoke detection by multi-
layer neural networks.

Taking the above issues into account, one needs to solve two key problems: i) extract
effective features to represent the smoke images and ii) explore useful information to for-
mulate the properties of the smoke regions over the extracted features. To achieve the goal,
we propose a robust real-time smoke detection system which not only extracts effective
features by motion and space convolution networks but also aggregates motion informa-
tion by a recurrent method. Especially for learning motion context information, inspired
by [17] which jointly learns appearance representation and motion context from adjacent
frames using a two-stream convolutional architecture, we design a new deep convolutional
motion-space networks to learn motion context information. Our method can achieve better
performance compared to other smoke detection methods. Our contributions are as follows:
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Firstly, we create a large-scale dataset that is more likely to real scenes. The smoke
videos in our dataset cover real-world conditions, with large variations in illuminance and
weather conditions, such as forest smoke, parking lot smoke and factory smoke. In addition,
to improve the adaptability of smoke detection, the smoke video clips include the occlusion
in a large degree. We call this dataset BITU-Smoke. Secondly, in order to extract effective
features to represent smoke, we propose a novel video-based smoke detection method by
deep convolutional recurrent motion-space networks. In Fig. 1b shows the process of smoke
detection methods based on CNN. In our model, there are two individual networks learn-
ing spatial representation and motion features from source video frames which are called
space network and motion network. Finally, since the proposed model can learn both spa-
tial representation and motion features from source video frames, we choose to fuse the
corresponding features after the fully connected layer of the two networks. In addition,
in order to obtain discriminative motion context information of a consecutive periods of
time, the motion-space characteristics are aggregated in a recurrent way by RNNs which
are enhanced by a temporal pooling layer to obtain the long-term context information of
an entire sequence. Evaluation on our dataset shows the robustness and applicability of our
method.

The paper is organized as follows. Section 2 describes the details of our datasets. In
Section 3, the architecture of the proposed network is presented. Experimental results are
demonstrated in Section 4, followed by conclusion drawn in Section 5.

2 Data construction

In this part, we will explain where and how we obtain the data and how we annotate it in
detail.

2.1 Data collection

Existing widely used datasets such as the datasets from B.C. Ko [14], Toreyin et al. [32] and
R. Vezzani [33] are relatively small. The largest dataset contains 20 videos from Toreyin
et al. [32] with an average of no more than 3 minutes per video. The dataset from B.C. Ko
[14] contains 16 video clips and there are 14 video clips in the dataset of R Vezzani [33].
These videos can not cover complex scenes. In order to simulate the real world scenes,
smoke and non-smoke videos should be varied and abundant to ensure that the algorithm
has a very good generalization. Therefore, we collect a large number of real-world videos
by search engine using keywords from websites. Until now, our dataset covers smoke video
clips from different cities, complex real-world scenes, and diverse objects. We take each
frame from the raw videos. The diversity of our dataset helps to improve the robustness and
adaptability of smoke detection.

2.2 Data annotation and statistics

The images are annotated manually next. Each smoke image is labeled 1 and non-smoke
image is labeled 0 according to the traditional method. In other words, the images with
smoke is positive samples but is negative samples without smoke. To be clear, the label is
at the video frame level. In addition, being enlighten by [39, 40], we divide smoke images
into two groups according to the proportion of smoke in an image, which are called small
smoke with the proportion less than 20%. The small smoke images are shown in Fig. 2 and
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Fig. 2 Small smoke. Our dataset contains 1000 small smoke video clips with the smoke proportion of less
than 20%

the rest are called large smoke that are shown in Fig. 3. The dataset contains a large number
of images that are similar to smoke but are non-smoke in fact shown in Fig. 4.

Our new dataset contains 5000 video clips with about one minute per video after discard-
ing clips with low resolution. There are 3000 smoke videos of these 5000 videos in total,
the rest of which are nonsmoke videos. Although our videos cover different cities, com-
plex scenes and diverse objects, an imbalance still exists between them. This is unavoidable
because small smoke videos appear rarely.

In summary, our large-scale dataset falls into two classes, and there are many instances
in each class. The images in the dataset have resolution 128 x 64 pixels and cover large
variations in illuminance, weather and complex scenes. We use it to train our motion-space
model for this purpose.

3 Deep convolutional recurrent motion-space networks

The purpose of deep learning is to discover a hierarchical model that can represent the
data best. We propose a novel video-based smoke detection method by deep convolutional
recurrent motion-space networks which consists of both space and motion network learning
spatial representation and motion context information from source video frames. Firstly, we
introduce the overall structure of the proposed network which is illustrated in Fig. 5. Next,

Fig. 3 Samples of large smoke: with the proportion of more than 20%. They cover smoke videos from
different cities, complex real-world scenes, and diverse objects
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Fig.4 Non-smoke samples. Non-smoke videos should be varied and abundant. A large number of real-world
videos are collected from websites. The dataset contains a large number of images that are similar to smoke
but are non-smoke in fact

for two consecutive smoke images, we describe the details of the two networks and how
they work together. Finally, the fusion layers to fuse the motion and space information and
fusion methods are stated.

3.1 Structure overview

Figure 5 illustrates the proposed deep convolutional recurrent motion-space network
(RMSN). In this model, there are two individual networks learning spatial representation
and motion features of each two consecutive frames from source video frames which are
called motion network and space network. In detail, the space network (yellow rectangles)
is used to learn spatial features from raw video frames while a pair of consecutive video
frames of a smoke is processed by the motion network (blue rectangles) at each time-step to

-
k —| Fusion |——| RNN |-

— | Spat Nets, |+ l
Temporal Classification

—»‘ Fusion |—>‘ RNN |—> —_—

— =] !

—P‘ Fusion |—>‘ RNN |-

Fig. 5 The framework of our RMSN. Each two consecutive frames are processed by space network (yellow
rectangles) and motion network (blue rectangles). Then these representative features are fused in a recurrent
way for learning representative motion context information. These features are integrated by temporal pool-
ing layer from any video sequence into a single feature representation. The whole RMSN network is trained
by introducing soft-max loss function to detect smoke
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predict motion between the adjacent frames. Later, this two individual networks features are
fused in a recurrent way to learn discriminative and representative motion context informa-
tion. A temporal pooling layer is used to obtain a single feature representation of any video
sequence by integrating these features. Finally, for effectively training this whole model,
we adopt the soft-max loss function as classification loss. The classification loss function
predicts whether smoke is present in each video frame. Next, the implementation details of
each components of the proposed model are introduced.

3.2 Deep convolutional motion-space networks

As described in 3.1, we know that the motion features and the space features are studied
simultaneously by two convolution networks. Particularly, the spatial network is adopted to
learn the spatial representation of the original video frames. The motion network is used to
learn the motion characteristics of two consecutive video frames. In the following, we will
introduce the detail architectures of the space and motion networks.

3.2.1 Motion network

As shown in Fig. 6, each two consecutive video frames of smoke are processed by the
motion network in RMSN (corresponding to blue rectangles in Fig. 5) to capture and pre-
dict the motion information of the contiguous frames. Similar to the structure in [10, 17],
the motion network is composed of multiple convolution layers and pooling layers, which
are used to learn the feature representation of smoke images. In detail, it contains six con-
volution layers (marked as convl, convl_1, conv2, conv2_2, conv3, conv3_3, respectively)
with the simplest stride of 2 in each of them and a tanh non-linearity after each layer. We set
these parameters empirically. Taking the two concatenated consecutive two frames as input
with a size of & x w X 6 (h is the frame height and w is the frame width). In this structure,
the image resolution reduce to half of the original after each step, we repeat this operation
three times so that the final size of the map is é of the original one. There is a fully con-
nected layer after the last pooling layer. The training details are described in the following
sections.

Fully
connected
—

128

h/g X - 64

Conv3 Conv3_1

Fig. 6 The motion networks of our proposed RMSN consists of 6 convolutional layers (corresponding to
Convl, Convl_1, Conv2, Conv2_1, Conv3 and Conv3_1) with stride of 2 in six of them and a tanh non-
linearity layer after each layer. The inputs are two successive smoke frames with size of 7 x w x 6. And there
is a fully-connected layer after the last convolutional layer. The purple cubes represent the convolutional
kernels
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3.2.2 Space network

Details of the space network are shown in Fig. 7, this network is used to learn the spatial
characteristics of the original video frames. The network consists of three convolution layers
and three pooling layers with a non-linearity tanh layer after each convolution layer. There is
a fully connected layer after the last pooling one. The purple cubes are convolutional kernels
and the red one is the pooling kernels. The stride in all convolution layers and pooling layers
are set to 2. The original video RGB frames are the inputs of the network.

3.3 Motion-space feature fusion and aggregation of motion information
3.3.1 Motion-space feature fusion

There are different methods to fuse the two networks. Our aim is to fuse the motion-space
characteristics in order to better obtain the motion-space characteristics of continuous video
frames and the joint information between them. In order to best detect smoke, the shape
and area of smoke will change with the influence of airflow and temperature, such as the
upward motion direction, the gradually expanded area of smoke in the process of burning.
We can argue that smoke is moving constantly and the movement is different from the
ordinary fixed shape objects because the shape and size of these objects are the same in
a continuous time series. Then, our motion network identifies the motion information in a
continuous sequences and captures motion information from consecutive video frames. In
this way, smoke can be identified by the combination of the two networks.

The fusion can be easily obtained when the feature maps of the two networks are of the
same resolution at the layers to be fused. We choose to stack one network on another one.
Suppose X“4and X? are two feature maps from the motion and space networks layers that
are needed to be fused, where W is the width, H is the height and D is the channel number
of this two feature maps respectively. Y denotes the fused feature map. When applied to
motion and space networks which consist of convolution, non-linearity and fully-connected
layers, the fusion can be applied at different points in the two networks and it is easy to
implement especially when the map dimensions are the same.

—  Concatenation fusion: this fusion method stacks the feature maps of the same location
1, j across the feature channels d together:

cat _ A cat __ B
Yij2d = *i j,d» Vi j2d—1 = i jd> (1

Fully
~_connected
—

Max-pool2

Max-pool1
Fig. 7 Spatial networks of our proposed RMSN. It has 3 convolutional layers and 3 max-pooling layers with

a tanh non-linearity layer interpolated after each convolutional layer. The fully-connected layer is the last
layer of the network. The purple cubes are convolutional kernels while the red ones are pooling kernels
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where x4, xB € REXWXD yeat ¢ RHXWX2D and | <j < H,1<j<W.
—  Sum fusion: this sum fusion method adds the feature maps of the same location i, j and
channels d:
sum __ A + B (2)
Yijjud = *ijd T Xijd

where ycat e RH><W><2D.

—  Max fusion: this fusion method takes the maximum of the two feature maps:
A B
ylmj"fi =max{x{; 4, x; ; 4}- 3)
In our experiments, we choose to perform the concatenation fusion operation after the
fully connected layer because of the complexity of the two network structures. We compare
the performance of the three fusion methods in terms of smoke detection accuracy.

3.3.2 Motion context information aggregation

We now consider how to combine the characteristics of the fused features which contains
both spatial features and motion context information over time t. The motion information for
each pair of smoke images is different because the length of the sequence is arbitrary. There-
fore, we adopt the RNNs network which can process an arbitrary length of time sequence so
that the problem of aggregating motion context information can be addressed by this neu-
ral network. In particular, the RNNs network has a feedback connection, which allows it to
save information for a period of time and produce an output based on the information both
of the current frame and the previous ones. The lateral connections serve as memory units,
which allows the flow of information at any time step.

In the problem of smoke detection, the cumulative motion context information for the
smoke detection is of great help because we need to learn abundant information of smoke
images with different colors, shapes and densities. And the motion context information
can be achieved by using the recurrent connections in the way that information can be
passed over a long period. In other words, we aim to better extract the spatial and motion
characteristics and the motion context information along video sequences, and then put these
representative together to train a model to detect smoke. Given the output f) € RP*! of
the fused spatial and temporal network p-dimension, the RNNs can be defined as follows:

o = Mf(t) + Nr(t_l), 4
# = tanh(o™). (3)

where 0 € R7*! is the g-dimensional output of RNNs at time-step t, and r¢~1 ¢ RI*!
contains the information of all previous time steps. M € R7*” and N € R7*P represent the
corresponding parameters for f ® and r@=D respectively, where q is the dimension of the
output of the last fully-connected layer in fusion part and p is the dimension of the feature
embedding-space.

Finally, we added a temporal pooling layer after the RNNs, so that we can capture all
the time information over the whole video clips. Temporal pooling is to obtain long-term
information throughout the whole sequence, which combines motion context information
captured through the RNNSs. In this paper, we adopt mean-pooling over the temporal dimen-
sion to produce a single feature vector u to represent the spatial and motion information
averaged over the whole raw sequence. The pooling method is as follows:

T
1
_ (1)
u—TEO , (6)

t=1
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where T is the length of the sequence or time-steps.
3.3.3 Loss function

In our smoke detection model, the loss function layer is the end with the input of two parts:
the predicted value and the real label. The loss layer performs a series of operations on
the two inputs to obtain the loss function L(8) of the current network, where 6 represents
the vector of the current network weights. Our aim is to get a 6 corresponding to the min-
imum L(6). In this paper, we use the stochastic gradient descent method to optimize the
approximation weight vector 6. The definition of L is as follows:

HTxi
L(e>——— Zzl{y(l)_]}logz o (7

i=1 j=1
Where N is the batch size.

4 Experiments
4.1 Experimental settings

(1)Datasets We test the proposed model on three widely used public video datasets from
B.C. Ko [14], Toreyin et al. [32], R. Vezzani [33] and our large-scale dataset. The details of
the four datasets are described in Table 1.

(2)Baselines To show the superiority of the proposed RMSN, we compare our method with
other three methods ones based on AlexNet [15] model, texture features, and Haar-like fea-
tures [38]. To evaluate the effectiveness of our model in combing the concatenation fusion
methods, three fusion algorithms are used for comparison. Finally, RNNs can make full use
of the cumulative context information of the whole sequence. To show the advantages of the
recurrent units, we implement the proposed model with and without recurrent units.

(3)Implementation details All the input pairs of video frames are resized to 128 x 64 and
we choose Adam [13] as the optimization method due to its faster convergence than standard
stochastic gradient descent. The iteration times is set to 10000 to optimize the model and the
training model is saved once every 1000 times. Our network is trained by the BP algorithm
with batch stochastic gradient descend and the soft-max loss is minimized. The weight
decay is set to 0.0005 and learning rate is 0.01 in all models. All weights are initialized from
a zero-centered normal distribution with standard deviation 0.01. We separate each dataset
into a training set and a testing set, with about 2:1 ratio to train and test all models. All

Table 1 The details of dataset used in the paper

Dataset Number of videos ~ Average length/(s)  Description

B.C.Ko [14] 16 120 6 smoke videos, 10 smoke-like videos
Toreyin et al. [32] 20 147 Indoor and outdoor smoke videos

R. Vezzani [33] 14 42 Outdoor smoke videos

Ours 5000 80 3000 smoke and 2000 non-smoke videos
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Table 2 Comparison results of
the proposed method and three B.C.Ko[14]  Ours AlexNet [15]  Haar-like [38]  Texture

other methods in the B.C. Ko [14]
dataset in terms of TPR and TNR ~ TPR 0.9525  0.9220 0.9155 0.8865

TNR 0.9853  0.9432 0.9325 0.9028

parameters are set empirically. Experimental results show the highest classification accuracy
with these parameters. The processing time for a frame is less than 30 ms, in other words,
our method can process videos with size of 128 x 64 at above 33 frames per seconds.

(4)Evaluation protocol All the algorithms are evaluated based on the following widely-
used criteria. Firstly, we use TPR and TNR to evaluate our method, (8) and (9) show how
we get them:

TP
TPR= —— (8)
(TP +FN)
TN
TNR= —— ©)
(TN + FP)

TP (true positive) is the number of correct detections of smoke, FN (false negative) is the
number of frames which have smoke but not recognized. FP (false positive) is the number of
frames which do not have smoke but recognized as smoke, TN (true negative) is the number
of correct detections of non-smoke.

In addition, to evaluate the performance of smoke detection, we exploit the receiver oper-
ator characteristic (ROC). The ROC curves are obtained by experimenting in our dataset.
For each experiment, we plot the true positives rate (TPR) on the Y-axis and plot the false
positive rate (FPR) value on the X-axis. The nearer the ROC curve is to the upper left corner,
the higher the accuracy of the test is.

4.2 Experimental results and analysis
4.2.1 Comparison with the state-of-art methods

We compare the performance of our method based on RMSN model with other three ones
based on AlexNet [15] model, texture features, and Haar-like features [38]. In Table 2,
we show the comparison results of our method with the other three methods as described
before on the whole Keimyung dataset. Additionally, we also compare our results with the
same methods on Bilkent dataset, the comparison results are shown in Table 3. Furthermore,
experimental results of Modena dataset are described in Table 4.

As shown in Tables 2, 3 and 4, our method outperforms all other smoke detection meth-
ods. Compared with the second best approach based on AlexNex [15] model, our method
has slightly higher precision both in TPR and TNR. The AlexNet [15] model can learn
effective representation of smoke images but without motion information. In contrast, our
method can learn discriminative spatial representation and motion context information of

Table 3 Experimental results of

four different methods in the Toreyin et al. [32] Ours AlexNet [15] Haar-like [38] Texture

Toreyin et al. [32] dataset in

terms of TPR and TNR TPR 0.9575 0.9280 0.9175 0.8910
TNR 0.9895 0.9485 0.9265 0.9055

@ Springer



248 Multimed Tools Appl (2019) 78:237-256

Table 4 TPR and TNR results in

the R. Vezzani [33] dataset R. Vezzani [33] Ours AlexNet [15]  Haar-like [38]  Texture
TPR 0.9530 0.9260 0.9178 0.8892
TNR 0.9780  0.9555 0.9245 0.9025

the whole sequence which performs better even when the datasets are limited. This shows
the robustness of the proposed method since false alarms are considerably reduced.

Simultaneously, we train our own model in our new dataset which consists of large smoke
and small smoke. Our experiments are as follows. One group is for large smoke, another
group is for small smoke. Lastly, we use all of the smoke samples. The comparison of the
four methods on our dataset is shown in the Figs. 8 and 9.

From Figs. 8 and 9, we can conclude that both the TPR and TNR of our method are
higher than other three methods. In the experiment of all smoke samples, our method outper-
forms other methods with an average TPR of 94.85%. Besides, we obtain an average TNR
of 97.20%. We can conclude that the smoke detection accuracy is relative low of the tradi-
tional method based on texture features because this method is vulnerable to light, airflow
and other factors. Although Haar-like [38] method extract haar-like features from integral
images combined with dynamic analysis to reduce false alarm rate, it can not perform well
in complex and intermittent frames. The AlexNet [15] model can learn effective features
of smoke images but without motion information. Obviously, TPR and TNR of other three
methods are relatively low in our dataset because these methods do not have good general-
ization, especially in complex scenes. In contrast, our method can learn both spatial features
and motion context information of the whole sequence which performs better in complex
scenes. This shows higher generalization of the proposed method because of the high TPR
and TNR in diverse scenes. It is important to note that these promising results are achieved
by exploiting both spatial and motion context information over time. This indicates that a
large number of representative motion-space features are extracted to improve the accuracy
of smoke detection.

TPR
1

0.95 —

0.9 by 'E‘ —
0.85 = } 1 ’[

0.8 | ; U j‘

0.75 - -

Our method AlexNet [15] Haar-fike [38] Texture

W Large W Small m All

Fig. 8 Positive samples. Experimental results of different smoke detection methods in terms of TPR of
positive testing samples
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TNR
1
0.85
0.9
0.85
0.8
0.75
Our method AlexNet [15] Haar-like [38] Texture

W Large W Smail = All

Fig. 9 Negative samples. TNR of non-smoke testing samples

Furthermore, performances of different methods on our large smoke videos, small smoke
videos and all smoke videos are evaluated by ROC curves. The ROC curves of the four
different methods are shown in Figs. 10, 11 and 12. It is obvious that the ROC curves of
the method based on texture features locate in the lowest position of each experiment. The
ROC curves of our method are nearest to upper left corner of the chart among all curves.
This notes that our method performs better in smoke detection.

Additionally, for outdoor smoke detection in complex sceneries, video-based smoke
detection performs better than traditional photo-based method. The proposed method is
compared with those of the same kind video based methods described before. In Fig. 13,
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FALSE POSITIVE RATE

Fig. 10 ROC curves on large smoke video clips. To show the advantage of RMSN, we apply the proposed
method RMSN and other three methods on our large smoke videos
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Fig. 11 The ROC curves of the proposed RMSN method and other three state-of-art methods on our small
smoke video clips

w
<
o
w
=
=
2]
O
('8
w
E 0.5 — % — Ours i
- — & — AlexNet
0.4 — # — Haar-like |
— & — Texture
0.3 . L \ . \
0 0.05 0.1 0.15 0.2 0.25 0.3

FALSE POSITIVE RATE

Fig. 12 Curves of ROC for the proposed method and other three different methods on all our dataset
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Fig. 13 Testing videos: Videol factory smoke, Video2 road smoke, Video3 forest smoke and Video4 car smoke
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Table 5 Smoke detection performance comparisons on videos

Smoke videos Duration Detection frame numbers

Ours AlexNet [15] Haar-like [38] Texture
Videol factory smoke 1789 1 2 2 10
Video?2 road smoke 1031 384 401 415 480
Video3 forest smoke 210 25 34 35 51
Video4 car smoke 524 19 22 26 41

Videol,Video2,Video3 and Video4 illustrates a factory smoke, road smoke, forest smoke
and car smoke. As shown in Table 5, our method has a better performance than the other
three methods when the smoke videos are tested. After observing alarm frame numbers,
we can conclude that our method can provide an earlier smoke alarm. The reason that our
method can achieve a better performance is mainly the robustness of both space and motion
context features. But the processing speed of our method is slower than AlexNet [15].

At the same time, we present some instances that are falsely classified by our model
training by all smoke images, as shown in Fig. 14. Smoke instances are falsely classified
as non-smoke ones in Fig(a). In another way, there are many non-smoke images similar to
smoke in appearance. Fig(b) shows the non-smoke ones that are classified as smoke. The
samples shown in Fig(b) are particularly similar to smoke in shapes, color and texture. It is
of great difficulty to distinguish smoke and non-smoke images accurately because it is even
hard for people to identify in some extent.

4.2.2 Advantages of motion networks

As described in Section 3, a pair of consecutive video frames of smoke is processed by the
motion network within RMSN (corresponding to the blue rectangles in Fig. 5) to predict

(a)

Fig. 14 Falsely classified smoke and non-smoke videos. a illustrates smoke instances falsely classified as
non-smoke ones. Non-smoke samples with false alarms which are similar to smoke in appearance are shown
in (b)
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Table 6 Comparison between different methods with and without motion networks

Methods B.C.Ko [14] Toreyin et al. [32] R. Vezzani [33] BJTU-Smoke
TPR TNR TPR TNR TPR TNR TPR TNR
Ours 0.9525 0.9853 0.9575 0.9895 0.9530 0.9780 0.9485 0.9720
Our method without  0.9422  0.9725 0.9445 0.9785 0.9365 0.9635 0.9355 0.9625
motion net

motion between the adjacent frames at each time-step. We will compare our method with
and without motion networks in the above dataset. The results are shown in Table 6.

We can notice that our model outperforms the one without motion networks in all dataset.
The performance is boosted by 1.03%, 1.3%, 1.65% and 1.3% of TPR and 1.28%, 1.10%,
1.45% and 0.95% of TNR in the above dataset respectively. Although RNNs units can
aggregate the motion context information, the motion networks can predict motion between
the adjacent frames at each time-step by processing a pair of consecutive video frames and
output abundant motion context information to RNNs.

4.2.3 Comparison between different fusion methods

In this part, we compare three different fusion methods in Table 7. From the first three rows
of Table 7, we demonstrate the smoke detection rate TPR and TNR of the model trained
on small smoke, large smoke and all smoke images of our dataset. From the results, we
know that the concatenation method adopted in this paper performs better than the other
two methods in some degree. The reason may be that the concatenation fusion can better
maintain the original features.

4.2.4 Advantages of recurrent units

We also compare our method with and without recurrent units in the last row of Table 7.
In the traditional neural network, it is assumed that all inputs or outputs are independent of
each other. In contrast, RNNs can make full use of the information of the whole sequence
which make a decision according to both the cumulative context information and the current
input.

From the first and the last row of Table 6, we can conclude that our proposed model per-
forms better than the model without recurrent units. When these recurrent units are applied
in our model, the performance is boosted by 2.30%, 1.95% and 2.00% of TPR and 2.60%,

Table 7 Comparison between different fusion methods and the model without recurrent units

Methods Small smoke Large smoke All

TPR TNR TPR TNR TPR TNR

Concatenation fusion 0.9450 09685 09520 0.9765 0.9485 0.9720
Sum fusion 0.9250 09420 09335 0.9450 0.9275 0.9435
Max fusion 0.9325 09475 09385 0.9490 0.9355 0.9485

Concatenation fusion without recurrent units ~ 0.9220  0.9425  0.9325 0.9475 0.9285  0.9455
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2.90% and 2.65% of TNR in small, large and all smoke images respectively. By aggregat-
ing the motion context information, our method can better distinguish whether the moving
objects are smoke, because the motion direction of the smoke is ascending by the influence
of the heat and the shapes and areas of the smoke are affected by airflow. It is obvious that
the cumulative motion context information of the whole sequence captured by the recurrent
units is of great help for smoke detection.

5 Conclusion

It is difficult to find the appearance of smoke at the early stages of smoke because the area
is relatively small and it is vulnerable to interference. Smoke detection method based on
feature extraction can not extract the features of smoke effectively resulting in high false
alarm rate and low detection rate.

To improve the robustness and adaptability of smoke detection, we create a large-scale
smoke dataset, going beyond previous ones. Moreover, a novel smoke detection model
learning spatial representation and motion context information from source video frames is
proposed. Experimental results, carried out under various challenging conditions, demon-
strate that our recurrent motion-space context model is beneficial for the smoke detection
accuracy. In the future work, we will continue to study how to improve smoke detection by
incorporating additional discriminant information.
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