
Eigenspace compression: dynamic 3D mesh compression
by restoring fine geometry to deformed coarse models

Mohammadali Hajizadeh1 & Hossein Ebrahimnezhad1

Received: 24 March 2017 /Revised: 10 September 2017 /Accepted: 5 November 2017 /
Published online: 14 November 2017
Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract Dynamic 3D mesh compression is of great practical important issues in computer
graphics and multimedia applications. In this paper, an efficient compression algorithm is
proposed to represent animated mesh sequences in a compact way, so that the storage and
transmission of dynamic 3D meshes can be accomplished efficiently. The focus of this paper is
on the animated mesh sequences with shared connectivity. The proposed method first com-
putes coarse models (low frequency modes) of the animated sequence using the graph
Laplacian matrix. Obtained coordinate weights are used at the decoder to reconstruct the
coarse models of the sequence. Then, a novel approach is proposed to extract fixed details
(high frequency modes or finer features) of the animated mesh. Finally, a details restoration
process is applied at the decoder to add details back to the coarse models of the reconstructed
sequence. The superiority of the proposed method to the current state of the arts is demon-
strated in terms of low data rates for a given degree of perceived distortion.

Keywords Animated 3Dmesh compression . Dynamic geometry . Graph laplacian . Fixed
details . Coarse model . Details restoration

1 Introduction

Computer graphic is one of the most appealing areas for computer sciences and multimedia
applications that several domains such as medicine, engineering, games, special effects in
movies and animation can get benefits from its developments. Computer animation is one of
the most important and attractive topics in computer graphics and multimedia entertainment

Multimed Tools Appl (2018) 77:19347–19375
https://doi.org/10.1007/s11042-017-5394-2

* Hossein Ebrahimnezhad
ebrahimnezhad@sut.ac.ir

Mohammadali Hajizadeh
m_hajizadeh@sut.ac.ir

1 Computer Vision Research Laboratory, Department of Electrical Engineering, Sahand University of
Technology, Tabriz, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-017-5394-2&domain=pdf
mailto:ebrahimnezhad@sut.ac.ir

applications with significant impact on animation, movies and video game industry, flight
simulation, marketing, scientific visualization, etc. [3, 22, 30].

A 3D animation (also referred as dynamic 3D mesh/ animated 3D mesh/ 3D mesh
sequence) is stored as consecutive frames distributed over time, each of which represents a
static 3D mesh. The complexity and size of 3D animations have been increased due to
technological advances in computer animation and growing demand for more realistic 3D
models. Therefore, compression schemes are required for efficient storage, processing and
transmission of dynamic 3D meshes.

Static 3D mesh compression has been widely explored over the last two decades which
makes this field very mature. The reader is referred to [31, 34, 41] for detailed survey. Static
3D mesh compression techniques benefit from spatially high correlated adjacent vertices in
order to find a compact representation of the static 3D mesh.

Dynamic 3D mesh compression is an important topic that has attracted significant attention
in recent years. Most of the compression approaches focus on the animated mesh sequences
with shared connectivity. Thus, the main objective of dynamic 3D mesh sequence compression
is to remove the temporal correlation between consecutive frames in order to achieve a
compact representation of the animated mesh sequence. It is theoretically possible to simply
apply one of the prevalent static geometry compression methods (see [34, 41] for detailed
survey) to compress the frames of an animated sequence, separately. While most of the static
mesh compression techniques utilize only spatial correlation between the positions of neigh-
boring vertices in a frame, the temporal correlation existing between adjacent frames of the
sequence should be also taken into account in dynamic 3D animation compression. The
previous works on dynamic 3D mesh compression can be roughly categorized into four
groups [38]: segmentation based techniques, PCA based techniques, wavelet based techniques
and prediction based techniques.

The first attempt at dynamic 3D mesh compression in the segmentation based approaches
has been reported by Lengyel [26]. In this approach, the animated mesh sequence is initially
segmented into sub-meshes and a rigid body transformation is obtained as a description for the
motion of each sub-mesh. Then, a compact representation of the animated mesh sequence is
achieved by encoding the parameters of the transformations, the base sub-meshes, and the
approximation residuals. Ahn et al. [1] employed Discrete Cosine Transform (DCT) for
encoding the residual errors. Zhang and Owen [62, 63] proposed an octree-based representa-
tion to analyze the motions between successive frames of the animated mesh sequence. This
approach applies a trilinear interpolation on the generated set of motion vectors for each cell in
order to approximate the motion of the vertices. Muller et al. [36, 37] introduced a rate-
distortion (RD) optimization method to determine the best prediction mode among three pre-
defined modes, namely trilinear interpolation, mean replacement and direct encoding as well
as the clustering structure. Mamou et al. [32] utilized a skinning animation model for dynamic
3D mesh compression. The frame-wise motion of previously segmented patches is estimated
using an affine motion model. Subsequently, the movements of adjacent patches are utilized in
a weighted linear combination analysis to approximate the frame-wise motion of each vertex.

In their pioneering work, Alexa and Muller [2] introduced a compression algorithm based
on the principal component analysis (PCA). In this work, each frame of the animated mesh
sequence is stored in a column of the matrix A. A set of basis vectors is created by applying
singular value decomposition (SVD) on the covariance matrix (AAT). PCA coefficients are
defined for each frame as the projected values onto these basis vectors. Since the contribution
of each basis vector to the reconstruction quality is defined by its corresponding PCA

19348 Multimed Tools Appl (2018) 77:19347–19375

coefficients, a subset of the most important basis vectors is selected to encode the animated
mesh sequence in a compact way. Karni and Gotsman [24] extended this approach by
encoding the PCA coefficients with a second-order linear prediction coding (LPC) which
results in a reduced code size by exploiting the temporal coherence between neighboring
frames. Sattler et al. [44] proposed to apply PCA coding to the meaningful clustered parts of
the model which are achieved by analyzing the trajectories of all vertices. Amjou et al. [4, 7]
expressed each vertex trajectory in a local coordinate system in order to analyze the model
clusters. Moreover, required PCA coefficients for each cluster are encoded using a bit
allocation procedure to achieve the desired precision. A signal-to-noise ratio (SNR) and
temporal scalable PCA coding scheme is introduced by Heu et al. [19]. The compact
representation of a mesh sequence is accomplished in a bit plane coder by encoding the basis
vectors extracted via Singular value decomposition (SVD). The Bit planes are transmitted in a
decreasing order of their contribution to the reconstruction quality. Vasa and Skala proposed to
incorporate a PCA step into an Edge-Breaker-like [43] predictor. In their first method called
the Coddyac algorithm [51], Vasa and Skala proposed to encode the PCA coefficients by using
a parallelogram prediction which leads to better performance compared to the clustering-based
methods. They introduced vertex decimation as a part of the compression process in their next
work [52]. The encoder computes the accuracy of predictors in order to control the
decimation process, making this approach well suited for interchanging predictors. In
addition, the authors reported great improvements in [53] by introducing an efficient
method to compress the PCA basis. Finally, the authors proposed two geometric
predictors [54] which result in better performance and are particularly suitable for
the PCA based compression approaches. More accurate predictions are achieved by
the exploitation of the geometrical interpretation of the data.

The first compression approach using wavelet transform was introduced by Guskov and
Khodakovsky [16]. They applied an anisotropic wavelet transform on top of a progressive
mesh hierarchy and encoded the differences between corresponding wavelet coefficients in
order to exploit the temporal coherence present in the animated sequence. A temporal wavelet
based coder was proposed by Payan and Antonini [39, 40] in which a bit allocation process is
utilized to optimize the quantization of the obtained wavelet coefficients. Boulfani-Cuisinaud
and Antonini [11] segmented the input mesh vertices into the groups sharing the same affine
motion and then, filtered each group by using a scan-based temporal wavelet transform.
Geometry video [12] is a new data structure to represent a 3D mesh as a geometry image.
In this method, every frame is sampled into a geometry image. Geometry video is the sequence
of geometry images in which the first image is intra-coded and the subsequent images are
encoded by using a predictive coder with affine motion compensation. This algorithm was
later extended by Mamou et al. [33] which resulted in significant improvements. In [45], the
geometry image-based compression method was improved by exploiting the strong geometric
correlation between geometry image and normal-map one. Dhibi et al. [14] proposed a 3D
mesh compression algorithm for 3D deforming objects in which Multi Library Wavelet Neural
Network (MLWNN) is utilized to align the mesh features and minimize the distortion.

Yang et al. [61] presented a vertex-wise motion vector (MV) predictor to compress an
animated mesh sequence in two steps. In the first step, the prediction of a vertex MV is
accomplished by using the high spatial correlation between MVs of neighboring vertices. In
the second step, the authors proposed a rate distortion (RD) optimization technique for spatial
or temporal prediction of the error vectors. Ibarria and Rossignac [21] utilized a region
growing based algorithm to determine the encoding order of the mesh vertices. Then, two

Multimed Tools Appl (2018) 77:19347–19375 19349

extrapolating space-time predictors (the Replica predictor and the ELP extension of the
Lorenzo predictor) were proposed to predict the location of each vertex using three of adjacent
vertices in the current and previous frames. In [5], Amjoun and Strasser introduced a spatial
predictive DCT coding to make their previous approach [4] appropriate for real time applica-
tions. A connectivity-guided predictive method [6] was proposed by the authors for single-rate
compression of an animated mesh sequence. In this approach, the prediction errors are encoded
in a local coordinate system which includes a normal and two tangential components. Another
connectivity-guided predictive method was proposed by Stefanoski and Ostermann [47]. The
main assumption in the presented angle-preserving predictor is that the dihedral angle between
neighboring triangles does not change from frame to frame. Then, stefanoski et al. [50]
established a linear predictor to incorporate spatial scalability in compressing the animated
sequence. Animation frames are decomposed into spatial layers by applying the Patch-based
mesh simplification algorithms. This method is enhanced in [48] by adding temporal scalabil-
ity to the algorithm. The authors introduced SPC (Scalable Predictive Codec) as their final
compression method [49]. In this method, animation frames are decomposed into spatial and
temporal layers. In order to compensate local rigid motion, a space of rotation-invariant
coordinates is utilized to perform the prediction. The authors benefited from fast binary
arithmetic coding [35] to encode the quantized prediction errors. Bici and Akar [38] introduced
three prediction structures to improve the SPC method. These prediction structures can be also
utilized in other prediction based methods. Vasa et al. [56] proposed to compute an average
mesh of the whole animated mesh sequence in an edge shape space. Then, the
trajectories of the mesh vertices are encoded by applying a discrete geometric
laplacian on the computed average mesh. A spatio-temporal predictor can be option-
ally used in order to improve the compression performance. In [17], a key-frame
based algorithm is proposed to compress animated mesh sequence. Optimum blending
weights of the key-frames are determined using a multi-objective optimization algo-
rithm to predict the position of the vertices in non-key frames.

Recently, low-rank matrix recovery has found applications in 3D model processing. Matrix
recovery is the problem of predicting missing entries in a partially observed matrix. It is also
known as Robust PCA (robust principal component analysis) and was introduced in [59] for
the first time. The main idea is to exploit the structural information of the matrix to recover the
missing entries. Low-rank matrix recovery is a variant of the matrix completion problem which
looks for the lowest rank matrix to recover the partially observed matrix from few linear
measurements. Lu et al. [29] proposed to use a matrix recovery technique to restore the
original shapes of a group of similar 3D objects. In [15], low-rank matrix completion is utilized
to reconstruct 3D shapes of the objects in a video which have rigid and non-rigid motions. Yan
et al. [60] proposed an efficient method to solve maximum margin matrix factorization
(MMMF) for large scale data sets. The authors formulated MMMF as the Riemannian
optimization problem and efficiently solved it by introducing a block-wise nonlinear Rie-
mannian conjugate gradient algorithm. Wang et al. [58] introduced an efficient method to
recover 3D motion by using a low-rank matrix recovery model. In [25], a low-rank matrix
factorization based algorithm is proposed to recover the 3D structure of an object from a
monocular video stream. Lin et al. [28] presented a factorization algorithm for the problem of
structure from motion. They applied truncated nuclear norm to solve the factorization problem
in a non-convex way.

Our observation is that most of the compression methods focus on animated mesh
sequences with shared (fixed) connectivity. The main reason is that in animation techniques,

19350 Multimed Tools Appl (2018) 77:19347–19375

fixed connectivity allows for simple and efficient manipulation of the animated sequence.
Moreover, most of the animated mesh sequences include 3D models which have fixed fine
details throughout the animation. Thus, our aim is to exploit these features of animated mesh
sequences to propose an efficient compression method. The main idea of this paper is to split
the geometry of a 3D model into coarse and detail information. In an animated mesh sequence,
a 3D model deforms over time. During the deformation, the global shape of the model changes
smoothly, whereas the fine-scale details are generally fixed. Thus, the meaningful part of
deformation data corresponds to the changes of the global shape. By removing fixed details
from the animated 3D model, it is possible to significantly reduce the required data for
representing the animated mesh sequence. The problem of dynamic 3D mesh compression
has not been investigated from this point of view. With this motivation, we propose to
decompose an animated 3D model into two frequency bands: low frequency band and high
frequency band. Low frequencies correspond to global shape, while high frequencies represent
fine details. Our goal is to represent the animated 3D model as the deformation of low
frequencies (global shape or coarse model) while preserving high frequencies (fine details).
This concept is illustrated in Fig. 1 with a simple 2D example. Decomposition of a deforming
mesh into coarse and detail information is illustrated in Fig. 2. First, a smooth base surface
(coarse model) is computed by removing the fine details. This coarse model is the low-
frequency mode of the deforming mesh which can be represented by less data. The removed
fine details represent the high-frequency modes which are extracted and stored as detail
information. Thus, the animated mesh is reduced to the deforming coarse model and the
extracted fine details. By restoring the fine details to the coarse model, we can reconstruct the
original animated mesh. During the animation, only the coarse model deforms and the detail
information is locally fixed. So, the deformation data of the animated sequence can be
preserved and represented by the coarse model with less data. To achieve this end, we use
the graph laplacian matrix and remove the detail information from a 3D animated model by
truncating the number of eigenvectors in Eigen framework of the graph laplacian matrix. The
graph laplacian matrix is a combinatorial laplacian and thus, depends only on the connectivity
of the animated model which is fixed throughout the sequence and should be sent one time to

Fig. 1 Decomposition of a deforming sine wave into two frequency bands. The frequency decomposition results
in the dashed line as the global shape (low frequency component). By deforming the global shape and adding the
fine details (high frequency component) onto it, we can represent the original signal in a simple way

Multimed Tools Appl (2018) 77:19347–19375 19351

the decoder. A simple and efficient algorithm is proposed to extract the removed fixed details.
Since these details are fixed during the sequence, they are also sent to the decoder one time for
total frames. In this way, we can significantly reduce the size of the required data to reconstruct
the animated sequence. At the decoder, the coarse model for each frame is firstly computed by
using the coefficients of the graph laplacian. Then, fixed details are restored to the coarse
models in order to reconstruct the original animated mesh sequence.

The rest of the paper is organized as follows. Detailed description of the proposed method
for dynamic 3D mesh compression is presented in section 2. We present and discuss the results
of our experiments in section 3 and finally, we conclude the paper in section 4.

2 Eigenspace compression

The main idea behind the proposed method is described in this section. We assume that the
input is an animated sequence of f triangular meshes M1,…,Mf with same connectivity. It is
assumed that the shared connectivity is encoded once, using any state-of-the-art algorithms.

The location of the ith vertex in the jth mesh is indicated by a vector of coordinates vi; j

¼ vxi; j; v
y
i; j; v

z
i; j

� �
; i ¼ 1;…; n; j ¼ 1;…; f .

The proposed compression method includes several steps which are discussed in detail in
the following subsections. A graphical abstract of the proposed method is shown in Fig. 3.
First, the connectivity of the animated mesh sequence is utilized to compute the graph
laplacian operator in the form of a matrix L ∈ℝn × n. Since the connectivity is encoded using
one of the standard methods and sent to the decoder, this matrix can also be built at the
decoder. The eigenvectors of the graph laplacian matrix are computed in order to form an
orthonormal basis. The coarse model of each frame is generated by representing the geometry

Fig. 2 Representation of an animated mesh as a deforming coarse model and fine details. By restoring the fine
details to the coarse model, we can reconstruct the original animated mesh

19352 Multimed Tools Appl (2018) 77:19347–19375

of each frame using a reduced number of the eigenvectors. In this way, the fixed fine details
(also called high frequency modes) of the 3D model are filtered and removed. The next step is
to extract the fixed details of the 3D model.

Detail extraction is accomplished by using a simple and efficient approach which is
described in more detail later. Since these details are almost fixed through the animated
sequence, they are encoded and sent to the decoder just once. In order to improve the
reconstruction quality, residual errors for vertices with large prediction errors are also encoded
and sent to the decoder. At decoder side, the coarse model of each frame is firstly computed
using the eigenvectors of the graph laplacian matrix and the required data received from the
encoder. Then, fixed details are added back to the coarse models. The final sequence is
achieved by adding the residual errors to the reconstructed models.

Fig. 3 Graphical abstract of the proposed method. (a) block diagram of the encoder (b): block diagram of the
decoder

Multimed Tools Appl (2018) 77:19347–19375 19353

2.1 Approximation-phase

2.1.1 Laplace-Beltrami operator

In differential geometry, the Laplace-Beltrami operator is the generalized form of the Laplace
operator which is applied to the functions defined on surfaces in Euclidean space. Assume that
N is a smooth, compact surface which is isometrically embedded in ℝ3. For a twice differen-
tiable function g :N→ IR, the Laplace-Beltrami operator ΔN applying to g is defined as the
divergence of the gradient of g:

∇2g ¼ ∇:∇g ð1Þ

The Laplace-Beltrami operator has been widely used as an effective tool in many geometric
processing applications due to its useful properties [27, 64]. The Laplace-Beltrami operator is
known as an intrinsic geometric quantity and the manifolds with isometric deformation share
the same laplacian. Hence, the eigenfunctions and eigenvalues of the Laplace- Beltrami
operator are invariant under isometric transformations. In other words, isometric manifolds
have the same Laplacian, which makes the Laplace-Beltrami operator profitable to describe or
capture isometric deformations. The eigenfunctions of the Laplace-Beltrami operator form an
orthogonal basis for the space of square integrable functions defined on N. Similar to Fourier
analysis for functions on a circle, Laplacian eigenfunctions with smaller eigenvalues are
correlated to the low frequency modes (coarser features) of the manifold, while those with
larger eigenvalues represent high frequency modes that characterize the details (finer features)
of the input manifold M.

In our problem, the input is a triangular mesh approximating a surface of an object which
can be regarded as a discrete function of vertex positions together with connectivity informa-
tion. Therefore, we need a discrete form of the Laplace operator computed from the mesh.
Different dicretizations of the Laplacian are available in the literature [8, 20, 42, 64]. In this
paper, we employ the graph Laplacian matrix [18, 64] as a combinatorial Laplacian whose
coefficients are only based on connectivity information. The graph Laplacian L = (li, j)n × n is
computed from the input mesh connectivity as follows:

L ¼ D‐A ð2Þ
Where, A is n × n adjacency matrix obtained from the input mesh connectivity in which aij
indicates whether or not the vertices vi and vj are connected by an edge, and D represents n × n
matrix of vertex degrees (number of edges that originate from a vertex), such that:

li; j
� � ¼ deg við Þ if i ¼ j

−1 if i≠ j and vi is adjacent to v j
0 otherwise

8<
:

Since L is a real and symmetric matrix, its eigenvectors constitute a complete set of unit norm
orthogonal vectors with real, non-negative corresponding eigenvalues. Thus, we have an
orthonormal basis for the input mesh. Similar to the work in [23], the computed eigenvalues
are arranged in ascending order of their magnitude, and the respective eigenvectors are
arranged in the same order. As discussed in [23], when the graph Laplacian is compared with
the Discrete Fourier Transform (DFT), we see that the eigenvectors of the graph Laplacian and
their respective eigenvalues are analogous to the basis functions and their frequencies used in

19354 Multimed Tools Appl (2018) 77:19347–19375

DFT, respectively. This means that the eigenvectors with smaller eigenvalues are related to the
low-frequency basis vectors and the ones with larger eigenvalues effectively represent the
high-frequency basis vectors. An important difference is that the actual Fourier basis functions
are fixed whereas the basis vectors from graph Laplician matrix change according to the input
mesh connectivity.

The motivation for using the graph Laplacian matrix for discretization of the Laplacian is
mostly attributed to the work by Karni and Gotsman [23], as well as to the work [9]. Karni and
Gotsman [23] were the first to propose an efficient progressive compression method for static
mesh geometry using the eigenvectors of a combinatorial mesh Laplacian matrix. Ben-Chen
and Gotsman [9] subsequently proved that the eigenvectors of the graph Laplacian matrix
construct an optimal basis for the spectral decomposition of the specified types of geometric
mesh models. Optimal, here, means that most of the spectral energy of the geometric
mesh model can be captured by a given number of leading eigenvectors which are
arranged by their respective eigenvalues in ascending order. This was theoretically
proved in [9] for 1D and 2D connected meshes and demonstrated empirically for
meshes in three dimensions (i.e. embedded in R3). The key part of the proof for 2D
meshes states that for a given mesh connectivity and by assuming a normal distribu-
tion for all appropriate geometries that fit to this connectivity, the symmetric
Laplacian matrix of the given connectivity and the inverse covariance matrix of the
normal distribution of the appropriate geometries are equivalent up to a constant
factor. In the other words, the eigenvectors of the Laplacian matrix are identical to
the eigenvectors of the covariance matrix in reversed order.

Since, for random vectors from a zero-mean normal distribution, the Principal Component
Analysis computed from the covariance matrix is the optimal orthogonal transform from the
viewpoint of mean-squared error criterion [9], the Laplacian eigenvector basis leads to an
optimal spectral decomposition for appropriate 2D mesh geometries with the same kind of
distribution. The authors in [9] demonstrated that these assumptions are also acceptable for the
true distribution of valid 3D mesh geometries and in practice, they are usually good enough.
This demonstration is based on this simple observation that a vertex position of an actual 3D
mesh is approximately close to the average of its neighbours, therefore we have a relatively
smooth mesh in practice.

By considering the Laplace operator ΔN of an input manifold, we denote the eigenvectors
of ΔN by ϕ1, ϕ2,…. These eigenvectors construct a basis for the family of square-integrable
functions on N which is denoted by L2(N). Therefore, we can rewrite any function g ∈ L2(N) in

terms of ϕi s as g ¼ ∑
∞

i¼1
αiϕi, where αi is the inner product of g and ϕi (α

i = 〈g, ϕi〉) in the

functional space L2(N). In this way, we can consider the function g as a vector α = [α1,α2,…]
in the infinite-dimensional space spanned by the Laplacian eigenvectors. Now, we consider the
coordinate functions (gx, gy, gz) defined on N each of which simply contains the x, y and z-
coordinate values of the vertices, respectively. By re-writing these coordinate functions, a
surface can be represented in terms of three vectors (αx,αy,αz) in the space spanned by the
Laplacian eigenvectors. We denominate these vectors the coordinate weights of N as
in [13]. We can entirely determine the embedding of a manifold by its coordinate
weights once the eigenvectors are available. Finally, since higher eigenvectors have
higher frequencies which are related to smaller details, we can truncate the number of
the eigenvectors to keep only the top few coordinate weights. In this way, we can
reconstruct the surface at varying levels of details.

Multimed Tools Appl (2018) 77:19347–19375 19355

2.1.2 Coarse model generation

Given an initial surface mesh with n vertices, we firstly compute the graph Laplacian using Eq.
(2), and then calculate the n eigenvectors of the graph Laplacian (i.e. ϕ1, ϕ2,…, ϕn). These
eigenvectors are arranged in ascending order of the eigenvalues. In order to generate a coarse
model of the initial surface mesh, the fine details should be removed from the model. To this
end, we restrict our consideration to the first m (m < n) eigenvectors of the graph
Laplacian. In this way, we develop a higher-level abstraction of the surface mesh that

captures its low frequency modes (coarser features). Specifically, consider that Gcoarse

¼ vcoarse1 ; vcoarse2 ;…; vcoarsen

� �
indicates the vertex set of the coarse model generated

from the initial surface mesh vertices Porg ¼ vorg1 ; vorg2 ;…; vorgn

� �
using only the first m

eigenvectors (ϕ1, ϕ2,…, ϕm) of the graph Laplacian. That is, if we define the coordi-

nate functions ĝx; ĝy; ĝz
� �

as:

ĝ̂x ¼ ∑m
i¼1α

i
xϕi; ĝ̂y ¼ ∑m

i¼1α
i
yϕi; ĝ̂z ¼ ∑m

i¼1α
i
zϕi ð3Þ

Then, we can calculate the vertices of the coarse model as vcoarsei ¼ ĝx við Þ; ĝy við Þ; ĝz við Þ
n o

for

i = 1,…, n with the same connectivity as the input mesh. The coarse models are obtained by
calculating the coordinate functions using only the first few eigenvectors m (m< n) of the
Laplacian (Eq. (3)). The coarse models are the high-level abstractions of the original model. In
other words, they represent the low frequency modes (global shape) of the original models. The
level of the abstraction depends on the value of m i.e. the number of the eigenvectors which is
utilized to calculate the coordinate functions. Thus, by using different values ofm, we can create
the coarse model at different levels of detail. Figure 4 illustrates the generated coarse models for
sample frames (frames 1 and 100) of the dance test sequence. The coarse models are obtained
for different values of m. The last model on the right shows the original model. It can be seen
from this figure that by reducing the number of utilized eigenvectors in calculating the
coordinate functions, the fine details are filtered more strongly and the generated model
becomes coarser. Hand region is magnified to illustrate how the fine details are filtered and
removed from fingers by representing the mesh models using reduced number of the eigen-
vectors of the graph laplacian matrix. The level of the filtration has an important effect on the
extraction of fixed details and the quality of the reconstructed mesh sequence. Strong filtration
of the fine details causes the coarse model to become very thin near the extremities, with a lot of
fine details collapsing together. This results in poor normal estimation around sharp fine details.
Thus, the optimal value of m is determined by considering the trade-off between compression
ratio and reconstruction quality.

2.2 Details- phase

2.2.1 Details-extraction

The extraction of fine details (high frequency modes) is a necessary step in order to reconstruct
the original mesh from its coarse model. In this paper, we consider that the animated mesh
contains fixed details which are roughly constant during object deformation in the animated
mesh sequence. As a consequence, the extraction of detail information is performed just for a
reference frame. Here, we select the first frame of the sequence as the reference frame.

19356 Multimed Tools Appl (2018) 77:19347–19375

Extracted details will be added back to the reconstructed coarse model of each frame to
reconstruct the whole animated sequence.

Details are calculated and extracted at each vertex of the reference frame. To explain the
extraction process, assume that vcoarsei is the corresponding vertex of vorgi on the coarse model.
There is a displacement between vcoarsei and vorgi due to removing some Eigenvectors of the
graph laplacian matrix. Definition of the details as the displacement between the
positions of the vertex on the original and the coarse model makes the details
restoration a challenging and time-consuming process. Since the model is deforming
through time, the displacement vectors should be represented in a rotation-invariant
local coordinate frames around the vertices. In order to avoid the time-consuming
process of computing the local coordinate frames like the method presented in [50],
we present a simple and efficient approach to extract the details. In this approach, the
details are extracted as the required displacement along the normal direction of the
vertex on the coarse model through which the vertex is relocated on the surface of the
original model. Figure 5 illustrates the proposed approach.

In this figure, to define the required displacement at each vertex, we find the intersection
point between the normal line passing through the vertex and the surface of the original model.
The normal line at the vertex vcoarsei can be described as:

vcoarsei þ v j−vcoarsei

� �
t; t∈ℝ ð4Þ

Where vcoarsei ¼ xcoarsei ; ycoarsei ; zcoarsei

� �
and vj = (xj, yj, zj) is another point along the line which

can be obtained by adding the normal vector n! to vcoarsei as follows:

Fig. 4 Generated coarse models for Frame 1 (top) and Frame 100 (bellow) of dance sequence. (From left to
right: generated coarse models for k = 1, 2, 3, 4, 5, 8 and 15% (m = kn/100). The last model shows the original
frame). It is clear how details filtered from the model by reducing the number of utilized eigenvectors

Multimed Tools Appl (2018) 77:19347–19375 19357

v j ¼ vcoarsei þ n!¼ xcoarsei þ nx; ycoarsei þ ny; zcoarsei þ nz
� � ð5Þ

Since we assume triangular meshes in this paper, the normal line will intersect with a triangle
on the surface of the original model. Experiments reveal that most of the vertices have a
displacement along the near normal direction. This fact implies that the intersection point will
be inside the neighboring faces of the vertex. Therefore, we restrict our consideration to the

one-ring neighborhood of the vertex. If we consider the triangle with vertices vorgi ; vorgk ; vorgl

� �
in the one-ring neighborhood of the vertex vorgi then, the general representation of the plane
passing through these three vertices is:

vorgi þ vorgk −vorgi

� �
uþ vorgl −vorgi

� �
w; u;w∈ℝ ð6Þ

Where, vorgc ¼ xorgc ; yorgc ; zorgc

� �
for c = i, k, l.

The intersection point of the normal line and this plane is therefore described by setting the
line Eq. (4) equal to the plane Eq. (6):

vcoarsei þ v j−vcoarsei

� �
t ¼ vorgi þ vorgk −vorgi

� �
uþ vorgl −vorgi

� �
w ð7Þ

Equation (7) can be rewritten as:

vcoarsei −vorgi ¼ vcoarsei −v j
� �

t þ vorgk −vorgi

� �
uþ vorgl −vorgi

� �
w ð8Þ

which can be expressed in a matrix form as follows:

xcoarsei −xorgi
ycoarsei −yorgi
zcoarsei −zorgi

2
4

3
5 ¼

xcoarsei −x j xorgk −xorgi xorgl −xorgi
ycoarsei −y j yorgk −yorgi yorgl −yorgi
zcoarsei −z j zorgk −zorgi zorgl −zorgi

2
4

3
5 t

u
w

2
4

3
5 ð9Þ

Fig. 5 Detail extraction for a typical vertex

19358 Multimed Tools Appl (2018) 77:19347–19375

This problem can be solved by inverting the matrix in order to find the values of the variables t,
u and w:

t
u
w

2
4

3
5 ¼

xcoarsei −x j xorgk −xorgi xorgl −xorgi
ycoarsei −y j yorgk −yorgi yorgl −yorgi
zcoarsei −z j zorgk −zorgi zorgl −zorgi

2
4

3
5
−1 xcoarsei −xorgi

ycoarsei −yorgi
zcoarsei −zorgi

2
4

3
5 ð10Þ

If the obtained solution satisfies the following condition:

u;w∈ 0; 1½ �; uþ wð Þ≤1 ð11Þ
then the intersection point will be on the plane inside the triangle spanned by the vertices vorgi ,
vorgk and vorgl . In this case, the normal line intersects the surface of the original mesh at the
obtained intersection point. Otherwise, this intersection point is not on the surface of the
original mesh and we should investigate the next triangle in the one-ring neighborhood of the
vertex. Once the intersection point between normal line and the surface of the original mesh is
obtained, the distance from the vertex to the intersection point is stored as the detail at that
vertex. In fact, this distance is actually the required displacement to relocate the vertex on the
surface of the original mesh.

2.2.2 Details-restoration

Details restoration is a process to reconstruct the mesh sequence from compressed data which
is sent to the decoder. These data include the fixed connectivity of the animated 3D model (V),
coordinate weights vectors (αx,αy,αz) for each frame which contain only the weights related
to the first m < n eigenvectors and the extracted details from the reference frame. Since we
assume that the animated sequence has a fixed connectivity, the information of the mesh
connectivity is sent to the decoder only once. Using this information, we can compute the
graph Laplacian matrix (Eq. (2)) in order to calculate the eigenvectors ϕ1, ϕ2,…, ϕm. Then, we

use Eq. (3) to find the coordinate functions ĝx; ĝy; ĝz
� �

for each frame. In this way, the coarse

model of each frame can be acquired. Finally, details are added back to the coarse models to
reconstruct the mesh sequence. As mentioned in the previous section, extracted details are
added along the normal direction at each vertex. Figures 6 and 7 show the reconstruction
process for sample frames of test sequences. It can be seen from these figures that some parts
of the models have fairly low reconstruction quality. Simulation results reveal that there are
two main reasons for this problem: large deviation from the normal direction between the
original model and the coarse one and the presence of varying details due to non-rigid
deformations. The first situation causes the extracted details to be inaccurate at some vertices.
In the second situation, some details of the model vary due to non-rigid deformations
throughout the sequence. Thus, adding the extracted details to the reconstructed coarse models
results in large errors at some vertices. However, experiments show that the number of vertices
which have large deviation from the normal direction is very small compared to the total
number of vertices (approximately 7 to 10% of the total number of vertices). Thus, we can
improve the reconstruction quality by sending the residual errors for these vertices. To this end,
we consider the largest residual error for each frame and send the residual errors for
vertices at which the residual errors are bigger than 0.7 of the largest residual error.
This value is defined considering the reconstruction quality and human perception. In

Multimed Tools Appl (2018) 77:19347–19375 19359

the presence of varying details, it is necessary to send the residual errors for the parts
of the model with non-rigid deformations.

Figures 8 and 9 show the reconstructed models in Figs. 6 and 7 after adding the residual
errors in order to improve the reconstruction quality. In Figs. 10 and 11, we compare the
distribution of the reconstruction errors before and after adding the residual errors. Recon-
struction errors are expressed as the percentage of the model’s bounding box diagonal (i.e.,
error/diagonal*100) whose values are shown with different colors. The smallest error is
encoded by blue color while yellow color indicates the largest error. As seen from these
figures, the quality of reconstruction is improved by adding the residual errors. Dance
sequence contains a model with articular motions and thus, the residual errors are sent for a
small portion of the mesh vertices which has a small effect on the compression performance.
However, samba model has varying details due to the non-rigid deformation of clothing.
Therefore, sending large residual errors for these parts negatively impacts the compression
performance, although it improves the reconstruction quality.

3 Experimental results

In order to compare the performance of the proposed compression algorithm with the state of
the arts, various experiments are performed on five test sequences: samba model [57], squat2
[57], cowheavy, dance and horse gallop. These sequences have different number of frames and
vertices. The dance, cowheavy and horse gallop sequences contain articular deformations

Fig. 6 Reconstruction results for
some sample frames of dance
sequence (from top to bottom:
frame 3, frame 101 and frame
200). Left: original model, middle:
extracted coarse model, right:
reconstructed model after details
restoration (adding back the details
to the coarse model)

19360 Multimed Tools Appl (2018) 77:19347–19375

whereas the samba and squat2 sequences have non-rigid deformations due to the clothing.
Table 1 shows the properties of the test sequences.

The efficiency of a dynamic 3D mesh compression method depends on how much the
method exploits spatial and temporal correlation in an animated mesh sequence to remove
redundant information. In order to assess the performance of a compression method, we should
consider two important factors: data rate and the distortion introduced by the compression.
Efficient compression method is expected to yield lower distortion at the same data rate in
comparison to other methods. The performance of the proposed algorithm is assessed by
evaluating rate-distortion curves. We measure bitrates in terms of bits per vertex per frame
(bpvf). The overall distortion between reconstructed and original sequences is measured using
two error metrics:

– The KG error [24] which is a vertex-based error measure and is traditionally used in the
literature to evaluate the overall distortion caused by compression. Therefore, it is utilized

Fig. 7 Reconstruction results for
some sample frames of samba
model (from top to bottom: frame
3, frame 90 and frame 174). Left:
original model, middle: extracted
coarse model, right: reconstructed
model after details restoration
(adding back the details to the
coarse model)

Multimed Tools Appl (2018) 77:19347–19375 19361

in the experiments to compare the proposed method with previous studies. This error is
defined as follows:

KG error ¼ 100
M‐Me��� ���

M‐E Mð Þk k ð12Þ

Where M is a 3n × f matrix and each frame of the original sequence is stored in a separate

column of M; n and f are the number of vertices and frames, respectively. ~M∼ is a matrix
containing reconstructed sequence. E(M) is an average matrix of the same dimensions asM, in
which the average vertex positions of all frames over time are stored in the columns. The
distortion per frame is computed as the L2 norm of the original vertex positions relative to the
reconstructed ones.

– Recently, however, researchers suggest using perceptual metrics to measure the amount of
perceived distortion better than the conventional metrics. STED (spatiotemporal edge

Fig. 8 Reconstruction results for sample frames of dance sequence (from top to bottom: frame 3, frame 101 and
frame 200). Left: before adding residual errors, right: after adding residual errors

19362 Multimed Tools Appl (2018) 77:19347–19375

differences) is a new perceptual metric which is proposed in [55] for dynamic 3D mesh
compression. In this metric, the changes of edge lengths between the reconstructed and
original models are evaluated and it has a good correlation with the perceived distortion of
dynamic 3D meshes. The overall error is defined as a hypotenuse of two errors: spatial
error Es and temporal error Et which are related to each other using a weighting constant c:

Fig. 9 Reconstruction results for
sample frames of samba model
(from top to bottom: frame 3,
frame 90 and frame 174). Left:
before adding residual errors, right:
after adding residual errors

Fig. 10 Distribution of reconstruction error as the percentage of the model’s bounding box diagonal (i.e., error/
diagonal*100) for sample frames of the dance sequence before and after adding residual errors. From left to right:
frame 3 before and after adding the residual errors, frame 101 before and after adding the residual errors, frame
200 before and after adding the residual errors. The smallest error is encoded by blue color while yellow color
indicates the largest error. It is clear that the quality of reconstruction is improved by adding residual errors for a
small portion of the mesh vertices which has a small effect on the compression performance

Multimed Tools Appl (2018) 77:19347–19375 19363

STED error ¼
ffi
Es

2 þ c2Et
2

p
ð13Þ

Es represents the local standard deviation of the edges which is averaged over all the vertices
and all the frames. Et is defined as the average value of the relative temporal edge differences
over all the vertices and all the frames. The reader can find more details about the STED error
in [55]. The parameters of the STED error are defined according to [55].

The value of m (the number of utilized eigenvectors of the graph laplacian matrix to create
coarse model) is the only parameter to be tuned in the proposed method. As mentioned
previously, there is a trade-off between compression ratio and reconstruction quality, depend-
ing on the selected value for m. It is necessary to increase the value of m to achieve more
accurate reconstructed coarse models. However, the efficiency of compression will deteriorate
by increasingm due to the need for sending more coordinate weights to the decoder side. Thus,
the optimal value of m is determined by evaluating its impact on the reconstruction quality. To
this end, the quality of reconstructed sequence is evaluated by the KG error for different values
of m. Figure 12 shows the KG errors of the dance sequence for different values of k as the
percentage of the utilized eigenvectors (m = k ⋅ n/100).

The errors are measured before adding residual errors to the reconstructed sequence in order
to investigate the effect of m on the reconstruction quality. This figure clearly illustrates that the
quality of reconstruction is improved by increasing k (or m). However, the reduction in
reconstruction error is significantly low after a particular value of k (for example
k = 6 in this case). Therefore, we select k = 6 as the optimal value for the dance
sequence. We can define the optimal values of k for other test sequences in a similar
way. These values are tabulated in Table 2.

Unfortunately, a public implementation of the previous works is not available, and therefore
we could only compare the proposed method with the results which are reported in the
corresponding papers. Figure 13 shows the rate-distortion (R-D) curves for the proposed

Fig. 11 Distribution of reconstruction error percentage for sample frames of samba model before and after
adding residual errors. From left to right: frame 3 before and after adding the residual errors, frame 90 before and
after adding the residual errors, frame 174 before and after adding the residual errors

Table 1 Utilized test sequences for performance evaluation

Test sequence # vertices # frames

Samba model 9971 175
Squat2 10,002 250
Cowheavy 2904 204
Dance 7061 240
Horse gallop 8431 48

19364 Multimed Tools Appl (2018) 77:19347–19375

algorithm as well as the previous methods, namely SPC (scalable predictive coding) [49], im-
SPC (improved SPC) [38], KF-MO (key frame multi objective) [17], AWC (Anisotropic
Wavelet Compression) [16], CPCA (Clustered PCA) [44], Payan and Antonini [40], Coddyac
[51] and GL (geometric laplacian) [56]. R-D curves are measured in KG error in this figure.
From this figure, we observe that the proposed method has superior performance for dance,
cowheavy and horse gallop sequences. For the cowheavy sequence, the proposed method
shows up to 52% and 21% lower bitrates than im-SPC and KF-MO techniques at the same
distortion level. The SPC performance is far from the proposed algorithm. For dance and horse
gallop sequences, the proposed method results in reduced data rates by 18% and 37% on
average, respectively. The outstanding feature of these sequences is the articular body defor-
mation of 3D model which results in highly fixed details throughout the sequence. Thus, the
proposed method can effectively reconstruct the animated sequences with lower bitrates.
However, samba model has somewhat varying details for particular parts of the model in
cloth region because of non-rigid deformation in these parts. In the presence of non-rigid
deformations, the details of 3D model are not fixed and will change throughout the
sequence. Therefore, the quality of reconstructed sequence will be reduced at vertices
with varying details. In order to enhance the reconstruction quality, it is necessary to
send the residual errors for more parts of the model which negatively impacts on the

Fig. 12 Rate distortion (R-D) curve of reconstructed dance sequence before adding residual errors for different
values of k (m = k ⋅ n/100)

Table 2 Selected optimal values of m for different test sequences

Test sequence Total vertices
n

Percentage of utilized eigenvectors
k

Number of utilized eigenvectors
m

Dance 7061 6 424
Cowheavy 2904 7 204
Horse gallop 8431 8 675
Samba 9971 9 898
Squat2 10,002 10 1000

Multimed Tools Appl (2018) 77:19347–19375 19365

compression performance. Nevertheless, the proposed method has still competitive
performance compared to the GL method.

Figure 14 shows R-D curves for samba model and squat2 sequence which are measured in
STED error. The same problem of varying details is observed for squat2 sequence. Although
we need to send the residual errors for more vertices, the performance of the proposed method
is highly competitive with the GL method.

The utilized test sequences for comparing the performance of the proposed method with the
state of the arts have very fine details which may not give a deep insight into the proposed
method. Therefore, we create two animated mesh sequences to provide a better understanding
of the proposed compression algorithm. To this end, we choose the armadillo and dragon
models from the Stanford 3D Scanning Repository [46]. The animated mesh sequences are
generated by rigging the models in Blender [10] as the open source 3D modeling software (see
Fig. 15). Table 3 shows the properties of the generated sequences. Sample frames of these
sequences are illustrated in Fig. 16. The generated animated models have fixed details
throughout the sequence.

The first step is to create a coarse model of the animated mesh using the graph Laplacian
matrix. Figure 17 shows the created coarse models for the armadillo and dragon sequences. We
have utilized different number of eigenvectors to remove fine details. As it can be seen from
this figure, by reducing the value ofm (the number of utilized eigenvectors to create the coarse

Fig. 13 R-D curves (measured in KG error) comparison of the proposed method with previous methods

Fig. 14 R-D curves (measured in STED error) comparison of the proposed method with previous works

19366 Multimed Tools Appl (2018) 77:19347–19375

model), the filtration of the fine details becomes stronger and we can generate high-level
abstractions of the original model. The value of k (m = kn/100) is set at 2 for these sequences.

The second step is to extract fine details which is carried out according to the procedure
explained in section 2.2.1.

At the decoder side, the coarse models are reconstructed for different frames by using the
graph Laplacian matrix which is obtained from the connectivity data. Then, extracted fine
details at the first frame are restored to the reconstructed coarse models. Figures 18 and 19
show the reconstructed models by adding the fine details back to the generated coarse models
at the decoder. Since the armadillo and dragon models have fixed details throughout the
sequence, the reconstructed models have high quality. The possible reconstruction errors occur
at vertices which have fairly large deviations from the normal direction between the original
model and the coarse one. As mentioned previously, the number of these vertices are very
small compared to the total number of the vertices and sending the residual errors has a little
impact on the compression ratio. Figures 20 and 21 depict the reconstructed models after
adding the residual error. We also compare the distribution of the reconstruction errors before
and after adding the residual errors. We observe that the reconstruction quality is improved by
sending the residual errors for a small part of the vertices.

The R-D curves of the proposed method for the armadillo and dragon sequences are
presented in Fig. 22. We observe from this figure that the proposed method has excellent
performance for animated meshes with highly fixed details throughout the sequence (i.e. for
articular deformations) and it is possible to compress a sequence with lower bitrates and
reconstruct it with lower distortion.

In order to evaluate the time complexity of the eigenspace compression algorithm, we split
the total run time into two parts: the compression run time and the decompression run time.

Fig. 15 Rigging the armadillo and dragon models in the Blender software to make animated sequences

Table 3 Properties of the created sequences

Sequence #vertices #faces #frames

Armadillo 20,001 39,995 1–150
Dragon 19,878 39,774 1–150

Multimed Tools Appl (2018) 77:19347–19375 19367

The compression phase includes three main stages, namely: coarse model generation (CMG),
details extraction (DE), and encoding the required data (ENC) including coordinate weights for
each frame, extracted details and residual errors. The decompression phase includes three main
stages, namely: reconstruction of coarse model for each frame (RCM), restoration of details to
the reconstructed coarse models (RD) and adding residual errors to the reconstructed models
(AR). In Table 4, the processing time of each stage is illustrated for the compression and
decompression parts separately. The run times are expressed as the processing time per frame.
MATLAB R2016a is used to implement the experiments on a computer with Intel® Core i7
CPU with 2.8 GHz, 8GB RAM and ATI GPU with 4GB video memory. We notice that the
coarse model generation stage in the compression phase and the reconstruction of coarse
models stage in the decompression phase take longer than the other stages. This can be
explained by the fact that we require to compute the eigenvectors of the graph laplacian
matrix to generate the coarse models. However, the eigenvectors are computed just once for

Fig. 16 Sample frame from the armadillo (top) and dragon (bottom) sequences

Fig. 17 Generated coarse models for: (a) Frame 1 (top) and Frame 100 (bottom) of the armadillo sequence
(from left to right: generated coarse models for k = 2, 3, 4, 5, 8, 15 and 100% (m = kn/100). The last model shows
the original frame (k = 100)), (b) Frame 1 (top) and Frame 120 (bellow) of the dragon sequence (from left to
right: generated coarse models for k = 2, 3, 4, 5, 8, 15 and 100% (m = kn/100). The last model shows the original
frame (k = 100)). It is clear how details filtered from the model by reducing the number of utilized eigenvectors

19368 Multimed Tools Appl (2018) 77:19347–19375

the whole sequence. As total run time is divided to the number of frames, the processing time
of the proposed method is very low for long sequences. Thus, the run time depends on the
number of frames in the animated mesh sequence and the number of vertices in the 3D mesh.
The evaluation of the time complexity reveals that the run time of the proposed method is in
the limits of practical applicability. On the other hand, MATLAB scripts require compilation
and interpretation which increase the execution time. Thus, C++ implementation will decrease
the total run time of the proposed method.

3.1 Discussion

Any deformation of an object can be considered in 3 categories: rigid motion, articular motion,
and non-rigid motion. In rigid motion, total vertices of the object deform under fixed motion
(i.e. fixed rotation and translation) matrix. In articular motion, the object consists of
multiple parts in which every part deforms under its own motion matrix that is
different from motion matrix of other parts. At the same time, the points belong to

Fig. 18 Reconstruction of sample frames from the armadillo sequence by restoring the extracted details to the
coarse models: (top) Frame 2, (bottom) Frame 100. (from left to right: original model, coarse model, recon-
structed model by restoring details)

Fig. 19 Reconstruction of sample frames from the dragon sequence by restoring the extracted details to the
coarse models: (top) Frame 2, (bottom) Frame 120. (from left to right: original model, coarse model, recon-
structed model by restoring details)

Multimed Tools Appl (2018) 77:19347–19375 19369

each part follow fix motion. In non-rigid motion, each point of object can move
arbitrarily and there is no group of similar motions.

The proposed method is mainly based on this assumption that the fine details of an
animated mesh model are highly fixed throughout sequence and thus it is possible to
reconstruct the animated sequence by restoring extracted details to coarse models. This
assumption is true for most of the practically utilized animated models which have articular
deformations during time. Since we extract the fine details along the normal directions,
reconstruction errors for this kind of animated models occur for a small number of vertices
at which vertex displacements between original model and the coarse one have large devia-
tions from the normal direction. Thus, it is necessary to send residual errors for these vertices
in order to have a good reconstruction quality. However, the number of these vertices is very
low and the proposed method shows excellent performance in these cases.

Fig. 20 Reconstruction of sample frames from the armadillo sequence after adding residual errors for a small
number of vertices and comparison with the reconstruction by adding back only the extracted details: (top)
Frame 2, (bottom) Frame 100. (from left to right: reconstructed model before adding residual errors, recon-
structed model after adding residual errors, distribution of the reconstruction error percentage before adding
residual errors, distribution of the reconstruction error percentage after adding residual errors)

Fig. 21 Reconstruction of sample frames from the dragon sequence after adding residual errors for a small
number of vertices and comparison with the reconstruction by adding back only the extracted details: (top)
Frame 2, (bottom) Frame 120. (from left to right: reconstructed model before adding residual errors, recon-
structed model after adding residual errors, distribution of the reconstruction error percentage before adding
residual errors, distribution of the reconstruction error percentage after adding residual errors)

19370 Multimed Tools Appl (2018) 77:19347–19375

In the presence of non-rigid deformations, the details of 3D model are not fixed and change
throughout the sequence. Therefore, the quality of the reconstructed sequence will be reduced
in regions with varying details. In order to enhance the reconstruction quality, it is necessary to
send the residual errors for more points of the model which negatively impacts on the
compression performance. However, if we have non-rigid deformations in small
regions of the model (like the samba and squat2 models), it is possible to send the
residual errors without significant effect on the compression performance. Experimen-
tal results demonstrate that the proposed method has competitive performance in these
cases compared to the state of the art methods.

For animated mesh models with varying details in large regions, we need to send the
residual errors for a large number of vertices to improve the reconstruction quality. Thus, the
compression performance deteriorates for this kind of animated models and this is the main
limitation of the proposed method. In previous works, some solutions are proposed to solve the
problem of large residual errors. For example in [37], a rate-distortion mechanism is presented
to optimally quantize the residual errors. A temporal discrete cosine transform (temporal-DCT)
representation is used in [32] to compress the prediction errors. In [33], Mamou et al. propose
to represent residual errors as the multi-chart geometry images (MCGIM) which are then
compressed by using standard image encoders such as JPEG and MPEG-4. Of course, even for
the varying details in large regions, our method can decrease the residual error by using the
smoothed version plus fixed details as an initial guess of such vertices and in this way we can
encode the reduced residual error with small number of bits and do a minor compression.

Fig. 22 R-D curves (measured in the KG error) of the proposed method for the armadillo and dragon sequences

Table 4 Average run times of the proposed method for the test sequences

Test sequence Compression Decompression k

CMG
(sec)

DE
(sec)

ENC
(sec)

RCM
(sec)

RD
(sec)

AR
(sec)

Cowheavy 0.005 0.012 0.002 0.005 0.002 0.0003 7
Dance 0.074 0.041 0.005 0.071 0.005 0.0003 6
Horse gallop 0.53 0.95 0.004 0.52 0.006 0.0006 8
Samba 0.54 0.082 0.006 0.52 0.007 0.0004 9
Squat2 0.56 0.094 0.008 0.55 0.008 0.0005 10
Armadillo 0.25 0.28 0.007 0.24 0.015 0.0006 2
Dragon 0.25 0.3 0.007 0.24 0.014 0.0007 2

Multimed Tools Appl (2018) 77:19347–19375 19371

4 Conclusion

In this paper, we presented an efficient compression method for animated mesh sequences with
shared connectivity. Dynamic 3D models usually have fine details (high frequency modes)
which are usually fixed throughout the sequence. These fixed details result in high temporal
correlation between frames of the animated sequence. The proposed method removes details
by applying the graph laplacian operator and using lower number of eigenvectors. In this way,
we can reconstruct a coarse model of each frame at the decoder side. Moreover, the graph
laplacian operator is a combinatorial laplacian and only depends on the connectivity informa-
tion which is sent to the decoder just once. A simple and efficient approach is proposed to
extract the removed fixed details from a reference frame. Extracted details are added back to
the reconstructed coarse models at the decoder.

Experimental results reveal that the proposed method has superior performance for animat-
ed sequences with articular body deformations and outperforms the previous works. For
animated mesh sequences with varying details in small regions of 3D model, it is necessary
to send more residual errors which negatively impact the compression performance. Never-
theless, the proposed method has still competitive performance for this kind of animated
sequences compared to the state of the arts. The main limitation of the proposed method is
related to animated meshes which have varying details in large regions of the model. In these
cases, we require to send residual errors for most of the vertices which significantly decrease
the compression ratio. Moreover, the need to calculate the eigenvectors of the graph laplacian
matrix makes the proposed algorithm sensitive in the case of irregular meshes. Nevertheless,
for regular and semi-regular meshes, the proposed method results in a satisfactory performance
compared with the state of the art.

References

1. Ahn J, Kim C, Kuo C, Ho Y (2001) Motion-compensated compression of 3D animation models. Electron
Lett 37(24):1445–1446

2. Alexa M, Muller W (2000) Representing animations by principal components. Computer Graphics Forum
19(3):411–418

3. Amjoun R (2009) Compression of static and dynamic three-dimensional meshes. PhD thesis, Eberhard
Karls University of Tübingen

4. Amjoun R, Straßer W (2007) Efficient compression of 3-D dynamic mesh sequences. Journal of the WSCG
15(1–3):32–46

5. Amjoun R, Straßer W (2008) Predictive-DCT coding for 3D mesh sequences compression. J Virtual Real
Broadcast 5(6)

6. Amjoun R, Straßer W (2009) Single-rate near lossless compression of animated geometry. Comput Aided
Des 41(10):711–718

7. Amjoun R, Sondershaus R, Straßer W (2006) Compression of Complex Animated Meshes. In: Nishita T,
Peng Q, Seidel HP (eds) Advances in Computer Graphics. Lecture Notes in Computer Science, vol 4035.
Springer, Berlin, Heidelberg, p 606–613

8. Belkin M, Sun J, Wang Y (2008) Discrete laplace operator on meshed surfaces. In: Proceedings of the
twenty-fourth annual symposium on Computational geometry pp 278–287

9. Ben-Chen M, Gotsman C (2005) On the optimality of spectral compression of mesh data. ACM Trans
Graph 24(1):60–80

10. Blender. Open source 3D graphics modeling, animation, creation software: http://www.blender.org
11. Boulfani-Cuisinaud Y, Antonini M (2007) Motion-based geometry compensation for dwt compression of

3D mesh sequence. In: IEEE International Conference in Image Processing, pp 217–220
12. Briceno H, Sander P, McMillan L, Gortler S, Hoppe H (2003) Geometry videos: a new representation for

3D animations. In: Proceedings of ACM Symposium on Computer Animation pp 136–146

19372 Multimed Tools Appl (2018) 77:19347–19375

http://www.blender.org

13. Dey TK, Ranjan P, Wang Y (2012) Eigen Deformation of 3D Models. Vis Comput 28(6):585–595
14. Dhibi N, Elkefi A, Bellil W, Amar CB (2017) Multi-layer compression algorithm for 3D deformed mesh

based on multi library wavelet neural network architecture. Multimed Tools Appl 76(20):20869–20887.
https://doi.org/10.1007/s11042-016-3996-8

15. Fragkiadaki M, Salas M, Arbelaez P, Malik J (2014) Grouping-based low-rank trajectory completion and
3D reconstruction. Proceedings of the 27th International Conference on Neural Information Processing
Systems (NIPS 2014) pp 55–63

16. Guskov I, Khodakovsky A (2004) Wavelet compression of parametrically coherent mesh sequences. In:
SCA ‘04: Proceedings of the 2004 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation,
Eurographics Association, Aire-la-Ville, Switzerland, pp 183–192

17. Hajizadeh MA, Ebrahimnezhad H (2016) Predictive compression of animated 3D models by optimized
weighted blending of key-frames. Computer Animation and Virtual Worlds 27(6):556–576

18. He Y, Lu H, Xie H (2014) Semi- supervised non-negative matrix factorization for image clustering with
graph laplacian. Multimed Tools Appl 72(2):1441–1463

19. Heu J, Kim C, Lee S (2009) SNR and temporal scalable coding of 3-D mesh sequences using singular value
decomposition. J Vis Commun Image Represent 20(7):439–449

20. Hildebrandt K, Polthier K (2011) On approximation of the laplace-beltrami operator and the willmore
energy of surfaces. Comput Graphics Forum 30(5):1513–1520

21. Ibarria L, Rossignac J (2003) Dynapack: space-time compression of the 3D animations of triangle meshes
with fixed connectivity. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation pp 126–135

22. James DL, Twigg CD (2005) Skinning mesh animations. ACM Trans Graph 24(3):399–407
23. Karni Z, Gotsman C (2000) Spectral compression of mesh geometry. Proceedings of the 27th Annual

Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2000) pp 279–286
24. Karni Z, Gotsman C (2004) Compression of soft-body animation sequences. Comput Graph 28(1):25–34
25. Kennedy R, Balzano L, Wright SJ, Taylor CJ (2016) Online algorithms for factorization- based structure

from motion. Comput Vis Image Underst 150:139–152
26. Lengyel JE (1999) Compression of time-dependent geometry. In: Proceedings of the 1999 Symposium on

Interactive 3D Graphics pp 89–95
27. Levy B (2006) Laplace-beltrami eigenfunctions: towards an algorithm that understands geometry. In: IEEE

International Conference on Shape Modeling, Invited Talk
28. Lin Y, Yang L, Lin Z, Lin T, Zha H (2017) Factorization for projective and metric reconstruction via

truncated nuclear norm. International Joint Conference on Neural Networks (IJCNN 2017)
29. Lu M, Zheng B, Takamatsu J, Nishino K, Ikeuchi K (2010) 3D shape restoration via matrix recovery. Asian

conference on computer vision (ACCV 2010) pp 306–315
30. Maglo A, Lavoue G, Dupont F, Hudelot C (2015) 3D mesh compression: survey, comparisons and

emerging trends. ACM Comput Surv 47(3):1–40
31. Alliez P, Gotsman C (2003) Recent advances in compression of 3D meshes. In: Proceedings Symposium on

Multiresolution in Geometric Modeling
32. Mamou K, Zaharia T, Prêteux F (2006) A skinning approach for dynamic 3D mesh compression. Comput

Anim Virtual Worlds 17(3–4):337–346
33. Mamou K, Zaharia T, Prêteux F (2006) Multi-chart geometry video: a compact representation for 3D

animations. In: Third International Symposium on 3D Data Processing, Visualization, and Transmission pp
711–718

34. Mansouri S, Ebrahimnezhad H (2016) Efficient axial symmetry aware mesh approximation with application
to 3D pottery models. Multimed Tools Appl 75(14):8347–8379

35. Marpe D, Schwarz H, Wiegand T (2003) Context-based adaptive binary arithmetic coding in the H. 264/
AVC video compression standard. IEEE Trans Circuits Syst Video Technol 13(7):620–636

36. Muller K, Smolic A, Kautzner M, Eisert P, Wiegand T (2005) Predictive compression of dynamic 3D
meshes. In: 2005 I.E. International Conference on Image Processing pp 621–624

37. Müller K, Smolic A, Kautzner M, Eisert P, Wiegand T (2006) Rate-distortionoptimized predictive com-
pression of dynamic 3D mesh sequences. Signal Process Image Commun 21(9):812–828

38. Oguz Bici M, Bozdagi AG (2011) Improved prediction methods for scalable predictive animated mesh
compression. J Vis Commun Image Represent 22(7):577–589

39. Payan F, Antonini M (2005) Wavelet-based compression of 3D mesh sequences. In: Proceedings of IEEE
ACIDCA-ICMI

40. Payan F, Antonini M (2007) Temporal wavelet-based compression for 3D animated models. Comput Graph
31(1):77–88

41. Peng J, Kim CS, Kuo CCJ (2005) Technologies for 3D mesh compression: a survey. J Vis Commun Image
Represent 16:688–733

Multimed Tools Appl (2018) 77:19347–19375 19373

https://doi.org/10.1007/s11042-016-3996-8

42. Reuter M, Wolter FE, Peinecke N (2006) Laplace-beltrami spectra as Bshape-DNA^ of surfaces and solids.
Comput Aided Des 38(4):342–366

43. Rossignac J (1999) Edgebreaker: connectivity compression for triangle meshes. IEEE Trans Vis Comput
Graph 5(1):47–61

44. Sattler M, Sarlette R, Klein R (2005) Simple and efficient compression of animation sequences. In:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp 209–217

45. Shi Y, Ding W, Qi N, Yin B (2014) Prediction-based realistic 3D model compression. Multimed Tools Appl
70(3):2125–2137

46. Stanford 3D Scanning Repository. http://graphics.stanford.edu/data/3Dscanrep/
47. Stefanoski N, Ostermann J (2006) Connectivity-guided predictive compression of dynamic 3D meshes. In:

2006 I.E. International Conference on Image Processing pp 2973–2976
48. Stefanoski N, Ostermann J (2008) Spatially and temporally scalable compression of animated 3D meshes

with MPEG-4/FAMC. In: Proceedings of the IEEE International Conference on Image Processing pp 2696–
2699

49. Stefanoski N, Ostermann J (2010) SPC: fast and efficient scalable predictive coding of animated meshes.
Comput Graphics Forum 29:101–116

50. Stefanoski N, Liu X, Klie P, Ostermann J (2007) Scalable linear predictive coding of time-consistent 3D
mesh sequences. 3DTV-Conference The True Vision – Capture, Transmission and Display of 3D Video pp
1–4

51. Váša L, Coddyac SV (2007) Connectivity driven dynamic mesh compression. In: 3DTV-Conference The
True Vision – Capture, Transmission and Display of 3D Video pp 1–4

52. Váša L, Skala V (2009) Combined compression and simplification of dynamic 3D meshes. Comput Anim
Virtual Worlds 20(4):447–456

53. Váša L, Skala V (2009) COBRA: compression of the basis for PCA represented animations. Comput
Graphics Forum 28:1529–1540

54. Váša L, Skala V (2010) Geometry-driven local neighbourhood based predictors for dynamic mesh
compression. Comput Graphics Forum 29:1921–1933

55. Váša L, Skala V (2011) A perception correlated comparison method for dynamic meshes. IEEE Trans Vis
Comput Graph 17(2):220–230

56. Váša L, Marras S, Hormann K, Brunnett G (2014) Compressing dynamic meshes with geometric
Laplacians. Comput Graphics Forum 33(2):145–154

57. Vlasic D, Baran I, Matusik W, Popovic J (2008) Articulated mesh animation from multi-view silhouettes.
ACM Trans Graph 27(3):1–9

58. Wang M, Li K, Wu F, Lai U-K, Yang J (2016) 3D motion recovery via low rank matrix analysis. IEEE
International Conference on Visual Communications and Image Processing (VCIP 2016)

59. Wright J, Ganesh A, Rao S, Peng Y, Ma Y (2009) Robust principal component analysis: exact recovery of
corrupted low-rank matrices via convex optimization. In: Advances in Neural Information Processing
Systems 22. MIT Press

60. Yan Y, Tan M, Tsang I, Yang Y, Zhang C, Shi Q (2015) Scalable maximum margin matrix factorization by
active riemannian subspace search. Proceedings of the 24th International Conference on Artificial
Intelligence (IJCAI 2015) pp 3988–3994

61. Yang J, Kim C, Lee S (2002) Compression of 3-D triangle mesh sequences based on vertex-wise motion
vector prediction. IEEE Trans Circuits Syst Video Technol 12(12):1178–1184

62. Zhang J, Owen C (2004) Octree-based animated geometry compression. In: Proceedings of the Data
Compression Conference pp 508–517

63. Zhang J, Owen C (2007) Octree-based animated geometry compression. Comput Graph 31(3):463–479
64. Zhang H, Kaick O, Dyer R (2010) Spectral mesh processing. Comput Graphics Forum 29(6):1865–1894

19374 Multimed Tools Appl (2018) 77:19347–19375

http://graphics.stanford.edu/data/3Dscanrep/

Mohammadali Hajizadeh : was born in Iran, on June 20, 1984. He received the B.Sc. and M.Sc. degrees in
Electronic and Communication Engineering from Tabriz University and Sahand University of Technology in
2008 and 2011, respectively. Now he is a Ph.D. student at Sahand University of Technology. His major interests
are image and multimedia processing, computer vision, computer graphics and animation.

Hossein Ebrahimnezhad : was born in Iran 1971. He received the B.Sc. and M.Sc. degrees in Electronic and
Communication Engineering from Tabriz University and K.N.Toosi University of Technology in 1994 and 1996,
respectively. In 2007, he received his Ph.D. degree from Tarbiat Modares University. His research interests
include image and multimedia processing, computer vision, computer graphics, 3D model processing and soft
computing. Currently, he is a full professor at Sahand University of Technology.

Multimed Tools Appl (2018) 77:19347–19375 19375

	Eigenspace compression: dynamic 3D mesh compression by restoring fine geometry to deformed coarse models
	Abstract
	Introduction
	Eigenspace compression
	Approximation-phase
	Laplace-Beltrami operator
	Coarse model generation

	Details- phase
	Details-extraction
	Details-restoration

	Experimental results
	Discussion

	Conclusion
	References

