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Abstract This paper presents a novel method for global anomaly detection in crowded
scenes. The optical flow of frames is used to extract the foreground of areas with people
motions in the crowd in the form of layers. The optical flow between two frames gener-
ates one layer. The proposed method applies the metaheuristic of artificial bacteria colony
as a robust algorithm to optimize the extracted layers. Artificial bacteria cover all regions
of interest that have high movement between frames. The artificial bacteria colony adapts
quickly to the most varied scenarios. Moreover, the algorithm has low sensibility to noise
and to sudden changes in video lighting as captured by optical flow. The bacteria popu-
lation of the colonies, its food storage and the colony’s centroid position regarding each
optical flow layer, are used as input to train a Kohonen’s neural network. Once trained the
network is able to detect specific events based on behavior patterns similarity, as produced
by the bacteria colony during such events. Experiments are conducted on available public
dataset. The achieved results show that the proposed method captures the dynamics of the
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crowd behavior successfully, revealing that the proposed scheme outperforms the available
state-of-the-art algorithms for global anomaly detection.

Keywords Crowd anomaly detection · Optical flow · Artificial bacteria colony ·
Kohonen’s neural network

1 Introduction

Recently many research works have focused on the detection and classification of abnor-
malities at real-time speed in crowded scenes. Nowadays, the large number of public events
with a high density mass of people as well as the growth number of surveillance cameras
available, make the automatic detection and classification of scenes with specific events pos-
sible and necessary. An automated detection of these specific events is important because
human condition, in general, does not allow for a good performance at this task manually
due to its monotony. Abnormality detection in crowded videos is a challenging task for
many reasons: high density of people in handled scenes, difficulty in capturing the behav-
ior of the people in the crowd, the quality of surveillance videos available and, mainly, the
computational cost required in this kind of process.

The challenge of this work consists of developing a method capable of learning any
behavioral pattern present in a crowd of people, with low computational cost to enable real-
time surveillance applications. The optical flow is indicated by the literature as being a
method capable of correctly extracting the movement registered between frames. Therefore,
the main challenge occurs in the stage of analysis of the motion layers as generated by
the optical flow method. The bacterial colony algorithm aims at obtaining the information
regarding the movement spread, the movement density and the movement centroid of the
crowd. For this purpose, the population attributes, stock quality and centroid of the colony,
respectively, provide these information at low computational cost. The Kohonen’s neural
network groups the behavioral patterns of the bacteria colonies that emerge from distinct
events occurring in the video, also at low computational effort.

This work allows for the detection of abnormalities in videos of crowded scenes. It does
so optimizing the optical flow of scenes using an artificial bacteria colony. Abnormalities
detection is achieved by a Kohonen’s neural network, trained using the data regarding the
bacteria behavior during the optical flow optimization process. The contribution of this work
is four-fold: (i) a newmethod for the analysis and detection of abnormal events, which differ
from those considered normal and are predominant in scenes from the same scenario; (ii)
The method developed has a low computational cost in the analysis and detection stages;
(iii) Moreover, the algorithm has low sensibility to noise and to sudden changes in video
lighting as captured by optical flow; (iv) finally, this work reveals the potential of using
the artificial bacteria colony algorithm together with Kohonen’s neural network in real-time
surveillance applications.

This article presents a method to detect abnormal events in specific environments by the
analysis of surveillance videos using the artificial bacteria colony algorithm to optimize the
motion layers obtained from pairs of frames. In this work, abnormality is defined as any odd
event within cyclical events that occur in the scene. The Kohonens neural network classifies
behavioral patterns from the evolution of bacterial colonies to detecting eccentric patterns
in the given environment, such as suspicious activities to be reported to the human operator.
Thus, this work fits the special issues scope as a real-world application using interactive
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computational visual analytics, which is one of the sub-topics of the special issue call for
papers. This has now been emphasized in the paper.

This rest of this paper is organized into 6 sections. First, in the Section 2 we describe
the crowd anomaly. After that, in the Section 3, we describe some existing works related
with human activities recognition and crowd abnormalities detection. Then, in Section 4, we
explain the workflow of the proposed method. Subsequently, in Section 5, we provide details
about the methodology used to approach the abnormalities detection problem. Subsequently,
in Section 6, we present, analyze and discuss the experimental results. Last but not least, in
Section 7, we draw some conclusions about the work and point out some exciting directions
for future works.

2 Crowd anomaly detection

In general, the detection of anomalies in crowd videos occurs in the temporal domain, with
the identification of features outside the range of normality or specific events [17]. In the
literature, some of crowd abnormalities include individuals walking on a determined place
or individuals running when other people around them are walking. Anomalous events are
contextual and depend on other items of the scene [13]. Emergency situations, such as panic
in a crowd or a threat to the people on the scene, are considered anomalies. Identifying
these events is important for video surveillance applications. Spectral approaches based
on clustering [1] and social force model [14] are widely used. Methods based on optical
flow perform spatio-temporal volume analysis, wherein the movement is used to detect
anomalous events [20].

Starting from the premise that the crowd tends to behave in a stable and homogeneous
way under normal conditions, an abnormality may then occur when there is a rapid and
sudden variation in the motion conditions within the considered scene. Research works indi-
cate that the optical flow is among the best techniques for extracting motion from motion
scenes [9]. However, this technique is sensitive to the video lighting conditions. In addition,
it requires significant computational cost. The optical flow provides the brightness variation
intensity of pixels between two frames. Thereby, it is possible to generate a spatio-temporal
volume representing the motion variations within the video. In order to optimize the search
for the areas of the video, wherein relevant activities that should be analyzed, the application
of swarm intelligence based methods is promising [10, 20]. In this work, the meta-heuristic
inspired by real colony behavior of bacteria shows attributes that allow a precise optimiza-
tion while entailing a low computational cost. Another aspect, which makes possible the
application of bacteria colony optimization, is its ability to mirror the crowd behavior in the
scene by the bacteria behavior. In other words, the way the artificial bacteria move has a
direct relation with the way people move within a crowded scene. Therefore, understand-
ing the motion pattern of a colony of bacteria is, somehow, equivalent to understanding
approximately the motion pattern of crowd.

In this work, the behavior patterns are unique for each of the studied scenarios and the
classifier should be capable to recognize the abnormalities in diverse videos of the same
scenario. Furthermore, the set of input data for machine learning, in this case, do not have
the corresponding desired output, because these represent unpredictable crowd movement.
Thus, this is a case of unsupervised leaning. So, only after training is completed, which
is usually done using data clustering techniques, it would be possible to label manually
the movement patterns that emerge. In this work, to approach this specific problem, we
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exploit a Kohonen’s neural network for classification. This kind network model is chosen
due to its intrinsic capability of self-organization via a competitive method. This method is
capable of detecting similarities, regularities and correlations between the input patterns set
by clustering them. The training set is extracted from the information about the artificial
bacteria behavior during the optimization process. After training the network, the clusters
are manually labeled to distinguish specific events.

3 Related works

The analysis of human behavior as captured on videos evolved gradually towards the detec-
tion and recognition of abnormal behavior and, eventually, for recognition and identification
of specific events. The taxonomy for human behavior analysis, as described in [3], empha-
sizes the relevance of information related to movements in the video. This section presents
a consolidated vision about critical aspects related to developing techniques to analyze and
detect events within a given video.

A crowd abnormal behavior can be divided into two classes: either focusing on the indi-
vidual [2] or on the crowd [7]. In the first case, the crowd is considered as a collection
of individuals. Therefore, it is necessary to segment it and track trajectories therein. How-
ever, this approach is seriously affected by occlusions in the crowd scene. In the former
case, the crowd is treated as a whole in the analysis of medium and high-density scenes.
Instead to tracking individuals, this approach extracts features of the crowd to represent its
state.

Approaches based on supervised learning [22] use data, which are hard to be obtained,
for appropriate training of support vector machine (SVMs). For automated surveillance,
supervised approaches are less attractive because they usually require a new training every
time an unpredictable alteration of scene occurs. Approaches based in multiple learning
are techniques that are more widely used to recognize actions without supervision [12].
Unsupervised approaches offer an advantage over supervised ones in terms of feasibility,
due to their ability to adapt to the most diverse situations that usually arise in applications,
such as automated surveillance.

The use of swarm intelligence produces improvements in optical flow analysis, optimiz-
ing detection and localization of abnormalities in videos with crowds. By performing a rapid
convergence by swarm of agents to the areas of interest, this could lead to a sharp decrease
in terms of the time required for analysis of motion between frames. In [18] the detection
of abnormalities in crowd scenes is performed using particle swarm optimization, which
optimizes the interaction forces computed by the social force model. A new approach to
detecting abnormal events in crowded scenes is presented in [11]. The swarming theory is
applied for the identification of pedestrian movement characteristics, through the histogram
of the so-called Oriented Swarm Acceleration (HOSA), which can efficiently capture the
dynamics of crowd scenes.

4 System architecture

In this section, we present the basic architecture of the proposed system. Figure 1 shows
the main development stages of the proposed method to approach the problem of the global
abnormality detections. First stage uses short video as input. Then, the optical flow is
extracted for consecutive frames, generating spatio-temporal volumes of vector fields. Each
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Fig. 1 Main steps of the proposed system

movement layer containing the magnitudes of optimal flow is treated as a cost function and
optimized using the colony algorithm of artificial bacteria colony. The behavior records of
the bacterial colonies are used as attributes to train a Kohonen’s neural network. The neu-
ral network groups the data that presents similarities into classes and classifies the different
events occurring in the scene.

In the proposed method all the frames of video are then converted from RGB color
system to grayscale. Each layer of the optical flow, which consists of field of vectors with a
magnitude variation according to the brightness patterns, is obtained considering each pair
of consecutive frames of the video. The areas with movement between frames usually have
the highest apparent velocities. Therefore, these areas represent the regions of interest. The
ABC algorithm considers the field vector magnitudes of the apparent velocity as the cost
function. It optimizes this proposed cost function by positioning artificial bacteria around
all its local optima.

Colonies of virtual bacteria are scattered randomly in each layer of optical flow. In each
layer, the bacteria are subjected to the Darwinian natural selection, in which only the more
adapted survive and reproduce. The bacteria less adapted, that are those that during foraging
could not obtain enough food as represented by the cost function, are inevitably eliminated.
Considering each layer of optical flow, at the end of a defined number of epochs, the colony
stabilizes and the bacteria are naturally distributed on existing local optima of fitness func-
tion. The amount of bacteria in the colony (population), the food stock of all the surviving
bacteria (fitness accumulated) and the midpoint module of bacteria positions (centroid) are
registered for each layer. These attributes represent the scatter of movement in the scene,
the amount of movement between frames, and the position of the core of the crowd, respec-
tively. In the scenes of video, where there are large regions with little movement, the bacteria
population should be high. If there are small regions with large movement, the food stock
should be bountiful. If the crowd of the video suddenly disperses, the centroid should reveal
the magnitude and directions of crowd motion.

The optimization of the spatio-temporal volume of optical flow generates exit vectors
containing the amount of bacteria in colonies, food stocks and centroid module. These
attributes are used as the input variables of Kohonen’s neural network. The network clus-
ters, in classes, the colonies that have similar patterns of behavior. Once trained, the network
performs the detection of a specific event every time that a colony of bacteria shows
the same behavior pattern. In this work, the specific event is namely crowd abnormal
behavior.

5 Proposed method

In this section, we give a detailed presentation of the proposed algorithm. The proposed
scheme consists of three main components: (i) optical flow, (ii) artificial bacteria colony
and (iii) Kohonen’s neural networks.



17760 Multimed Tools Appl (2018) 77:17755–17777

5.1 Optical flow

Several methods use optical flow to perform event detection in frames sequence [19]. The
optical flow estimates the motion between a pair of frames. The essence of the method is
to find the estimate of the apparent motion between frames in relation to changes in the
brightness patterns (pixel value of the grayscale image).

Optical flow is the distribution of the apparent velocities of brightness patterns in an
image. Figure 2 shows the field of vectors with velocities associated to a sequence of images.
This arises both from the movement of the scene objects and the movement of the camera.
A sequence of images can be represented by its luminance function I = I (x, y, t). The
luminance conservation hypothesis means that the luminance of a physical point in the
image sequence does not change over a short time interval, as defined in (1):

I (x, y, t) ≈ I (x + �x, y + �y, t + �t). (1)

In order to determine the optical flow, it is assumed that at each pixel of the image, the
constraint, as defined in (2) applies:

Ixu + Iyv + It = 0, (2)

wherein Ix , Iy and It are the partial derivatives of the image, u and v are two components
of the magnitude vector of the optical flow at a pixel position. This constraint alone is not
enough to compute the vector field. Since the neighboring points of a moving object have
similar velocities, it is possible to assume that the vector field of the optical flow is smooth.
Thus, the vector field (u, v) is found by minimizing the function of (3):∫ ∫

[(Ixu + Iyv + It )
2 + α2(v2x + v2y + u2x + u2y)], (3)

wherein the double integral extends to the entire image. The solution to this problem can be
found, based on variational principles, by solving the following differential equations:

I 2x u + IxIyv = α2�2u − IxIt

IxIyu + I 2y v = α2�2v − IyIt ,

(4)

wherein α represents a suitable weighting factor to compensate the error magnitude that is
proportional to noise in the measurement.

Fig. 2 Optical flow illustration
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In this way, a solution can be found by an iterative procedure [8], using the following
equations:

un+1 = u−n − Ix(Ixu−n+Iyv−n+It )

α+I 2x +I 2y

vn+1 = v−n − Iy(Ixu−n+Iyv−n+It )

α+I 2x +I 2y
.

(5)

Figure 3 shows an illustration of the procedure considering the optical flow between two
adjacent frames. Figure 3a and b show two images, representing the two adjacent frames of
a footstep movement as carried out by a man. Figure 3c shows the calculated optical flow
between these two frames. Finally, Fig. 3d represents a detailed view of the optical flow, in
which the direction field of the leg movement is shown.

In this work, we use the optical flow toolbox of MATLAB �. The FlowLK function
presents the improved optical flow by the local application of Tikhonov regularization,
which aims at stabilizing the algorithm. The motion layer used in the optimization per-
formed by the ABC algorithm consists of the vector field modulus of the apparent velocities
of the optical flow, defined according to (6):

COF (xOF , yOF , k) =
√

u (xu, yu, k)2 + v (xv, yv, k)2, (6)

wherein k = { 1, 2, ...,total of frames - 1 } and is associated with the spatio-temporal volume
layer number of the optical flow. OF(xOF, yOF, k) is the motion layer k obtained from
the apparent velocity modulus u(xu, yu, k) e v(xv, yv, k), and xu and yu are the positions of
the magnitudes of u, as well as xv and yv are the positions of the magnitudes of v.

In the present work, videos containing f frames generate spatio-temporal volumes with
k = f − 1 layers. Each layer has a vector field of magnitudes of the optical flow. The

(a) Frame 1 (b) Frame 2

(c) Optical flow of frames (d) Detail of optical flow

Fig. 3 Illustration about optical flow extraction of frames
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regions of interest have the largest magnitudes. Each layer is then treated as a cost function.
The layers of spatio-temporal volumes, or cost functions, are optimized by the algorithm of
artificial bacteria colony.

5.2 Artificial bacteria colony algorithm

Bacterial foraging optimization (BFO) is a metaheuristic inspired by the behavior of
Escherichia coli bacteria in the search for nutrients in their environment [16]. BFO is
widely applied in numerical optimizations and uses the following basic steps: chemotaxis,
reproduction and elimination-dispersion.

Chemotaxis is the chemically directed movement that some living beings develop.
Chemotaxis, and the chemical substances involved in it, are used by some single-celled
organisms, insects, mammals and even men. It is used for various purposes, such as dur-
ing the search for nutrients, in order to avoid predators, generate communication between
individuals in the formation of colonies or groups, for sexual attraction, or in the territorial
demarcation [15]. In addition to this broad definition, the term chemotaxis, in the scientific
literature, is almost always used to refer to cell movement in response to the concentration
gradient of chemicals present in the environment.

Evolved over millions of years by nature, the chemotaxis of bacteria is a highly opti-
mized process of searching and exploring unknown environments. Due to advances in the
field of computation, chemotactic strategies of bacteria and their excellent search capability
can be modeled, simulated and emulated to develop nature-inspired optimization methods,
which are an alternative to existing methods. In this work an algorithm based on chemotactic
strategies of bacteria is developed.

In the present work, a bacteria colony consists in all artificial bacteria of a specific optical
flow layer. The artificial bacteria are points in a Cartesian Plane superimposed on a layer of
optical flow. The Cartesian plane has the same dimensions of the optical flow layer. Each
bacterium evaluates its position through a correspondence with the position of the optical
flow layer, on which it is superimposed. The value obtained in this evaluation is considered
its fitness. The fitness found by each bacterium is the magnitude of the optical flow.

In conjunction with chemotaxis, the Darwinian natural selection mechanism applies.
Artificial bacteria use the fitness of the cost function as food to remain alive. At each epoch,
in a single layer, the bacterium evaluates the fitness of its position and stores it, thus gener-
ating a food stock. For each layer, there are several values for the magnitudes of brightness
variation. Therefore, bacteria that are exploring regions with low values, will have a much
lower stock than those exploring regions with high values. In this way, the layer with its
various regions becomes an environment that stimulates competition.

The survival condition (SC) is defined by the mean and standard deviation of the magni-
tudes of each layer. The reproduction condition (RC) is defined by the mean and standard
deviation of the values of nutritional stock accumulated by the surviving bacteria. Thus, the
thresholds are estimated dynamically according to the particularities of the layers. There-
fore, the algorithm of artificial bacteria colony (ABC) adapts itself quickly to the changes
of scenery. The mean and standard deviation of the layer are calculated according to (7):

μ(k) = 1
n

∑n
j=1 C(xj , yj , k)

σ (k) =
√

1
n

∑n
j=1

[
C(xj , yj , k) − μ(k)

]2
,

(7)
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wherein μ(k) and σ(k) are respectively the mean and the standard deviation of the layer
magnitudes k, n is the total number of considered magnitudes e C(xj , yj , k) represents the
layer of motion as generated by optical flow.

The fitness of bacterium bi is measured by the association between its position in the
Cartesian plane and the position of the magnitude of the movement in the layer according
to (8):

Position(bi) = P(xbi, ybi)

Fitness(bi) = C(xbi, ybi , k),

(8)

The stock, represented by the accumulation of the fitness values of the bacteria is defined
as in (9):

stock(bi) =
Ne∑

epoch=1

C(xbi, ybi , k), (9)

wherein Ne is the number of evolutionary epochs of the algorithm in each layer. At each
epoch the number of bacteria in the colony changes due to elimination and reproduction. The
stock at the last epoch consists, therefore, of the values accumulated only by the surviving
bacteria in evolution process. The mean and standard deviation of the nutrients accumulated
by the surviving bacteria is calculated according to (10):

μstock(k) = 1
Nf

∑Nf

i=1 stock(bi)

σstock(k) =
√

1
Nf

∑Nf

i=1 [stock(bi) − μstock]2,

(10)

wherein the μstock(k) is the average stock of the surviving bacteria, Nf is the number of
bacteria in current epoch, stock(bi) is the surviving bacterial stock bi and σstock(k) is the
standard deviation of the nutritional stock of the layer. Thus the SC and RC are estimated
according to (11):

SC(k) = μmagnitude(k) + s ∗ σmagnitude(k)

RC(k) = μstock(k) + r ∗ σstock(k),

(11)

wherein s and r are the parameters of the ABC algorithm that define the sensitivity of the
natural selection process. Note that variations in the parameter s influence the spread of
bacteria in the regions of interest and variations in r influence the concentration of bacteria
in these regions.

The centroid is the point whose coordinates are obtained via the means of those of the
points that form the considered geometric figure. In the case of this application, the geomet-
ric form is the one resulting from the distribution of the bacteria. The centroid of the colony
and the centroid module are computed from the position of the surviving bacteria in the last
epoch, according to (12):

centroid(k) =
(

1
Nb

∑Nb

i=1 xb(i),
1

Nb

∑Nb

i=1 yb(i)
)

centroid module(k) =
√(

1
Nb

∑Nb

i=1 xb(i)
)2 +

(
1

Nb

∑Nb

i=1 yb(i)
)2

,

(12)
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wherein Nb is the total number of surviving bacteria in the last epoch while xb(i)

and yb(i) are the coordinates of the bacteria regarding the horizontal and vertical axis,
respectively.

During the elimination step, bacteria that have a fitness value lower than that specified
un the survival condition (SC) of the layer do not survive. During this step, mainly in the
first epoch, the elimination occurs for a big part of the bacteria located in regions of the
layer with little or no movement. Thereafter, the reproductive process gains emphasis and
there is a population explosion in regions with intense movement regarding the optical flow
layer. This population explosion, whose growth is exponential, allows to reasonably delimit
the outline of the region with high magnitudes, since the bacteria that distance themselves
from this region are quickly eliminated.

During the reproduction step, bacteria that survive and have a stock value above the
reproductive condition (RC) of the epoch reproduce by cloning itself into two identical
bacteria, with the same stock that are positioned randomly in the vicinity of the point where
the reproduction occurred. Thus, at each epoch new bacteria are randomly positioned near of
regions with magnitude values well above average. Bacteria that are very distant from these
regions are eliminated in the early stages. Therefore, the outline of the colony of bacteria is
shaped by the contour of the regions of interest.

Algorithm 1 presents the steps of the proposed CBA. First, we define the size of the pop-
ulation and the randomly initial position of the bacteria in the first epoch of the layers. The
number of epochs Ne for each layer is then defined, considering that at each epoch, start-
ing from the second one, the number of bacteria practically doubles. This is a parameter
that has a strong influence on the computational effort required during the execution of the
algorithm. It was noted that a number of times less than 3 creates instabilities in the final
population of the colonies while a value greater than 6 does not generate significant differ-
ences in results. Therefore, the value used in this work is set as 5 during all the experiments.
The parameter s of the survival condition is defined to adjust the sensitivity of the elimi-
nation of the worst bacteria. Finally, the parameter r of the reproduction condition, which
may be thought of as an elitization parameter, is defined as to allow only the best bacteria
to reproduce. The reproduction condition is responsible for the high concentration of bacte-
ria at the highest points of the cost function, equivalent to the regions of greatest movement
between frames. After parameter settings, there is a loop to optimize the layers, another
loop for the evolutionary epochs regarding each layer and 2 other loops to execute the elim-
inations e reproduction for each bacterium at a given epoch. Finally, the algorithm provides
the population records, nutritional stock and the centroid module of the k bacterial colonies
for the k layers of movement.

This work proposes the use of a modified version of the BFO algorithm to locate
areas of the frames that have optical flow magnitudes above a dynamic threshold. The
dynamic threshold adapts to the content of each layer. This dynamic threshold is asso-
ciated with the mean and standard deviation of magnitudes of brightness variation of
each optical flow layer. The processes of chemotaxis, reproduction and death of bacte-
ria allow the used algorithm to be able to discover information about the behavior of
the crowd in the sequence of frames via the analysis of the population behavior of the
bacteria.

Figure 4 allows an observation of the analogy between the foraging of a real vs. virtual
bacteria, because both seek the points of higher nutrient density, as the optimal ones of a
multimodal function. Figure 4d shows an image of the implementation carried out in this
work, in which the bacteria are positioned in the regions that agree with the presence of
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intense movement. In these areas where many people congregate, the number of bacteria
increases.

The evolution of the bacteria occurs along some epochs in a layer of movement, and
the algorithm converges for the formation of the colony around the areas with the highest
magnitudes of the layer. Figure 5 shows the evolution of the colony of bacteria over 5
epochs.

Figure 6 shows, in perspective, the distribution of a colony of bacteria as distributed
across an optical flow layer, after few epochs. It is possible to see that the noise does not
represent a good nutritional option for the bacteria, due to its relatively low value. Bacteria
always opt for more dense regions, where parts of the colony can establish themselves with
stability.
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(a) Real bacteria colony (b) Bacteria colony with hand shape

(c) Optimization by bacteria (d) Bacteria colony on frame

Fig. 4 In a and b real bacteria colony are shown. In b specifically, bacteria demarcate the nutritional envi-
ronment in the form of a hand. In c an cost function is shown where bacteria seek out the local optima by
chemotaxis. In d it is shown, on a frame, the distribution of the colony of artificial bacteria to a layer of
optical flow corresponding to that frame and its consecutive one

5.3 Kohonen’s neural network

Kohonen’s neural network or self-organizing Kohonen map (SOM) is part of a group of
competitive neural networks that use competition strategies to adjust their weights during
the learning process. SOMs can preserve the neighboring relations of input data and use
unsupervised training to find similarities based only on these input patterns. The main pur-
pose of Kohonen’s neural networks is to group incoming data that are similar, thus forming
classes or clusters. Figure 7 shows a Kohonen’s map, where colors highlight a cluster formed
after training.

Kohonen’s neural networks are nonlinear projections of high dimensional spaces for a
low-dimensional map M . The two-dimensional mapping, often adopted in the Kohonen’s
model, is a function f : X → M , wherein f : X → R

n and f : M → R
2, which assigns

each element x ∈ X a pair (i, j) ∈ M . The elements mi,j of the map M , as well as the input
data are n-dimensional vectors that adjust the values of the synaptic weights of the neural
network. Kohonen’s neural networks owns features that make it appropriate for modeling
various crowd behavior patterns. First, it performs topological ordering while computing
the feature map, which makes the spatial location of neurons in the lattice correspond to a
particular domain of input patterns and the neighborhood of a neuron share similar charac-
teristics which can tolerate a certain degree of variance between different patterns through
smooth transition [6].

Due to their characteristics, Kohonen’s neural networks can be well applied in several
areas, such as voice recognition, video behavior analysis and combinatorial optimization.
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(e) Epoch 5

Fig. 5 Evolution of the one colony of bacteria over 5 epochs of the motion layer. The small green triangle
in (e) represents the position of the centroid

The fact that similar mappings can be found in several areas of the human brain and other
animals, indicates that the topology design is an important principle in signal processing
systems, in the field of artificial intelligence.

In this work, after optimizing the spatio-temporal volume of the optical flow, the amount
of bacteria in each colony, the food stock of all bacteria of the last epoch and the centroid
module of the colonies are recorded for each layer. These values form a training set. These
patterns need to be clustered according to their similarities. For this, a Kohonen’s neural
network is used.

The training set has three vectors: population of the colonies, food stock and centroid
module. The Kohonen’s neural network based algorithm, used in this work, is implemented
using the SOM tool of MATLAB. The number of neurons for each video is set according
to Table 1. The weight updating procedures occurs based on the batch training algorithm.
The distance between the neurons is calculated using the Euclidean distance. The number
of neurons is chosen to get the best rating of the different events, which occur in the video,
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Fig. 6 The cost function is the vector field containing the magnitudes of brightness variation of an optical
flow layer. Artificial bacteria are located in areas of highest magnitude

wherein each neuron represents a distinct class. During training, the network determines
the neuron that best responds to the input vector. The vector of weights for the winning
neuron is adjusted according to the training algorithm. During the process of network self-
organization, the neuron whose vector of weights is closest to the vector of the input patterns
is selected as winner. The weight of the winning neuron is adjusted. Neighboring neurons
are also adjusted, but their weights are updated in the inverse proportion of the distance of
the winning neuron.

Fig. 7 Kohonen’s neural network



Multimed Tools Appl (2018) 77:17755–17777 17769

Table 1 Number of neurons, average training time and standard deviation for each video of the UMN dataset

Video #Neurons Training average time (s) Standard deviation

1 3 2.7562 0.4120

2 4 2.8436 0.4678

3 5 2.3217 0.4678

4 4 3.5428 0.3628

5 3 2.1842 0.4578

6 3 2.3567 0.4231

7 3 2.1547 0.1937

8 3 2.7853 0.2825

9 4 3.0621 0.2445

10 3 2.2754 0.3584

11 4 3.2621 0.2665

In this work, Kohonen’s neural network cluster into classes the input data that show
similarities. This allows that population, stock, and centroid values define a specific event
in the scene.

6 Performance results

In order to validate and evaluate the performance of the proposed method, extensive experi-
ments were performed using public dataset UMN [5]. The UMN dataset has 11 videos, with
3 different scenarios. There are crowds of low and average densities, moving indoors and
outdoors. All video sequences exhibit panic situations among individuals. The video begins
with individuals exhibiting normal behavior followed by sudden abnormal activity. Figure 8
shows frames from each video of the dataset.

All UMN dataset videos have resolution of 480x854 pixels. All algorithms were run with
Matlab R2015a. All simulations were performed on PCs with Intel Core i7 950 3GHz, 8Gb
RAM and Microsoft Windows 7 Home Premium operating system.

Figure 9 shows the step sequence followed during the experiments for each video of the
dataset. Figure 9b depicts the movement layer extracted by the optical flow (foreground) of
the scene in Fig. 9a, as a colormap. In Fig. 9d, it is possible to notice that bacteria do not
cover the areas with less motion than the others.

During the first epoch of optimization processes, the bacteria are randomly scattered
across each layer in the spatio-time volume of the optical flow. For all experiments, 5 epochs
are used for each layer. For experiments with more than 5 epochs, the algorithm requires
excessive processing time, because the bacterial colony grows exponentially. The parameter
s is set to 1.5 and the parameter r is set to 2. Regarding Kohonen’s network, 1000 epochs of
training are used for all videos. The number of neurons defined for each video in the dataset
is shown in Table 1. The second column shows the average training time for each network
while the third one shows the standard deviation.

During the first stage of the system, the preprocessing of the videos is performed to obtain
the layers of movement by the optical flow. This stage is important because it is associated
with the quality of the generated layers and usually requires a great deal of computational
effort due to the complexity of the entailed mathematical computation required therein.
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(a)Video 1 - 468 frames (b)Video 2 - 765 frames (c)Video 3 - 433 frames

(d)Video 4 - 622 frames (e)Video 5 - 710 frames (f)Video 6 - 526 frames

(g)Video 7 - 836 frames (h)Video 8 - 618 frames (i)Video 9 - 612 frames

(j)Video 10 - 636 frames (k)Video 11 - 795 frames

Fig. 8 Sample frames from the videos of dataset UMN

Figure 10 shows the results obtained regarding the processing time average for all frame
pair in each video of the dataset.

Experiments were performed with the initial populations of 250, 500, 1000, and 2000
bacteria. Figure 11 presents the optimization time average values for each layer as obtained
for a pair of consecutive frames by the optical flow. The results shows that for the UMN
dataset, 250 and 500 bacteria allow convergence of the optimization process at intervals that
are on average less than 0.033 seconds, which the main requirement for real-time application
where videos run are recorded at 30 frames per second.

Figure 12, which refers specifically to the use of 500 bacteria in the initial population,
reveals the history of the bacterial colonies generated along video #1. The variation in the
final amount of bacteria of each epoch is associated with the scattering and intensity of the
movement between frames. The depicted graph illustrates the way bacteria colonies mirror
the behavior of the crowd. In this video people walk into the environment at first then
suddenly start running in all directions. The turmoil is characterized in the graph as being
the moment when the population, stock and centroid values suddenly rise above average.
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(d)Bacteria colony on foreground
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Fig. 9 Optimization steps of proposed system for UMN
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Fig. 11 Average optimization time per layer for 250,500,1000 and 2000 bacteria in the initial population of
the first epoch of each layer
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Fig. 13 Detection by Kohonen network with data from bacteria colony behavior
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Table 2 Area under ROC curve of the proposed method vs. other methods for the UMN dataset

Method Area under ROC Improvement

Optical Flow [14] 0.8400 –

Social Force Model [14] 0.9600 14.28%

Chaotic Invariant [21] 0.9900 17.85%

Sparse Reconstruction [4] 0.9780 16.42%

Artificial Bacteria Colony 0.9929 18.02%

Figure 13 shows the comparison between the detection of the ground truth for video 4
and the detection as yielded by the proposed method for the UMN dataset.

Figure 14 shows the classification performed by the proposed method, in which class
1 represents the abnormal behavior. The other classes, whose number is smaller than 1
are considered normal events. The graph with the classes, based on the ground truth of all
the UMN dataset videos illustrates the comparison with the detections as yielded by the
proposed method. It is noteworthy to point out that all the abnormalities of the videos are
accurately captured by the proposed method.

In order to evaluate the quality of the classification performed by the Kohonen’s
neural network, Fig. 15 shows the ROC curve of the classification performed by the
proposed method for the detection of abnormalities. The curve is obtained by compar-
ing the classes detected by the application of the proposed method and those of the
ground truth of the videos. This curve was generated by the command plotroc available in
Matlab.

Table 2 reports the area under the ROC curve for the proposed method using artificial
bacteria colony as opposed to those obtained by other methods for detection of abnormality
behaviors regarding the UMN dataset. It is noteworthy to point out that the proposed method
offers the highest value of area under the ROC curve regarding state-of-the-art existing
related works, with an 18% improvement. The improvement is computed using the work
[14] as reference.

7 Conclusion

This work introduces a new method to perform the detection of global abnormalities in
videos of crowded scenes using optical flow, artificial bacteria colony and Kohonen’s neu-
ral network. This work demonstrates the ability of the method to capture the dynamics of
the crowd by optimizing the optical flow of the videos. One of the main advantages of
the method is that it does not need to carry out individual tracking to detect abnormalities.
Another advantage of the proposed methodology is that it requires a reduced computa-
tional effort for the analysis and detection phases, allowing its application within real-time
software.

The experiments revealed that the colony of artificial bacteria can comprehend the behav-
ior of the individuals in the videos with crowds and was robust enough to ignore the noise
captured by the optical flow. The detection of abnormalities is performed by the Kohonen’s
neural network and the results indicate that the network is able to adapt to the most diverse
scenarios quickly, accurately and with low computational cost.
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Improvements of this work could be obtained by using the space-temporal volume con-
taining magnitudes of the interaction forces, using the Social Force Model [14] instead of
pure optical flow. Improvements could also be implemented in the bacterial colony algo-
rithm to optimize spatio-temporal volumes faster and with less computational cost. These
are some directions for near future works that we intend to take over to improve the achieved
results.
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