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Abstract It has become very popular to take photographs in everyone’s daily life. However,
the visual quality of a photograph is not always guaranteed due to various factors. One
common factor is the low-light imaging condition, which conceals visual information and
degenerates the quality of a photograph. It is preferable for a low-light image enhancement
model to complete the following tasks: improving contrast, preserving details, and keeping
robust to noise. To this end, we propose a simple but effective enhancing model based on the
simplified Retinex theory, of which the key is to estimate a good illumination map. In our
model, we apply an iterative self-guided filter to refine the initial estimation of an illumination
map, making it aware of local structure of image contents. In experiments, we validate the
effectiveness of our method in various aspects, and compare our model with several state-of-
the-art ones. The results show that our method effectively adjusts the global image contrast,
recovers the concealed details and keeps the robustness against noise.

Keywords Image enhancement . Low light . Illuminationmap . Self-guided filtering

1 Introduction

With the prevalence of advanced mobile devices, it is very convenient for people to take
photographs almost anywhere at anytime. Along with the booming of social media platforms,
huge amounts of photographs are produced and shared each day, which have formed an
important kind of big data [36]. However, the quality of these visual data is not ensured, as the
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generating source of these visual data is quite open. On one hand, in taking a photograph, most
people are amateurs or know little about photographing skills. They tend to choose sub-
optimal photographing parameters [23, 28]. On the other hand, there are many challenging
photographing conditions that lead to low photo quality, such as bad weather, moving objects,
and low light conditions [4]. Low-light images lower the visual quality for user experience or
hinder the content understanding for industrial applications.

Various image enhancement techniques are thus highly needed to recover image details or
lift image quality. For example, rich user-generated contents from social media can be fully
adopted to optimize the scene composition [13, 23, 28]. In these learning based methods, it is
necessary to capture the semantic information from sufficient visually similar exemplars.
Furthermore, for processing an arbitrarily new photograph, large amount exemplars are needed
at the server side [26]. In this context, the computation cost and the storage load make the
support of cloud computing and high-speed transmission indispensable. Nevertheless, for
some tasks, there is no need to process images at the cloud side. For example, to deal with
challenging imaging conditions, the image manipulation has to be on the pixel-wise level,
where the efficient filtering at the side of mobile devices is more feasible.

In this research, we intend to enhance the low-light images. Specifically, there are two
situations of low light, i.e., nighttime, unbalanced light. In dark surroundings, the image
histogram mainly gathers in low-intensity regions, and most image details are therefore
concealed by the low contrast (e.g. the first column in Fig. 1). As for the unbalanced light
situations, the low-light regions only exist in part of the whole image due to backlight or
sidelight (e.g. the second and third column in Fig. 1).

These situations pose challenges to the image enhancement task. First, during the process of
enhancing edge and texture patterns, the imaging noise overlapped in the dark regions is likely
to be amplified in the meanwhile. Second, to deal with unbalanced-light conditions, an
adaptive model is required to dynamically assign enhancing strengths to different regions.
Third, the naturalness of a result image is supposed to be preserved, such as the basic scene
characteristics and the visual consistency. Also, the computational efficiency is very important
for applications on the mobile device side. The traditional histogram based [24] and Retinex
based [15, 16] methods often have difficulties to meet all the requirements simultaneously.

Fig. 1 Examples of low light images, such as nighttime (first column), backlight (second column) and sidelight
(third column)

29640 Multimed Tools Appl (2018) 77:29639–29650



In this paper, we propose a Retinex based low-light enhancement model shown in Fig. 2. To
address the aforementioned challenges, the key issue is to produce a high-quality illumination
map T. Specifically, on one hand, to reveal the detailed texture pattern, T is required to be
piecewise-smooth for the Retinex model. On the other hand, T is preferred to be structure-
aware, since it would introduce visual inconsistency if multiple filtering strengths were assigned
to a same semantic region. In our model, we initially estimate the illumination map T through
the max-RGB technique, and then apply a self-guided filter to refine T. The contribution of our
paper is two-fold. First, the illumination map is refined for the Retinexmodel with effectiveness
and efficiency. Second, experimental results empirically show that our model achieve good
balance among the requirements of low-light image enhancement. Of note, this paper is an
extension of a conference paper [4]. In this version, we provide more details in describing the
research background, and introduce more related works. We also provide additional experi-
mental results and their analysis to further validate the effectiveness of our model.

The rest of this paper is organized as follows. We briefly introduce the related works for
processing low-light images in Section 2. Section 3 presents the proposed method. We validate
our model in Section 4. Section 5 finally concludes the paper.

2 Related works

Image enhancement is usually a prerequisite step in many research fields, such as natural
image classification/retrieval [35, 37, 38], medical image processing [8, 39], social media
analysis [13, 31], and visual surveillance [21, 34]. The central task of enhancement can be also
quite different, e.g., contrast enhancement [29], color enhancement [19], detail enhancement
[9], composition enhancement [23], to name but a few. In this paper, we briefly introduce the
related works on low-light enhancement models.

Retinex based models achieve promising results on enhancing low-light images. Its main
idea is to decompose an image into an illumination map and a reflectance map [15, 16], where
the reflectance can be treated as the enhanced result. However, this roadmap is limited as the
produced result is often over-enhanced. Guo et al. [7] propose a simplified enhancement model
LIME and achieves good results. Nevertheless, the model always needs a gamma correction

Fig. 2 The general framework of our method (Better with an enlarged view)
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for non-linearly rescaling the refined illumination map. This additional post-processing stage
lowers the model’s robustness. Our model is most related to the LIMEmodel, but distinguishes
itself mainly in the model simplicity. By using a self-guided filter, we directly obtain the
illumination map, which can be directly adopted in the enhancing model.

As a classical problem in computer vision and graphics, intrinsic image decomposition can be
also used in the enhancement task. Fu et al. [6] propose a weighted variational model for
simultaneously estimating reflectance and illumination, and apply this model in manipulating the
illumination map. The limitation of this method is that its computational complexity is relatively
high, as it aims at simultaneously recovering two channels. Based on HSV representation, Yue
et al. [29] decompose theV channel into an illumination layer and a reflectance layer based on Split
Bregman algorithm. By adjusting the illumination layer throughGammaCorrection and histogram
equalization, all the layers and channels are gradually integrated to achieve the final result.

Differently, Dong et al. [3] propose an interesting technical roadmap. They consider the inverse
of the estimated illumination map as a hazed image, and obtain enhancement through the dehazing
model. Song et al. [25] extend this model and solve the block artifact issue. Although this model
obtains satisfying results, its idea lacks a clear physical meaning to some extent.

As another popular method family, histogram based methods are highlighted for their
simplicity of reshaping the image histogram into a desired distribution. Traditional methods
[1, 17] tend to over- or under-enhance the target image, since they stretch the illumination
range without considering image details. Recently, a 2-D histogram based on the layered
difference representation is built and effectively applied in the low-light enhancing task [18].

There are methods that combine different enhancing strategies. Fu et al. [5] proposed a
novel mixture method. After estimating the illumination layer, they generate multiple enhanc-
ing results and then fuse them with a multi-scale pyramid model, which combines the strengths
of several enhancing models. Lim et al. [20] propose to split an image into structure, texture
and noise components, and use 2D–histogram-based scheme to enhance low-light images.

Of note, with the rapid development of deep learning models, it is possible to train a deep
network to realize the low-light enhancement task. Lore et al. [22] propose a deep
autoencoder-based approach to identify signal features from low-light images and adaptively
brighten images without over-amplifying the lighter parts in an image.

3 Proposed method

In this section, we present our low-light enhancement model with a refined illumination map.
The general framework is shown in Fig. 2. Given an input image, we initially estimate the
illumination map with the max-RGB technique. Then we refine the initial estimation through a
self-guided filtering process, which firstly removes the fine texture and then iteratively
recovers the edge under a rolling guidance. Based on the refined map, the image is enhanced
with a simplified Retinex model.

3.1 Simplified Retinex model

The Retinex model represents an observed low light image I∈ℝN1�N2 as the pixel-wise
multiplication:

I ¼ R⨀T ð1Þ

29642 Multimed Tools Appl (2018) 77:29639–29650



where R∈ℝN1�N2 is the reflectance layer and T∈ℝN1�N2 is the illumination map. This model
assumes that the scene sensed by human’s visual system is the product of R and T. Specif-
ically, R is an image with an ideal light condition and is considered as the enhanced result, and
T is the illumination map that controls the strength of lowering image intensity.

As the problem in Eq. 1 is ill-posed, methods based on full intrinsic decomposition [6] can
be adopted. Nevertheless, this process is often time-consuming. In our research, we use a
simplified model advocated in [7], which directly recovers R based on an element-wise
division R = I/T.

We note that the direct element-wise division can be numerically unstable in case of very
low T values. Therefore, to enhance a color image, a constant regularization term ϵ is added to
the enhancement model for each channel:

Rc pð Þ ¼ Ic pð Þ= T pð Þ þ ϵð Þ ð2Þ
where c is one channel of RGB, i.e. c ∈ {R, G, B}, and p represents a pixel of an image. This
model is extremely simple and fast. To obtain satisfying results, the key is to further estimate
an appropriate illumination map.

3.2 Illumination map refinement

On initially estimating each element T(p) in the illumination map, the Max-RGB technique is
chosen:

T pð Þ ¼ max
c∈ R;G;Bf g

Ic pð Þ ð3Þ

In this equation, it is assumed that the illumination for each pixel is at least the
maximum value among its three channels. Although there are other methods [6, 29]
for accurately estimating the illumination map, we still choose the Max-RGB tech-
nique in our model for two reasons. First, the Max-RGB technique is extremely
simple and fast. Second, the inaccurate estimation can be left for the following
refinement stage [7], which produces a better T desired by the low-light enhancement
task.

From Eq. 3, we can see that T is estimated in the pixel-wise style, producing an
illumination map that is quite similar to the original image in terms of its local
structure and texture pattern. In this way, the texture patterns of a patch in I can be
flatted by T during the division process in Eq. 2, which results in detail loss (such as
the red rectangle of R0 in Fig. 3). There are some simple ways of refining the initial
estimation, such as further applying the block-wise mean filter on T. It seems that the
original pattern can be reserved by the smoothed T. However, we note that artifacts
are likely to be brought together, such as the edge reversal effect shown in the yellow
rectangles of R1 and R2 in Fig. 3.

Therefore, we prefer the illumination map to be both piecewise-constant and structure-
aware in our research. Specifically, the texture pattern in the same semantic regions in T should
be removed, while the boundaries between different regions should be preserved. To this end,
we refine the initially estimated T with an iterative self-guided filtering model [30], which
includes the following two stages.

The first stage is the texture removal. We convolute Twith a Gaussian kernel parameterized
by a scale factor σs:
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Tg pð Þ ¼ 1

Kp
∑

q∈N pð Þ
exp −

p−qj jj j2
2σ2

s

 !
T qð Þ ð4Þ

where ||p − q|| is the Euclidean distance between two pixels, Kp ¼ ∑
q∈N pð Þ

exp − p−qj jj j2
2σ2

s

� �
is the

normalization factor, and is N(p) the neighbor patch around p. The filtering process can be seen
as a Gaussian weighted average controlled by the spatial parameter σs. In this way, the image
details with their spatial scale under σs are removed. However, as boundaries of main
structures in T are blurred during the Gaussian filtering, we need a following stage that
restores the edges with Tg and T.

The second stage is the iterative edge recovery. According to the information theory, it is
impossible to recover the blurred edge only withTg. So we adopt the idea of joint filtering [2, 12]
to address this issue, which leverages multiple image sources. Specifically, we anchor T as the
input, and set the blurredTg as the initial guidanceG0. By using the joint filter F T;G0ð Þ, we can
obtain G1 ¼ F T;G0ð Þ that partially recovers main edge structures (e.g. G1 in Fig. 3). We then
use G1 as the updated guidance for the next round filtering G2 ¼ F T;G1ð Þ. In this way, we
empirically found that Gk quickly converges to a piecewise-constant map after a few iterations
(e.g. the second row in Fig. 3). In our research, we choose the fast guided filter [11] as our joint
filter to ensure the efficiency of the whole refinement process. Of note, the iterative edge
recovery strategy (illustrated within the dot line in Fig. 2) is different from the traditional joint
filtering framework, since it gradually refines the guidance G while fix the input image T [30].
Based on the refined illumination map, we can obtain the enhanced image as:

Rc pð Þ ¼ Ic pð Þ= Gk pð Þ þ ϵð Þ ð5Þ
where c is one channel of an RGB-based color image, and p represents a pixel. We provide a toy
example to demonstrate the effectiveness of our iterative edge recovery in Fig. 3. FromG0 toG3,
we observe that the fine-scale texture is smoothed, and the region boundaries become clear. In the
meanwhile, we observe the corresponding enhancing results R0 to R3 gradually improve, as the
texture patterns are preserved and the halo effect disappears.

The complexity of our model is presented as follows. Suppose N is the number of image
pixels (N =N1 ×N2). The maxRBG step takes O(3N) time. The texture removal step can be
also realized in O(N) time regardless of its scale parameter σs with the box filtering technique.

Fig. 3 A toy example of example of the difference between the initially estimated illumination map (G0) and its
refined version during the iterative filter (G1 to G3), as well as their enhanced results (R0 to R3)
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As for the iterative guided filtering with k iterations, it needs O(k ∙N/σs) time by using the fast
guided filtering technique [11]. Finally, Eq. 5 is applied on RGB channels respectively,
producing O(3N) computational cost. The overall complexity is proportional to O(N) level,
which is comparable to other state-of-the-art models.

4 Experiments and analysis

We conduct the experiments on a laptop with a 2.6G Hz CPU and 8G ROM. Our method was
implemented with un-optimized codes on the Matlab platform in a single thread. We use the
experimental data from [7, 18] and the Internet, which composes of different low-light
conditions such as nighttime, backlight and sidelight.

We first validate the effectiveness of using the refined illumination map. In Fig. 4, we can see
that the texture details are lost (e.g. Fig. 4 (g)) if the initialT (Fig. 4 (c)) is not refined. By contrast,
our result (Fig. 4 (d)) preserves the details (e.g. Fig. 4 (i)), as the refined map (Fig. 4 (e)) becomes
piecewise-smooth (e.g. Fig. 4 (j)). Then we compare different strategies of illumination map
refinement in Fig. 5, where we respectively use LIME [7], RTV [27] and self-guided filtering for
refining T. The simplified Retinex model in Eq.2 was used for three models, and the only
difference lies in the refinedmaps. From visual comparison, we observe that our method achieves
the best visual consistency. As shown in the zoomed-in region in Fig. 5, our result has better
naturalness than other two models, since our refinement process keeps looking at the homoge-
nous guidance image, and therefore becomes more structure-aware to the complex local pattern.

In experimental comparison with other methods, the parameters of our method are set as
follows. We empirically set the numerical stability parameter ϵ as 0.15, which works well for
all the experimental images for different low-light conditions. As for the illumination map
refinement, we empirically set the scale parameter σs around 1/250 of the minimum of the
image width and height. In experiments, we found three iterations (k = 3) are enough.

We first compare our method with several traditional image enhancing methods, such as
Histogram Equalization (HE), Adaptive Histogram Equalization (AHE), and Gamma Correction
(GC). In the implementation, we directly use the toolbox from Matlab to realize HE and AHE.

Fig. 4 Results generated by models with/without refined illumination map. a is the original image. (c) and (e)
are the illumination maps directly from maxRGB and based our refinement. b and d are their corresponding
results. (f-j) are zoomed-in regions from (a-e) with corresponding colors
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For GC, we empirically set γGC = 0.8. We choose one nighttime, one backlight and one sidelight
image respectively, and demonstrate all their results in Fig. 6. We have the following observa-
tions. First, HE and AHE produce over-enhanced results, and they are also sensitive to image
noises. Second, the results of GC are more natural and robust to noises. However, since GC only
imposes a global non-linear mapping function for all the pixels, the enhancing effects are less
apparent. Third, our results generally have a better global correcting effect, and recover the details
from the dark regions while keep the naturalness of the previously bright regions.

We then compare our method with several state-of-the-art methods, i.e. LIME [7], Multi-scale
Fusion (MF) [5], and Layered Difference Representation (LDR) [18]. In this comparison, we use
the default parameter settings in [5, 7, 18]. Of note, we do not apply the post-denoising technique
for all the results since it tends to generate the unrealistic cartoon effect. Fig. 7 shows the visual
comparison between these state-of-the-art model and ours. We can see that our model achieves
most balanced effect in terms of contrast enhancement, detail recovery and naturalness preserv-
ing. For example, our method generates fewer artifacts, such as noises and edge halos for
nighttime and backlight images, than LIME and MF. LDR is most robust to these artifacts, but

Fig. 5 Results generated by different illumination maps based on RTV [27], LIME [7] and ours

Fig. 6 Visual comparison with traditional low-light enhancing methods. (Better with an enlarged view)
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the global luminance of its results is relatively weak, which limits the detail recovery. As for the
implementation time, our method is comparable to LIME andMF, which is able to process 500 K
pixels in less than one second. The histogram based LDR achieves the fastest implementing time,
as its computational load only lies in the optimization of a 256-dimensional histogram.

Finally, we make a further comparison between LIME and our model. Since the refined
illumination map based on LIME needs a post-gamma-correction, we demonstrate multiple
versions of LIME-based results with different γs (from 0.5 to 1) and our results in Fig.8. We
observe that the global lightness of LIME results heavily depend on the gamma correction
parameter. With a large γ, the noise is over-boosted and thus lowers both the image quality and
naturalness. In contrary, our model is free of this extra controlling parameter, as the overall
intensity distribution of Gk is always constrained by the self-guided framework.

5 Conclusion and discussion

In this paper, we propose a simple but effective low-light enhancement model, which uses a
piecewise constant illumination map to recover the concealed image details. To produce such a
map, we apply an iterative self-guided filter to partition texture patterns from the initial
estimation. We have validated our method by comparing it with several traditional and state-
of-the-art methods. Experimental results demonstrate that our method is effective in recovering
image details while keeping the visual naturalness.

Fig. 7 Visual comparison with several state-of-the-art low-light enhancing methods. (Better with an enlarged
view)

Fig. 8 Results generated by the LIME model with different illumination maps and our model. (Better with an
enlarged view)
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The future research includes the following aspects. First, we plan to introduce a dynamic
regularization term into the model in Eq. 2. For example, a spatially guided map [10] based on
the lightness can be built and used to guide the regularization. Second, we note that the way of
quantitatively assessing low-light enhancing results is still an open problem. It would be
valuable to introduce an aesthetics evaluation model [14] specifically designed for our task.
Third, aiming at producing content-aware enhancing results, it would be very useful to
introduce high-level semantic information [32, 33] into our model.
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