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Abstract Today, medical imaging suffers from serious issues such as malicious tampering and
privacy leakage. Encryption is an effective way to protect these images from security threats.
Among the available encryption algorithms, chaos-based methods have strong cryptographic
properties, because chaotic systems are sensitive to initial conditions and parameters. Howev-
er, traditional chaotic systems are easy to build, analyze, predict and can be re-scaled to any
desired frequency. Thus, encryption schemes using traditional chaotic systems have low
security levels. In this work, we propose a new simple chaotic system that utilizes a hyperbolic
sine as its nonlinearity; this nonlinearity has rarely appeared in previous studies. Furthermore,
the new chaotic system uses a decorrelation operation to enhance its performance. Statistical
testing verifies that the chaotic sequence has good pseudorandom characteristics. In this study,
we propose a scheme for medical image encryption based on this new chaotic system. The
results of tests show that this encryption method can encrypt images effectively in a single
round and that the proposed scheme provides sufficient security against known attacks.

Keywords Chaos . Hyperbolic sine . Image encryption .Medical image

1 Introduction

Data security plays an important role in the development of hospital information system (HIS)
[8]. Medical image security has become a major concern in recent years; it usually involves the
following aspects: confidentiality (only authorized individuals can access patient data), integ-
rity (proof that the medical information has not been modified) and authentication (which is
concerned with identification; the two communication participants should identify each other,
allowing the information’s origin to be proven) [1, 26, 30].
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A variety of methods can be applied to provide information security for medical images,
including steganography, watermarking and encryption. Steganography and watermarking can
imperceptibly embed authentication information so that unauthorized users have no access to
the hospital information system [15, 19, 22]. There is a large number of image encryption
methods because different applications require different levels of security. Gutub has proposed
a variety of methods in which the scarcity of resources plays an effective role; each method has
achieved good results [3].

In recent years, among others, the following image encryption schemes have been proposed
[24]. 1. Arnold’s cat map [9] schemes have low computational complexity, but they do not
alter the pixel values of the image; therefore, their security level is not high enough. 2. Discrete
cosine transform (DCT) [12, 17] schemes have low computational complexity and high-level
security. However, computer calculation precision is limited; thus, these schemes will lose
accuracy when using the transform and inverse transform. Therefore, the decrypted image will
not be exactly the same as the original image. 3. Chaos-based methods, have a high sensitivity
to initial conditions and parameters; their irrelevance, random-like nature and unpredictability
can help considerably in improving the security of transmitted communications [28].

There are several problems with traditional chaos-based image encryption algorithms. First,
traditional chaotic systems are easy to analyze and predict. For example, the most commonly
used chaotic systems for generating pseudorandom sequences are one-dimensional chaotic
maps, which include the tent map, the logistic map, and the Chebyshev map. These simple
chaotic maps can be attacked via a nonlinear prediction method based on phase–space
reconstruction [4, 7]. Second, discrete chaotic systems can exhibit computationally based
dynamic degradation [13], which renders these encryption schemes unreliable. Thus, it is
more suitable to construct pseudorandom sequence generators using high-dimensional chaotic
systems.

In this paper, a new simple chaotic system based on the hyperbolic sine is proposed.
Furthermore, a decorrelation operation is used to enhance the performance of the chaotic
sequence. Statistical testing verifies that the system has good pseudorandom characteristics,
which indicates that this system is more suitable for image encryption than are traditional
chaotic maps. With four initial conditions and six control parameters, the proposed system has
a large key space that makes brute-force attacks infeasible. Key sensitivity and pseudorandom
behavior make this scheme resistant to known-plaintext attacks, chosen ciphertext attacks,
statistical attacks, and differential attacks.

The rest of the paper is organized as follows: In Section 2, a new simple chaotic system is
introduced, followed by its analysis. Section 3 provides an analysis of a pseudorandom
sequence after the decorrelation operation. The proposed image encryption scheme is shown
in Section 4. Simulation results and performance analyses are reported in Section 5. Finally,
conclusions are drawn in Section 6.

2 A new simple chaotic system

Finding a simple example of chaos is an interesting task. For cryptographic purposes, using a
design based on a simple chaotic system can reduce the computational complexity and
increase the speed of calculation. Over decades, there had been ongoing debate over which
system was the Bsimplest^ example of chaos until Piper and Sprott proposed three simplicity
metrics: mathematical simplicity, circuit simplicity, and practical simplicity [21]. Based on
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these characteristics, a special class of dynamical systems—the so-called jerk systems—
proposed to at minimum provide mathematical simplicity. Their functional forms are described

by X ¼ J X ; Ẋ ; €X
� �

, where the first derivative of the position is called velocity Ẋ, the second

derivative of the position is called acceleration €X , and the third and higher order derivatives of
the position is called jerk X In 2011, Sprott and Munmuangsaen proposed a jerk system with
an exponential nonlinearity [16, 23]; this system provides a good foundation for exploring the
hyperbolic sine chaotic system.

2.1 Equations and phase space plot

The simplest dissipative chaotic flow with a hyperbolic sine nonlinearity is [14]

x:::þ 0:75€xþ xþ 1:2� 10−6sinh x:=0:026Þ ¼ 0:ð ð1Þ

It can be rewritten as three first-order ordinary differential equations

x: ¼ y
y: ¼ z
z: ¼ −0:75z−1:2� 10−6sinh y=0:026ð Þ−x:

8<
: ð2Þ

We upgraded this system to a simple fourth-order chaotic system and removed some of the
coefficients, such as 1.2 × 10−6 and 1/0.026. By searching its control parameter space, we
found an example of a simple chaotic system with a hyperbolic sine nonlinearity, which is
described by

x
: ¼ 6y−x
y: ¼ z
z: ¼ u
u: ¼ −u−sinh zð Þ−6x:

8>><
>>:

ð3Þ

Figure 1 shows some phase-space plots with distinct initial conditions. When the initial
conditions are set to (x0, y0, z0, u0) = (−0.7, −0.9, −1, −1.3) and (x0, y0, z0, u0) = (0.7, 0.9, 1,
1.3), the system shows period-1 behavior. The attractors are antisymmetric about the
origin. Moreover, the system could also show chaotic behavior under the initial
conditions (x0, y0, z0, u0) = (−7, −9, −10, −13) and (x0, y0, z0, u0) = (7, 9, 10, 13), which
are also antisymmetric about the origin. Therefore, the system has four coexisting
attractors [10, 11, 20, 25].

2.2 Analysis

To find the equilibrium point, we set every time-derivative to zero. Therefore, the equilibrium
point of this system is (x, y, z, u) = (0, 0, 0, 0), for which the corresponding Jacobian matrix is

J sð Þ ¼
−1 6
0 0

0 0
1 0

0 0
−6 0

0 1
0 −1

0
B@

1
CA: ð4Þ
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The resulting eigenvalues are λ1 = −2.2685 + 1.6963i, λ2 = −2.2685 − 1.6963i, λ3 = 1.2685–
1.6963i, and λ4 = 1.2685 + 1.6963i. Because λ1 and λ2 are a pair of complex conjugate
eigenvalues with a negative real part, and λ3 and λ4 are a pair of complex conjugate
eigenvalues with positive real parts, the origin is a 2-D stable manifold and a 2-D unstable
manifold, which suggests that the system is chaotic.

Lyapunov exponents characterize the rate of separation of infinitesimally close
trajectories in state space as time tends to infinity. A positive large Lyapunov
exponent indicates chaos. In this system, the Lyapunov exponents are (0.1268, 0,
−0.9999, −1.1269) under the initial conditions (x, y, z, u) = (7, 9, 10, 13), thereby
suggesting that the system is chaotic.

3 The generation of a pseudorandom sequence and its analysis

By analyzing the sequences generated by Eq. (3), the authors realized that the
randomness of the sequence is not ideal. Figure 2 shows the probability distribu-
tion of the variables x, y, z and u under the initial conditions (x0, y0, z0, u0) = (7,
9, 10, 13). This illustrates that the sequence generated directly by Eq. (3) is not a
uniform distribution.

Initial Conditions
(0.7, 0.9, 1.0, 1.3)

Initial Conditions
(-0.7, -0.9, -1.0, -1.3)

Initial Conditions
(7, 9, 10, 13)

Initial Conditions
(-7, -9, -10, -13)

a b

c d

Fig. 1 Numerically calculated phase space plot of the system under different initial conditions
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To generate sequences of uniformly distributed random variables and enhance the random
statistical properties, we used the decorrelation operation, which is defined by the following
equations:

Sout ¼ Sin*104−floor Sin*104
� �

; ð5Þ

where Sin is the input sequence (which could be the variables (x, y, z or u) generated by
Eq. (3)) and Sout is the output sequence. Figure 3 shows the waveform and probability
distribution between Sin and Sout. In this case, we chose the variable u as the input sequence.

To further evaluate the performance of the chaotic sequence and the de-correlation opera-
tion, we used a test run of the SP 800–22 suite to test the random statistical characteristics of
the sequence [4, 7]. The results are shown in Table 1.

After the de-correlation operation, the sequence exhibits improved randomness and ensures
that the image encryption scheme will have improved resistance against known attacks. The
results are shown in Table 1 and Fig. 3.

Fig. 2 The probability distributions of x, y, z and u

Table 1 Statistical performance

Variable x Variable y Variable z Variable u

Chaotic sequence by Eq. (3) Failed Failed Failed Failed
Pseudorandom sequence after de-correlation Success Success Success Success
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4 Image encryption scheme

In this section, an image encryption scheme will be proposed using the pseudorandom
sequence from Section 3.

A flowchart of the encryption scheme is shown in Fig. 4.
The detailed encryption process includes the following steps.

Input: Plain image; Initial conditions for chaotic system; Control parameter for chaotic system
Output: Ciphered image
Step 1: Calculate the average pixel value of the plain image and generate the pseudoran-
dom sequence.
Step 2: Transform the pseudorandom sequence and change pixel value of the
image via XOR

Fig. 3 The waveform and distribution of Sin and Sout

Plain Image Image Processing 

Simple Chaotic System with Hyperbolic Sine 

Avg_ pixel_ value De-correlation operation

Variable Sequence of u 

Diffusion Column permutation Row permutation Ciphered Image

Fig. 4 A flowchart of the encryption scheme
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Step 3: Sort the pseudorandom sequence for permutation
Step 4: Shift the pixel positions by column using the sorted elements.
Step 5: Shift the pixel positions by row using the sorted elements.

To provide a better understanding of this scheme, the pseudocode is provided in
Table 2.

The decryption process of the proposed algorithm is the reverse process of the encryption
algorithm. A flowchart of the decryption process is shown in Fig. 5.

The detailed decryption process includes the following steps.

Input: Plain image; Initial conditions for the chaotic system; Control parameter for the
chaotic system; Average pixel value of the plain image
Output: Decrypted image
Step 1: Generate a pseudorandom sequence via the initial conditions and the average pixel
values of the plain image
Step 2: Sort the pseudorandom sequence for row and column recovery.
Step 3: Shift the pixel positions by row
Step 4: Shift the pixel positions by column
Step 5: Transform the pseudorandom sequence and recover the pixel values of the image
via XOR

To provide a better understanding of this scheme, the pseudo-code is provided in
Table 3.

Because this cryptosystem is designed for use with grayscale images, it is suitable
for encrypting all kinds of medical images. Figures 6, 7, and 8 show the encryption
and decryption results of a 512*512 grayscale mammography image, a CT image and
an MRI image, respectively. All the images are from a hospital and the DICOM
database.

5 Performance analysis

As is well-known, an outstanding cryptosystem should resist all types of known attacks,
including known-plaintext attacks, ciphertext attacks, statistical attacks, differential
attacks, and various brute-force attacks. A corresponding security analysis has been
performed on the proposed algorithm, including a key space analysis, a statistical
analysis and a differential analysis.

5.1 Key space analysis

For a secure image cipher, the key space should be large enough to render a brute
force attack infeasible. In this system, all the initial conditions and control parameters
can be considered as secret keys. Because the basin of attraction of each initial
condition is greater than 1, it could have more than 1015∗4 = 1060 choices via a
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Table 2 Image encryption scheme

Input: Plain image Org_Img, Initial conditions for the chaotic system, Control parameter for the 

chaotic system, 

Output: Ciphered Image En_Img

[m,n] size(Org_Img);

Avg_pixel_value mean2(Org_Img)*10^(-5) % mean2 is a function that returns the 

% average value of a matrix

x(1) x(1) + Avg_pixel_value

y(1) y(1)

z(1) z(1)

u(1) u(1)

– floor(u(1)*10^4)

For i=1:1:m*n % Generate pseudorandom sequence that will

% be used for diffusion and permutation

[dx, dy, dz, du] Runge-Kutta (x(i), y(i), z(i), u(i))

x(i+1) x(i) +dx

y(i+1) y(i) +dy

z(i+1) z(i) +dz

u(i+1) u(i) +du

floor(u(i+1)*10^4)

End
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resolution of 10−15, in terms of a numeric calculation. Moreover, if a range of control
parameters were to be considered for the key space, the key space of this system
would far exceed 1090. Such a large key space provides sufficient security against
brute-force attacks.

Table 2 (continued)

Count=1                        % Count flag

For i=1:m % Diffusion Operation

For j=i:n

diff(Count) mod (s(Count)*10^14, 256) % transform s, which could be used for XOR

En_Dif(i,j)=bitxor(Org_Img(i,j), diff (Count)); % Bitwise exclusive OR

Count= Count+1;

End

End

S_index Sort(s)               

For i=1:n                            % Column-wise permutation 

For j=1:m

En_per_col (i,j) Sort (En_Dif, S_index)

End

End

For i=1:m                            % Row-wise permutation 

For j=1:n

En_Img (i,j) Sort (En_per_col, S_index)

End

End

Input: Plain image Org_Img, Initial conditions for the chaotic system, Control parameter for the 

chaotic system, 

Output: Ciphered Image En_Img
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5.2 Key sensitivity analysis

The key space includes all initial conditions and control parameters. Due to the mutual
independence of the secret keys, the practical approach is to analyze each key with a tiny
change while leaving the other keys unchanged.

To perform a sensitivity analysis using the initial condition (x, y, z, u) = (7, 9, 10, 13), we
made a slight change ofΔx = 10^(−15). The modified key is (x +Δx, y, z, u) = (7 + 10^ (−15),
9, 10, 13). The difference in the output sequence between the two initial conditions is
shown in Fig. 9.

In Fig. 9, the sequence of the differences between the two variables is a pseudo-
random sequence, and we verified that the distribution has random statistical
characteristics.

To test the key sensitivity further, we used these two keys to encrypt the same image. The
results show that 95% of the pixels are different. The difference between the two encrypted
images is shown in Fig. 10.

Therefore, the difference between ciphertexts encrypted via different keys is sufficiently
large to maintain high security against this kind of known-plaintext attack.

5.3 Histogram analysis

The histogram of an image reveals the distribution of its pixel values. An ideal encrypted
image should have a uniform but completely different histogram compared to the plain image
to prevent the adversary from extracting any meaningful information from the fluctuating
histogram of the cipher image [29].

Figure 11 shows the histograms of the plain and ciphered images of a CT image.
For the quantitative analyses of histograms, we employ variances of histograms to evaluate

the uniformity of the ciphered images. Lower variance values indicate a higher uniformity in
the encrypted images. The variance of the histograms is presented as follows:

var Zð Þ ¼ 1

n2
∑
n

i¼1
∑
n

j¼1

1

2
zi−z j
� �2 ð6Þ

Ciphered Image Row recovery Column recovery Diffusion recovery Plain Image

Simple Chaotic System with Hyperbolic Sine 

De-correlation operation

Variable Sequence of u

Avg_ pixel_ value

Fig. 5 The flowchart of the decryption scheme
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Table 3 Image decryption scheme

Input: Ciphered image En_Img, Initial conditions for the chaotic system, control parameter for 

the chaotic system, Avg_pixel_value of Org_Img

Output: Plain Image Org_Img

[m,n] size(En_Img);

x(1) x(1) + Avg_pixel_value

y(1) y(1)

z(1) z(1)

u(1) u(1)

floor(u(1)*10^4)

For i=1:1:m*n                 % Generate a pseudorandom sequence that will

% be used for decryption

[dx, dy, dz, du] Runge-Kutta (x(i), y(i), z(i), u(i))

x(i+1) x(i) +dx

y(i+1) y(i) +dy

z(i+1) z(i) +dz

u(i+1) u(i) +du

floor(u(i+1)*10^4)

End

S_index Sort(s)  

For i=1:m                            % Row-wise permutation recovery

For j=1:n

De_per_row (i,j) Sort (En_Img, S_index)
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where Z is the vector of the histogram values and zi and zj are the numbers of pixels
whose gray values are equal to i and j, respectively. In this experiment, we used an
initial condition of (x, y, z, u) = (7, 9, 10, 13) and calculated the variances of the
plain images and the encrypted images.

The variance value is 1,293,577.2343 for the histogram of the plaintext image
BLena^ and 3903.0000 for the histogram of the ciphered image. Therefore, these
simulation results indicate that any statistical attack on the proposed scheme are
useless.

5.4 Correlation analysis

A high correlation typically exists between pixels of an image, and this correlation is
an intrinsic feature. Thus, a secure encryption scheme should obscure this relationship

Table 3 (continued)

End

End

For i=1:n % Column-wise permutation recovery

For j=1:m

De_per_col (i,j) Sort (De_per_row, S_index)

End

End

Count=1 % Count flag

For i=1:m % Diffusion recovery

For j=i:n

diff(Count) mod (s(Count)*10^14, 256) % transform s, which could be used for XOR

Org_Img (i,j)=bitxor(De_per_col (i,j), diff (Count)); % Bitwise exclusive OR

Count= Count+1;

End

End

Input: Ciphered image En_Img, Initial conditions for the chaotic system, control parameter for 

the chaotic system, Avg_pixel_value of Org_Img

Output: Plain Image Org_Img
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to improve the resistance against statistical analysis. For this calculation, we use the
following equations:

E xð Þ ¼ 1

N
∑
N

i¼1
xi

D xð Þ ¼ 1

N
∑
N

i¼1
xi−E xð Þð Þ2

Cov x; yð Þ ¼ 1

N
∑
N

i¼1
xi−E xð ÞÞðyi−E yð Þ� �

γxy ¼
Cov x; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D xð ÞD yð Þp

:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð7Þ

The correlations between adjacent pixels in the plain image and the encrypted
image are shown in Fig. 12. Table 4 provides the correlation coefficients of the
original and encrypted images shown in Fig. 10. This correlation analysis proves that
the encryption scheme satisfies zero co-correlation, which is a private high-level
security.

Fig. 6 Encryption and decryption results for a mammography image: (a) Plain image; (b) Encrypted image; (c)
Decrypted image

Fig. 7 Encryption and decryption results for a CT image: (a) Plain image; (b) Encrypted image; (c) Decrypted image
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5.5 Differential attack analysis

In general, the relationship between a plain image and an encrypted image can be traced to the
differences caused by a specific change to the plain image. Two evaluating indicators are
usually used to test the effect of a 1-bit change in the plain-image on the corresponding cipher-
image. They are the number of pixel change rates (NPCR) and the unified average changing
intensity (UACI) [27]. NPCR and UACI are calculated as follows:

NPCR ¼ ∑i; jD i; jð Þ
W� H

� 100% and

UACI ¼ 1

W � H
∑i; j

c1 i; jð Þ−c2 i; jð Þj j
255

� �
� 100%;

ð8Þ

where c1 and c2 are two images with the same size (M×N). If c1 (i, j) = c2 (i, j), then D(i, j) = 1;
otherwise D(i, j) = 0. The NPCR and UACI score of CT image are 99.5804% and 33.3227%.

Fig. 8 Encryption and decryption results for anMRI image: (a) Plain image; (b) Encrypted image; (c) Decrypted image

Fig. 9 The difference between two variables of x and x +Δx
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5.6 Overall performance

As revealed in Sections 5.1–5.5, the proposed scheme has a large key space (> > 2100),
which can provide sufficient security against brute-force attacks. The key is highly
sensitive, which provided a high level of security against known plaintext attacks.
Histogram and correlation analysis indicate that the proposed scheme removes the
intrinsic features of plain images; thus, any statistical attacks on the proposed scheme
are useless. Finally, the NPCR and UACI scores are close to ideal values, which
indicates that the proposed scheme provides sufficient security against differential
attack. Therefore, this proposed scheme provides sufficient security against all known
attacks.

Fig. 10 The difference between the two encrypted images

Fig. 11 Histograms of plain and encrypted images of a CT image
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5.7 Comparison results, discussion and future work

5.7.1 Comparison results

In this section, we compared the performance of our algorithm to several typical image
encryption algorithms. We evaluate the performance of our proposed method by conducting
several tests based on image quality and other evaluation metrics. To compare the correlation
values, we used the following equation

CC ¼ Chj j þ Cvj j þ Cdj j
3

: ð9Þ

Fig. 12 Correlation analysis for plain and encrypted CT image versions: (a) Correlations of the horizontal adjacent
pixels for the plain image; (b) Correlations of the horizontal adjacent pixels for the encrypted image; (c) Correlations of
vertical adjacent pixels for the plain image; (d) Correlations of the vertical adjacent pixels for the encrypted image

Table 4 Correlation coefficients
of adjacent pixels in the plain and
encrypted image

Figure name Direction Plain-image Ciphered image

CT image Horizontal 0.978292 0.002500
CT image Vertical 0.955481 0.006207
CT image Diagonal 0.940737 0.003071

22802 Multimed Tools Appl (2018) 77:22787–22808



The image encryption method described in [29] uses a chaotic system of mixed linear–
nonlinear coupled map lattices for diffusion of the image encryption. In [6], a secure video
summarization framework was introduced that used a 2-D chaotic map to generate a set of
permutation keys to shift the positions of the plain keyframe pixels, followed by a diffusion per
block using arithmetic matrix multiplication over the finite field. A novel image encryption
scheme proposed in [5] was based on the Zaslavsky chaotic map, while [18] described a
cryptosystem using a newly enhanced chaotic map designed from an existing one-dimensional
chaotic economic map.

A performance comparison of all these algorithms is shown in Tables 5 and 6.

5.7.2 Discussion

Tables 5 and 6 show that the key space of the proposed algorithm is the smallest of the
compared algorithms. This is because we could not determine the exact key space value but
could estimate only the most conservative value. We have tried and failed to figure out the
basin of the attraction and the whole control parameter space, which would allow us to
estimate the exact value of the key space. Because using Lyapunov exponents is the most
reliable method of indicating chaos and is defined via infinite time, the algorithm does not run
very fast. Assuming that the entire initial condition space and control parameter space is 1; the
key space would be 1060. Assuming that it would take 1 ms to calculate the Lyapunov
exponent of every secret key, more than 1.15*1042 days would be required to calculate the
key space. Our estimate shows the most conservative values; however, the true key space may
be far greater that the value found in this paper.

The entropy, correlation coefficient, NPCR andUACI scores of the proposed algorithm are not
the highest among the compared algorithms, but its scores are very close to the ideal values of
those metrics. The differences in score between our algorithm and the ideal value are 0.0048%
(entropy), 0.0014% (NPCR), and 0.24%. Because this encryption scheme is very simple and can
encrypt an image in a single round, we believe that only the chaotic system described in Section 2
and the pseudorandom sequence generated in Section 3 have this good performance.

Table 6 Comparison of the proposed image encryption method with recent state-of-the-art encryption algo-
rithms (the test image is an MRI image)

Method name Key space Entropy Correlation coefficient(CC) NPCR UACI

Ideal value >2100 ≈8 ≈0 ≈99.6 ≈33.4
Proposed algorithm >2300 7.9961 0.0020 99.6326 33.4377
Ref [18] 21275 15.1771 0.0068 100.0 50.0832

Table 5 Comparison of the proposed image encryption method with recent state-of-the-art encryption algo-
rithms (the test image is BLena^)

Method name Key space Entropy Correlation coefficient(CC) NPCR UACI

Ideal value >2100 ≈8 ≈0 ≈99.6 ≈33.4
Proposed algorithm >2300 7.9969 0.0025 99.6140 33.4805
Ref [29] >2400 N/A 0.0006 99.7826 33.4964
Ref [6] 2711 7.9998 0.0019 99.6090 33.4500
Ref [5] 2711 7.9978 0.0031 99.6100 33.5000
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5.7.3 Future work

Chaos theory can be applied outside of the natural sciences. For example, chaotic invariants
and relevance vector machines (RVM) could be used in human action recognition [2]. Because
this paper has proposed a new simple chaotic system, one could attempt to use this system to
solve problems of action recognition.

6 Conclusion

In this paper, a new simple chaotic system with a hyperbolic sine and its encryp-
tion scheme are proposed. Because the chaotic sequence does not fit a uniform
distribution and the randomness of the sequence is not quite ideal, a decorrelation
operation is used to improve the randomness of the sequence. Due to the given
features in the dynamics of the pseudorandom proposed sequence, cryptosystem
security has been enhanced. A key space analysis, key sensitivity analysis, histo-
gram analysis, correlation analysis and differential attack analysis showed that this
algorithm is highly resistant to known attacks such as known-plaintext attacks,
ciphertext attacks, statistical attacks, differential attacks, and various other brute-force
attacks.

Based on these advantages, the proposed method could be used as an assistive tool for
telemedical systems or in secure medical systems. In future work, we intend to implement the
method in hardware or extend it via parallel execution to reduce the execution time of the
encryption algorithm. Although the proposed scheme focuses on medical image encryption, it
is not limited to this area. Additional future work could explore related applications in other
information security fields.
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