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Abstract In data mining and knowledge discovery applications, outlier detection is
a fundamental problem for robust machine learning and anomaly discovery. There
are many successful outlier detection methods, including Local Outlier Factor
(LOF), Angle-Based Outlier Factor (ABOF), Local Projection Score (LPS), etc.
In this paper, we assume that outliers lie in lower density region and they are at
relatively larger distance from any points with a higher local density. In order to
identify such outliers quantitatively, the paper proposed a decision graph based
outlier detection (DGOD) method. The DGOD method works by firstly calculating
the decision graph score (DGS) for each sample, where the DGS is defined as
ratio between discriminant distance and local density, next ranking samples ac-
cording to their DGS values, and finally, returning samples with top-r largest DGS
values as outliers. Experimental results on synthetic and real-world datasets have
confirmed its effectiveness on outlier detection problems, and it is a general and
effective information detection method, which is robust to data shape and
dimensionality.
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1 Introduction

Due to vast amounts of multiple distributed sensors, social media has become the
most representative and relevant data sources for big data. Information detection is
one of the most popular topics in social big data research, especially outlier and
detection is the critical issue [4, 36]. In reality, within the massive data, there are
inevitable exceptional behaviors or inconsistent patterns that often exhibit as the
representations of noises or interesting facts, such as cyber-intrusion and terrorist
activities [37]. In data mining and knowledge discovery applications, outliers are also
referred as anomalies, deviants, or discordants of data generating process, which will
lead to model misspecification, biased parameter estimation and incorrect results [22].
The detection of such unusual characteristics provides useful application-specific
insights [1], such as network intrusion detection [10, 12], social media security and
trustworthiness evaluation [38, 41], credit card fraud detection, clinical trials, voting
irregularity analysis, severe weather prediction, athlete performance analysis, terrorist
activity investigation et al. To address these challenges, many researchers have
proposed several outlier detection methods according to different definitions of out-
liers. Johnson [18] suggests that an outlier is an observation which appears to be
inconsistent with the rest of the dataset. Barnett and Lewis [3] define outliers as
objects that appears to deviate markedly from other samples in which it occurs. The
most popular definition of outlier is proposed by Hawkins [13], and he defined outlier
as a sample that appears to deviate somuch from other samples as to arouse suspicion that it was
generated by a different mechanism. Since outlier detection can reveal unusual behaviors,
interesting patterns and exceptional events from datasets, it is of great interest to the commu-
nities of machine learning and data mining.

There are two perspectives on outlier detection problem formulation, one is learn-
ing to rank which output a score about the level of Boutlierness^ of a sample, and the
other is learning to classification which output a binary label indicating whether a
sample is an outlier or not. Due to its nature of unsupervised learning, how to detect
outliers from normal data samples with noise is often a subjective process. In this
work, we formulate the outlier detection problem as a ranking problem, and present a
quantified outlierness measure of a sample.

Many efforts have been devoted to detect outliers. In statistical analysis, the
simplest method for outlier detection is Z-value test which assumes that the data
samples are modeled from a normal distribution. The samples with more than 3
standard deviations from the mean are recognized as outliers. But it is not always
the case for real data. Generally speaking, existing outlier detection methods falls into
three main categories: distance-based methods, density-based methods and clustering-
based methods.

Distance-based methods consider the data points having large average distances to
the k-th nearest neighbors as outliers. Distance-based outlier was originally proposed
by Knorr and Ng [19] in 1998, in which a sample xi in a dataset X is a DB(p,T)-
outlier if at least fraction p of the samples in X lies greater than distance T from xi.
Although a number of efficient algorithms for detecting distance-based outliers are
proposed, it doesn’t provide a ranking for outliers. Based on the distance of each
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sample from its k-th nearest neighbor, Sridhar et al. [26] proposed a partition-based
algorithm to rank each point and declare the top r points in this ranking to be
outliers. To detect outliers in scattered datasets, Zhang et al. proposed Local
Distance-based Outlier Factor (LDOF) [39] which is defined as the ratio of the
average of distances from a data point to its k-nearest neighbors over the average
of pairwise distances among these k-1 data points, and then the degree to which a
sample deviates from its neighborhood system is captured. To circumvent the distance
concentration problem in high-dimensional space, Liu et al. [21] introduced Local
Projection Score (LPS) to represent deviation degree of a sample to its neighbors, in
which the LPS can be computed by the technique of low-rank approximation.

Though distance-based methods are simple and elegant, they didn’t work well for
datasets that have more complex structures and are sensitive to data locality [5].
Density-based methods are robust to data locality, which assume that the density
around an outlier is significantly different from densities around its neighbors. Then
outliers can be identified by comparing the density of a sample’s neighborhood with
that of its neighbor’s neighborhood. The most popular density-based method is Local
Outlier Factor(LOF) [5], in which outliers are detected by measuring the local
deviation of a given data point with respect to its neighbors, and outliers are
considered as data points that have a substantially lower density than their neighbors.
However, selecting neighborhood parameter k in LOF is non-trivial. Following the
idea of local density measure, several extensions to the basic LOF model have been
proposed. Tang et al. proposed the Connectivity-based Outlier Factor (COF) [32] to
deal with the case that a cluster and a neighboring outlier have similar neighborhood
densities. Rather than examining an individual sample, the Local Correlation Integral
(LOCI) [25] method looks for groups of outliers. LOCI method provides an Boutlier
plot^ which gives the user an idea on how data is distributed in the vicinity of the
analyzed sample. From the plot, one can assess whether the sample is inside a cluster,
a part of a micro-cluster or if it is an outstanding outlier. Different with LOF, LOCI
uses ε-neighborhoods rather than k-nearest neighbors, and can deal with multi-
granularity problem in the dataset. Jin et al. proposed a measure of outlierness named
INFLO [17] by considering the union of a point’s k-nearest neighbors and its reverse
nearest neighbors. In 2011, in order to detect anomalies from high-dimensional data
streams, Zhang et al. [40] developed a method named Stream Projected Otlier
Detector (SPOD), which constructs sparse subspace template and then anomalies are
more likely to be detected in the set of subspaces. To achieve good detection
performance, application-dependent feature selection and data partition based on
different temporal contexts are conducted. S. Hido et al. [14] proposed density-ratio
based outlier detection approach which find outliers in the test set based on the
training set consisting only of inliers. The outliers are recognized by the ratio of
training and testing data densities. This method can be viewed as supervised outlier
detection. However, there are not training data in most cases, and the performance of
this method heavily depends on the accuracy of density ratio estimation which is a
challenging problem for high-dimensional data sets.

The clustering problem has a complementary relationship to the outlier detection
problem, in which points either belong to clusters or outliers. Clustering-based
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methods define outliers as clusters of small size, especially including the size of one
data point. Density-Based Spatial Clustering of Applications with Noise (DBSCAN,
[9]) detects outliers by checking the connections between data samples and clusters,
and the samples that do not belong to any clusters or belong to small clusters are
identified as outliers. In 2008, Jiang et al. [16] proposed a clustering-based outlier
detection method, which consists of two stages, firstly, dataset is clustered by on-pass
clustering algorithm, then the outlier factors of clusters are determined. The robust
clustering with outliers is also called noise clustering, which define outliers in terms
of noise distance. Rehm et al. [27] proposed a method to estimate the noise distance
in noise clustering based on the preservation of the hypervolume of the feature space.
However, how to estimate the hypervolume of the feature space is also a challenge. In
2011, Shi et al. [31] proposed Cluster-Outlier Iterative Detection (COID) method, in
which clusters are obtained firstly, then the intra-relationship and inter-relationship are
defined. After performing the alteration of clusters and outliers iteratively, COID
method consistently outputs natural clusters and outliers. To circumvent sensitivity
of parameter k in k-nearest neighbors based methods, Wang et al. [34] proposed a
minimum spanning tree clustering based global outlier factor and local outlier factor.
In order to handle large-scale datasets, a robust Novel Local Outlier Detection
(NLOD, [7]) method is proposed, which finds density peaks of dataset by 3σ standard
firstly, then all the samples are clustered by neareast neighbor criterion, finally the
local outliers of each cluster are identified by Chebyshev’s inequality and density
peak reachability. However, the performance of clustering-based methods are highly
dependent on the effectiveness of the clustering algorithm in capturing the cluster
structure of normal samples.

Furthermore, there are some other methods are designed for special background.
For high dimensional data, Kriegel et al. proposed Angle-Based Outlier Factor
(ABOF) [20] to evaluate the variance in angles among the difference vectors from
the analyzed sample to other samples in the dataset. However, ABOF only considers
the relationships between each sample and its neighbors and does not consider the
relationships among these neighbors, thus it may not detect outliers correctly.
Scholkipf et al. [30] extended SVM to outlier detection which aims to separate data
samples into outliers and inliers by a hyperplane in a Gaussian reproducing kernel
Hilbert space. However, setting of tuning parameters in this method is difficult.
Manifold is a useful tool to model the structure of data samples. Since manifold
learning methods are sensitive to outliers, Onderwater [23] proposed an outlier
detection method based on Local Reconstruction Weights (LRW). The samples with
large local reconstruction weights can be considered as outliers. By utilizing the
concept of the center of gravity, Ha et al. [11] introduced the instability factor of a
sample to detect local and global outliers. A sample with a high instability factor is a
promising candidate for an outlier. This approach eliminates the problem of density
calculation in the neighborhood of a sample, but with a high computational cost.
Recently, Huang et al. [15] proposed Rank-Based Detection Algorithm (RBDA) and
the degree of isolation of a sample is measured with sum of ranks of a sample.
Dufrenois et al. [8] proposed one class Fisher’s linear discriminant criterion and its
kernelized version to detect isolate outliers from normal samples.
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All these methods are closely related, since they are based on the proximity of
samples. However, these methods do not work well if there are various degrees of
cluster density in dataset. Also, it is difficult to select appropriate values for the
model parameters, such as the size of the neighborhood around a sample. What is
more, they are often unsuitable for high-dimensional datasets and for arbitrary datasets
without prior knowledge of the underlying data distribution. To overcome these
weaknesses and detect all kinds of outliers simultaneously, motivated by the idea in
[28], we proposed a Decision Graph based Outlier Detection (DGOD) method. DGOD
detects outlier from clusters by incorporating the advantages of density-based and
clustering-based methods. Each sample is ranked by the proposed decision graph
score. The basic idea of DGOD is illustrated in Fig. 1, and the main contributions
of this paper are listed as follows:

(1) Two metrics are proposed to analyze the distribution of data samples, which are called
local density and discriminant distance.

(2) A simple and intuitive outlier detection criterion named decision graph score is defined to
measure the outlierness of each sample, which is computational efficient and scalable for
large- scale datasets.

(3) Comprehensive experiments on several synthetic and real-world datasets dem-
onstrate the efficiency and effectiveness of DGOD method. It is not only
computational efficient, but also robust to distribution and dimensionality of
datasets.

The rest of the paper is organized as follows. In Section 2, we reviewed some
related works on outlier detection. Then the proposed method is presented in
Section 3. The experimental analysis is conducted in Section 4. Section 5 concludes
the paper and Section 6 outlines the limitations of the proposed method as well as the
scope for future work.

2 Related work

In this section, we discuss six related works in the area of detecting outliers, such as
Local Outlier Factor (LOF), Local Reconstruction Weights (LRW) based outlier
detection method, Rank-Based Detection Algorithm (RBDA), Angle-Based Outlier

Fig. 1 Graphical illustration of
DGOD method
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Factor (ABOF), Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) and Local Projection Score (LPS). Table 1 presents the notations used
in the remainder of the paper.

2.1 Local outlier factor (LOF)

Let distk(xi) be k-distance of a sample xi which is defined as the distance between xi and its kth
nearest neighbor. Then k-distance neighbor of xi is defined as

Nk xið Þ ¼ x j
��dist xi; x j� �

≤distk xið Þ� �
Noted that the cardinality of Nk(xi) is greater than k. Then reachability distance from xi to xj is
defined as

reachdistk xi→x j
� � ¼ max dist xi; x j

� �
; distk xið Þ� �

Obviously, the reachability distance is not symmetric, i.e., reachdistk(xi→ xj) ≠reachdistk(xj→ xi).
It indicates that reachability distance measures the dissimilarity between xi and xj by considering
their locality. The reachability distance from xi to its k-distance neighbor is its k-distance, and the
reachability distance from xi to the samples that are not its k-distance neighbors is their actual
distance. Therefore, statistical fluctuations of pairwise distances for all the nearby samples can be
significantly reduced.

In order to compare the densities of different neighborhood sets of samples dynamically,
local reachability density of xi is defined as

lrdk xið Þ ¼ Nk xið Þj j
∑

x j∈Nk xið Þ
reachdistk x j→xi

� � : ð1Þ

Here |Nk(xi)| is number of samples contained in Nk(xi). Then LOF of a sample xi is defined
as the average of the ratio of local reachability of xi and those of xi‘s k-nearest neighbors

LOFk xið Þ ¼ 1

Nk xið Þj j ∑
x j∈Nk xið Þ

lrdk x j
� �

lrdk xið Þ

¼ ∑
x j∈Nk xið Þ

lrdk x j
� �

∑
x j∈Nk xið Þ

reachdistk x j→xi
� � ð2Þ

Table 1 Notations used in the
paper Symbol Meaning

X Data matrix whose columns represent samples
xi A sample point
d Dimensionality of samples, i.e., number of rows of X
n Total number of samples, i.e., number of columns of X
r Total number of outliers
k Neighborhood parameter
dist(xi,xj) Distance between xi and xj
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Note that the lower the local reachability density of xi, and the higher the local reachability
density of the k-nearest neighbors of xj, then the higher LOF. Obviously, for most samples in a
cluster, the LOF values of them are approximately equal to 1.

2.2 Local reconstruction weights (LRW) based method

LRW method derived from local linear embedding [29], and has three steps. Firstly, local
reconstruction weights are computed, and then compute the reliability score of each sample
point using local reconstruction weights. At last, the outliers are detected using the reliability
scores. LRW method assumes that each data point can be linearly reconstructed from its
neighborhoods, i.e.

min ∑
i

xi−∑
j
wijx j

�����
�����
2

2

ð3Þ

where wij is xi’s local reconstruction weight from xj. The objective function (3) is minimized
with following two constraints:

First, each data point xi is reconstructed only from its neighbors, enforcing wij = 0 if xj does
not belong to the set of neighbors of xi; Second, the rows of the weight matrix sum to one, i.e.,

∑
n

j¼1
wij ¼ 1 ð4Þ

After obtaining the optimal local reconstruction weights, the sample points with large
reconstruction weights are suspected as outliers in the dataset. Therefore, the reliability score
of each sample can be defined as

LRW xið Þ ¼ ∑
n

j¼1
wij
�� �� ð5Þ

2.3 Rank-based detection algorithm (RBDA)

RBDA uses mutual closeness of each data point and its neighbors to detect outliers.
Different from other outlier detection methods, RBDA uses rank instead of distance.
Let R be the rank matrix of dataset X. If xj is not the k-distance neighbor of xi, or xi
is not the k-distance neighbor of xj, Rij = 0; Otherwise, Rij is the rank of distance
between xi and xj among sorted distances between any other samples and xj with
ascending order.

In order to measure the outlierness of xi, RBDA use the ranks based on neighborhood
relationships between xi and Nk(xi), which can be defined as:

Outlierness xið Þ ¼ 1

Nk xið Þj j ∑
x j∈Nk xið Þ

Rij ð6Þ

If outlierness of xi is large, it will be suspected as an outlier.
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2.4 Angle-based outlier factor (ABOF)

The angle-based outlier factor ABOF(xi) is defined as the variance over the angles between the
difference vectors of xi to all pairs of samples in X weighted by the distance of the samples,
which can be formulated as:

ABOF xið Þ ¼ VAR
∀x j;xt∈X

x j−xi
� �

; xt−xið Þ� 	
x j−xi
�� ��2 xt−xik k2

 !
ð7Þ

where 〈⋅, ⋅〉 denote inner product between two vectors. Since for each sample all pairs of
samples must be considered, the computational cost is high. Thus in applications, the ABOF
can be approximated as follows:

ABOF xið Þ ¼ VAR
∀x j;xt∈Nk xið Þ

x j−xi
� �

; xt−xið Þ� 	
x j−xi
�� ��2 xt−xik k2

 !
ð8Þ

2.5 Density-based spatial clustering of applications with noise (DBSCAN)

In DBSCAN [9] method, outliers are identified as sample points that lie in low-density regions
whose nearest neighbors are too far away. Since DBSCAN is a density-based clustering
method, the points that do not belong to any of the clusters will be identified as outliers.
The cluster of DBSCAN is defined as follows.

Definition 1 The ε-neighborhood of a sample is defined as

N ε xið Þ ¼ x j∈X dist xi; x j
� �

< ε
��� �

Definition 2 A sample xi is directly density-reachable from a sample xj if xi ∈Nε(xj) and
|Nε(xj)| ≥MinPts, where MinPts is a given integer.

Definition 3 A sample xi is density-reachable from a sample xj if there is a chain of samples
xp1 ; xp2 ;⋯; xpm , and xp1 ¼ x j; xpm ¼ xi, such that xpiþ1is directly density-reachable from xpi .

Definition 4 A sample xi is density-connected to a sample xj if there is a sample xt sucht that
both xi and xj are density-reachable from xt .

Definition 5 A cluster C is non-empty subset of X satisfying the following conditions:

(1) For any xi and xj, if xj is density-reachable from xi that belong toC, then xjwill belong toC.
(2) For any xi and xj in C, xi is density-connected to xj

Definition 6 Let C1, …, Cs be the clusters of the dataset X, then

outlliers ¼ xi∈X ∀ j : xi∉C j
��� �
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2.6 Local projection score (LPS)

LPS [21] assumes that the sparser the neighborhood of the sample, the higher probability
of being outlier the sample. Since the nuclear norm of X can efficiently measure the
divergence of X, the nuclear norm of neighborhood is adopted as the outlierness
called LPS which is defined as

LPS xið Þ ¼ N xið Þk k* ð9Þ

where Xk k* ¼ ∑
r

i¼1
σi and N xið Þ ¼ x 1ð Þ

i ; x 2ð Þ
i ;⋯; x kð Þ

i

n o
. Note that the larger the LPS(xi)

is, the sparser the neighborhood of xi is. The LPS(xi) can be estimated in low-
dimensional embedding space, the projection procedure can be formulated as the
following nuclear norm minimization problem:

min
1

2
X−X̂
�� ��2

F þ λ X̂
�� ��

*
ð10Þ

3 Proposed method

Compared with their neighbors, outliers can be characterized by a lower density and by a
relatively large distance from points with higher densities. Based on such observation, the
proposed DGOD method uses cluster structure to determine normal samples, from which the
outliers are identified.

3.1 Decision graph

Definition 7 The local density ρi of a sample xi is defined as

ρi ¼ ∑
m

j¼1
θ dc−dist xi; x j

� �� � ð11Þ

where dc > 0 is a given threshold which can be called cutoff distance, and θ(⋅) is an indicator
function which is defined as

θ tð Þ ¼ 1 t≥0
0 t < 0



ð12Þ

From Definition 7, we can see that the local density of each sample point is the number of
samples contained in a hypersphere with the radius dc which centered in that sample point. The
lower local density, the sparser samples distributed. Therefore, local density in Definition 7 is a
useful quantity measure to describe distribution of samples. In the application, we can define
other form local density similarly, such as

ρi ¼ ∑
n

j¼1
e

dist xi ;x jð Þ
dc

� �2

ð13Þ
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By using the potential entropy of data field, Wang et al. [35] proposed an automatic
selection of the threshold value of dc. In data field, the potential of each sample point can be
calculated as follows:

φ xið Þ ¼ ∑
n

j¼1
e

−
dist xi ;x jð Þ

σ

� �2

ð14Þ

which is very similar to the equation that is used to calculate local density. Since the
sample points with larger potentials located in the dense region, by using the potential
entropy of data field, the optimal threshold value dc can be calculated as 3ffiffi

2
p σ, where

impact factor σ can be chosen with smallest entropy. The entropy H of data field can
be calculated as follows:

H ¼ − ∑
n

i¼1

φ xið Þ
∑
n

i¼1
φ xið Þ

log
φ xið Þ
∑
n

i¼1
φ xið Þ

0
BB@

1
CCA ð15Þ

Definition 8 The discriminant distance δi of a sample xi is defined as

δi ¼
min
j:ρ j>ρi

dist xi; x j
� �� �

min
j

dist xi; x j
� �� �

ρi≠max
j

ρ j

� �
ρi ¼ max

j
ρ j

� �
8><
>: ð16Þ

Similar to reachability distance in LOF, the larger discriminant distance of xi, the more
likely it is an outlier. It represents the difference between xi and its neighborhood samples.
Particularly, for those samples located in two different cluster centers, their discriminant
distance may be large, but they cannot be outliers, since their local densities are large. In
order to visualize the identification of outliers intuitively, we construct the following decision
graph.

Definition 9 Decision Graph. Decision graph of a dataset X is a scatter-plot (ρi, δi)
which of the plot of discriminant distance δi along local density ρi for each
sample.

Here is a toy example for illustrating the idea of decision graph. In Fig. 2, 40
sample points with two clusters are randomly generated. For statement conveniently,
each sample point is marked with a number. Intuitively, we can see that from Fig. 2,
Point 20, Point 17, Point 13 may be suspected as outliers. This suspicious can be
confirmed obviously in Fig. 3, which shows the decision graph of the toy data.
Samples with lower density and larger discriminant distance are located in the left
corner of decision graph. It indicates that the outlier score of each sample can be
calculated based on the decision graph, which is defined by local density and
discriminant distance.
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3.2 Outlier detection criteria

Finally, we define following outlier detection criteria based on decision graph of dataset.

Definition 10 Decision Graph Score. The decision graph score γi of a sample xi is defined as

γi ¼
δi
ρi

ð17Þ

Essentially, discriminant distance is determined by local density. Therefore, the decision
graph score is sensitive only to the relative magnitude of local density ρi in different samples,
and it is robust with respect to the choice of dc. Compared with related outlier detection
methods, our DGOD method is simple and intuitive.

Fig. 2 Two-dimensional toy data

Fig. 3 Decision graph of toy data
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Figure 4 shows the plot of decision graph score γi with descending order. We find
that the samples with largest decision graph score are Point 20, Point 17 and Point
13. Figure 5 shows the original sample points marked with circles, whose radius
represent the value of decision graph score. Obviously, the most suspicious outliers
are Point 20, Point 17 and Point 13.

The implementation details of decision graph based outlier detection (DGOD) are summa-
rized in Algorithm 1. It comprises two major procedures: estimating local densities and
computing discriminant distances. After sorting decision graph scores in a descending order,
the top r samples will be ranked as desired outliers. The dominating steps are pairwise
distances computing and sorting, and the computational complexity of pairwise distance
matrix computing is O(n2d) and the same as Step 2, the computational complexity of DGOD
is O(n2d).

Algorithm 1: DGOD

Input: data matrix X, number of outliers r, cutoff distance dc .

Output: projection matrix V, low-dimensional representation 

matrix Y.

Procedure:

Step 1. Compute pairwise distances between any two samples.

Step 2. Compute local density and discriminant distance of 

each sample xi according to Equation (13) and (16). 

Step 3. Compute decision graph score of each sample xi

according to Equation (17).

Step 4. Sorting decision graph scores with descending order, 

and selecting samples with first r largest scores as detected 

outliers.

4 Experimental results

In this section, we show the effectiveness of the proposed method on Synthetic and
real-world datasets with known ground-truth outliers. We compared the perfor-
mance of our proposed method (DGOD) with seven existing approaches, Z-value,
LOF, LRW, RBDA, ABOF, DBSCAN and LPS. All methods are implemented
using MATLAB 2014b running on Intel core i7 processor with an 8 GB RAM.
Although dc can be automatic selected by potential entropy of data field, it is
computational expensive. In the experiments, the cutoff distance dc is set as
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follows: firstly, all pairwise distances between samples are sorted with ascending
order, then the distance value in the position of 2 % of total number of samples is
set as cutoff distance dc. Given a fixed number of desired outliers, the detected
outliers will be obtained by different methods, and then the performances are
compared with true outliers.

Fig. 5 Outlier detection of toy data

Fig. 4 Decision graph score of toy data
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4.1 Synthetic data

In order to illustrate how DGOD behaves in outlier detection, four synthetic datasets,
shown in Figs. 6, 7, 8, and 9, are designed to consider the various situations of
datasets structure, including outliers planted in datasets with different local density
and multi-granularity, outliers in linear regression and clustering. These four synthetic
datasets are named as Local Density Synthetic Dataset, Multi-Granularity Synthetic
Dataset, Linear Regression Synthetic Dataset and Two Cluster Synthetic Dataset,
respectively. Figsures 6, 7, 8, and 9 displays the detected outliers by different
methods on the four datasets. For each method, the detected outliers are marked with
different colors and symbols.

Fig. 6 Results comparison on local density synthetic dataset
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Density and multi-granularity of dataset are challenges for outlier detection task, since the
normal samples or clusters are generated by placing all points uniformly with varying degrees
of densities. From Figs. 6 and 7, we can see that LRWand DBSCAN detected the two ground-
truth outliers and DGOD detected only one ground-truth outlier, while other methods failed. It
indicates that LRW and DBSCAN may be suitable for Local Density Synthetic Dataset and
Multi-granularity Synthetic Dataset.

Fig. 7 Results comparison on multi-granularity synthetic dataset
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Outliers in regression and clustering tasks are main issue for robust data mining. In Fig. 8,
both DGOD and LRW detect two true outliers successfully, and LOF and RBDA detect only
one true outlier, while other methods failed. In Fig. 9, DGOD detected 5 true outliers
successfully, and Z-value detected 4 true outliers, LOF and LPS detected 3 true outliers,
RBDA detected 2 outliers, while other methods failed. It indicates that DGOD method
performs well for robust regression and clustering tasks.

Fig. 8 Results comparison on linear regression synthetic dataset
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Fig. 9 Results comparison on two cluster synthetic dataset

Table 2 UCI datasets description
Dataset Dimensionality

of samples
Total number
of inliers

Total number
of outliers

sonar 60 111 10/20/30
wdbc 30 357 22/43/64
soybean2 35 120 2/4/5
vowel 10 480 5/10/15
ionosphere 34 225 13/26/38
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4.2 Real datasets with rare classes

We also applied the DGOD method to six real-world UCI datasets. For each UCI dataset,
following the data preprocessing strategy used in [33], the class with minimum number of
samples is made `rare’ by removing most of its samples, and the remaining samples are used in
the final dataset. Specifically, only 10, 20 and 30% of the samples in the class with minimal
size is contained as outlier. The datasets used in experiments are described in Table 2.

The number of detected outliers is presented as the number of true outliers, except for Z-
value method. To make a comprehensive comparison, three metrics called Precision, Recall
and F1 measure are adopted in the experiments to evaluate the performances of different
methods. We defined Precision (P) as follows

P ¼ r0=r ð18Þ
where r0 is the number of true outliers among r detected outlier by an algorithm. It measures
the percentage of true outliers among top r ranked. Note that precision defined above in fact
measures the proportion of detected outliers that are correctly identified.

Based on the confusion matrix in Table 3, the Recall (R) and F1 measure can be computed
as follows:

R ¼ TP
TP þ FN

¼ r0
n−2r þ 2r0

ð19Þ

F1 ¼ 2PR
P þ R

¼
2� r0

r
� r0

n−2r þ 2r0
r0
r
þ r0

n−2r þ 2r0

ð20Þ

Table 3 Confusion matrix
#Positive #Negative #Total

#True r0 r - r0 r
#False r - r0 n - 2r + r0 n - r
#Total r n - r n

Table 4 Outlier detection results on sonar dataset

Method 10 Outliers 20 Outliers 30 Outliers

P R F1 P R F1 P R F1

DGOD 25.0 2.3 4.3 30.5 5.9 9.9 29.7 9.0 13.8
Z-value 1.0 0.1 0.2 5.5 1.2 1.9 11.4 3.5 5.3
LOF 2.0 0.2 0.3 9.5 2.0 3.3 16.0 5.3 7.9
LRW 11.0 1.1 1.9 18.0 3.6 6.0 20.7 6.5 9.9
RBDA 10.0 0.9 1.7 14.0 2.9 4.8 21.0 6.7 10.1
ABOF 0.0 0.0 0.0 2.0 0.4 0.7 8.3 2.9 4.3
DBSCAN 13.0 1.2 2.2 19.5 3.6 6.1 22.7 7.0 10.7
LPS 8.0 0.8 1.4 13.5 2.8 4.6 19.3 6.2 9.4
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Since the number of detected outliers (#Positive) is fixed as r, the False Alarm Rate (False
Positive Rate) in our experiment is 50%.

For each dataset, we select different proportion of outliers for experimental comparable
analysis. For each fixed number of outliers, the outliers used in experiment are selected
randomly and random selection is repeated 10 times. Finally, the average detection precision,
recall and F1 measure are reported in Tables 4, 5, 6, 7 and 8, in which the optimal result of each
measure is presented in bold.

From the Tables 4, 5, 6, 7, and 8, we can clearly observe that, on Sonar and
Ionosphere datasets, DGOD performs better than other methods under the three
evaluation measures. However, on WDBC and Vowel datasets, DBSCAN performs
better than other methods under the three evaluation measures, and the DGOD method
is the second best result. For the most cases, DGOD method consistently yields a
better performance. Most existing methods first find the neighbors for each sample
based on k nearest neighbor, and then compute local density of a sample using the
neighbors, where the significant differences between local densities give us more
confidence to declare an outlier. However, these methods may not be able to obtain
reliable outliers in real world application, due to existing highly heterogeneous
neighborhoods of some samples. To handle heterogeneous problems, DGOD uses
local density and discriminant distance of each sample to detect more reliable outliers.
Since the DGOD method is based on pairwise distances and local densities, when the
samples are densely distributed, the performance will be better.

Table 5 Outlier detection results on WDBC dataset

Method 22 Outliers 43 Outliers 64 Outliers

P R F1 P R F1 P R F1

DGOD 75.0 4.5 8.5 77.2 8.7 15.7 82.7 13.3 22.9
Z-value 40.9 2.5 4.8 48.8 5.9 10.5 50.3 7.9 13.6
LOF 1.4 0.1 0.2 8.4 1.1 2.0 6.3 1.3 2.2
LRW 15.5 1.0 1.9 20.7 2.7 4.7 23.6 4.7 7.8
RBDA 0.5 0.0 0.1 3.0 0.4 0.7 3.1 0.7 1.1
ABOF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DBSCAN 85.0 5.0 9.5 86.0 9.5 17.1 96.7 14.8 25.7
LPS 74.5 4.5 8.4 80.0 9.0 16.2 83.1 13.3 23.0

Table 6 Outlier detection results on soybean2 dataset

Method 2 Outliers 4 Outliers 5 Outliers

P R F1 P R F1 P R F1

DGOD 100.0 1.6 3.2 72.5 2.4 4.6 74.0 3.0 5.8
Z-value 50.0 0.8 1.6 10.0 0.3 0.7 20.0 0.9 1.6
LOF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
LRW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RBDA 5.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0
ABOF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DBSCAN 100.0 1.6 3.2 20.0 0.7 1.3 18.0 0.7 1.4
LPS 40.0 0.7 1.3 100.0 3.2 6.3 100.0 4.0 7.7
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4.3 Real datasets with planted outliers

To validate the effectiveness of DGOD method on high-dimensional data, we conduct an
experiment on image data. Firstly, we select Yale face dataset1 as normal image set, which
contains 165 grayscale images of 15 individuals. Then, we add six cat face images as outliers.
Each image is resized to 64 × 64 and can be viewed as a point in 4096 dimensional space.

The experiment aims to recognize cat faces in Yale human face dataset. Figure 10 shows the
first six outlier images detected by different methods. Among them, DGOD recognizes five cat
faces successfully, and Z-value recognizes only two cat faces, while other methods failed.
Moreover, from Fig. 10, we can find that illumination, with/without glasses and expressions
are main interfere factors for the detection task. The possible reasons could be as follows: (1)
The original Yale face dataset has a clear cluster structure, and the DGOD method considered
local density and discriminant distance simultaneously, which make the outliers easier to be
detected. (2) The intra-class variations in Yale face dataset distorted the distance neighborhood
relationships between images, which further influence the detection rates of baseline methods.

For the purpose of visualization, we employed multi-dimensional scaling [6] to embedding
the original face images into two-dimensional space. The comparative results are shown in
Fig. 11. The embedding six outliers are marked with red circles. For each method, the marked
points with different colors in the plots are the samples with highest outlier score. DGOD and
LPS successfully detected the true outliers. LOF and RBDA seem to behave in the similar way.
As can be seen in Fig. 11, the detected outliers located in the region of top-left corner. The
images located in this region are the faces with darkest illumination.

Table 9 shows the time costs of all methods in face image datasets with planted cat face images.
As one can see, DGOD is more efficient than LRW, ABOF, DBSCAN and LPS, and computa-
tional comparable with Z-value, LOF and RBDA. Although DGOD and DBSCAN perform
comparably under detection rate on some case, this observation experimentally demonstrates that
the proposed DGOD method is more efficient than DBSCAN in terms of computational time.

4.4 Parameter sensitivity analysis

In this section, we analyze the performance of the proposed method by varying the
cutoff distance dc and the percentage of outliers. Similar to experiments in section 4.3,

1 http://vision.ucsd.edu/content/yale-face-database

Table 7 Outlier detection results on vowel dataset

Method 5 Outliers 10 Outliers 15 Outliers

P R F1 P R F1 P R F1

DGOD 72.0 0.7 1.5 61.0 1.3 2.5 63.3 2.0 3.8
Z-value 13.5 0.1 0.2 23.0 0.2 0.5 21.0 0.2 0.4
LOF 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.1
LRW 24.0 0.3 0.5 17.0 0.4 0.7 13.3 0.4 0.8
RBDA 2.0 0.0 0.0 3.0 0.1 0.1 0.7 0.0 0.0
ABOF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DBSCAN 78.0 0.8 1.6 86.0 1.8 3.4 78.0 2.4 4.6
LPS 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.1 0.1
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Fig. 10 Outliers detected by
different methods on yale face
dataset with planted cat faces

Table 8 Outlier detection results on ionosphere dataset

Method 13 Outliers 26 Outliers 38 Outliers

P R F1 P R F1 P R F1

DGOD 77.7 4.3 8.2 81.2 8.7 15.8 83.9 12.7 22.1
Z-value 70.8 4.0 7.5 84.6 7.0 13.0 94.5 8.8 16.0
LOF 20.0 1.2 2.3 33.8 4.0 7.2 37.6 6.6 11.3
LRW 13.1 0.8 1.5 23.5 2.9 5.1 29.7 5.4 9.1
RBDA 34.6 2.0 3.8 42.7 5.0 8.9 42.9 7.4 12.6
ABOF 0.0 0.0 0.0 0.8 0.1 0.2 0.3 0.1 0.1
DBSCAN 67.7 3.7 7.1 52.3 5.5 9.9 86.6 12.6 22.0
LPS 15.4 0.9 1.7 19.2 2.4 4.2 23.9 4.4 7.5
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(a) DGOD Detection Result

(b) Z-value Detection Results

(c) LOF Detection Results

Fig. 11 2-dimensional embedding on yale face dataset with planted cat faces
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(d) LRW Detection Results

(e) RBDA Detection Results
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(f) ABOF Detection Results

Fig. 11 (continued)
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10 cat faces are added to Yale face data set successively. To analyze how DGOD
method affected by distance metrics between samples, five distance metrics are used
in experiment, i.e., Euclidean distance, Minkovski distance, Chebychev distance,
cosine distance and spearman distance. Figure 12 shows the effect of types of distance

Table 9 Time costs comparison
(millisecond) Method Time costs Method Time costs

DGOD 86.1 RBDA 81.2
Z-value 39.0 ABOF 221.6
LOF 77.2 DBSCAN 168.5
LRW 442.5 LPS 179.5

(g) DBSCAN Detection Results

(h) LPS Detection Results

Fig. 11 (continued)
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metrics between samples. As can be seen, Euclidean, Minkovski and spearman
distance metric in DGOD have better performance than others. Then we set different
values of cutoff distance dc in a wide range, the performance of DGOD with different
cutoff distance are shown in Fig. 13. According to rule of thumb, we set dc to 2406.
It is observed that as the cutoff distance increases, the detection rate of DGOD
method increases correspondingly, and when the cutoff distance is greater than
2000, the detection rate tends to stable. There is a wide range for cutoff distance
setting. Additionally, from Fig. 14, we can see that, DGOD method is robust to
number of outliers.

0 2 4 6 8 10

-1

-0.5

0

0.5

1

1.5

Number of outliers

A
c
c
u
r
a
c
y

euclidean

minkowski

chebychev

cosine

spearman

Fig. 12 Effect of types of distance metrics between samples
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Fig. 13 Effect of cutoff distance dc
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5 Conclusion

SBD are about daily large data, produced from social communication and news dissemination,
and it has been an effective platform for security and privacy issues on both theoretical and
applied techniques, especially information control and detection is the critical issue. In order to
detected outlier in various complex datasets, we present an outlier detection method by
incorporating the idea of density-based and clustering-based methods. The proposed DGOD
method starts by computing distance matrix of samples, then the local density and discriminant
distance of each sample is computed. Finally, outliers are identified relatively with low local
density and high discriminant distance. Empirical results on synthetic and real world dataset
have demonstrated the effectiveness of our method in terms of data shape and dimensionality.

6 Limitations and future works

Since DGOD exploits pairwise distances between all samples to get density information, its
performance will be affected by the distance computation to some extent. In our future work,
we will extend DGOD to kernel version by using kernel similarity function as distance
measure between samples. In addition, we would apply the decision graph based outlier
detection method to detect abnormal apple samples with diseases by hyperspectral imaging
in agricultural product inspection. Moreover, how to embed the proposed information detec-
tion method into distributed database system to deal with big social data incrementally is still a
challenging problem [2, 24].
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